

Healthcare Conference 2005

Using our Resources Wisely

24-26 April 2005 Scarman House, University of Warwick

Workshop A1

How Much Capital is Needed to Support Critical Illness Business?

Neil Robjohns
Head of Pricing, Munich Re UK Life Branch
Chairman of Critical Illness Risk Based Capital Working Party

Outline

- The CI Risk Based Capital Working Party
- Landscape
 - Capital Frameworks
 - Survey of Approaches to ICAS
 - Range of Views in the Market
- Risk Map
- Some Thoughts on CI Claims Risks
 - Past Works
 - Initial Level Estimation Risk
 - Trend Risk

Outline

- The CI Risk Based Capital Working Party
- Landscape
 - Capital Frameworks
 - Survey of Approaches to ICAS
 - Range of Views in the Market
- Risk Map
- Some Thoughts on CI Claims Risks
 - Past Works
 - Initial Level Estimation Risk
 - Trend Risk

CI Risk Based Capital Working Party

- A new working party; first meeting January 2005
- Established to help address a Key Question :

How much capital is needed to support CI business?

- Our aim is to develop information and models, and possibly formal guidance, to assist with ICAs, reserving and pricing for CI business, especially where long-term premium guarantees are given.
- This workshop is a first report on progress & plans

Critical Illness Risk Based Capital Working Party Members

- Bill Baker
 - Swiss Re
- Stehanie Harwood
 - Friends Provident
- Jon Neale
 - L&G
- Adrian Pinington
 - Revios
- Neil Robjohns (Chair)
 - Munich Re

- Rajeev Shah
 - Barnett Waddingham
- Stephen Somerville
 - Scottish Widows
- Grigory Spivak
 - Gen Re
- David Whittaker
 - Norwich Union
- Hamish Wilson
 - Abbey

Disclaimer

- The Working Party is newly formed and has much work ahead to reach adequately researched and well thought out conclusions.
- The opinions expressed in this presentation (to encourage debate) are my own and do not necessarily represent the views of the Working Party, nor those of my employer.

Outline

- The CI Risk Based Capital Working Party
- Landscape
 - Capital Frameworks
 - Survey of Approaches to ICAS
 - Range of Views in the Market
- Risk Map
- Some Thoughts on CI Claims Risks
 - Past Works
 - Initial Level Estimation Risk
 - Trend Risk

Capital Frameworks

- Many differing Capital and Reporting Regimes
 - UK Statutory
 - Realistic Balance Sheets
 - ICAS
 - Internal Capital Models
 - EV, EEV, Fair Value Accounting, ...
 - EU Solvency II
- and Viewpoints :
 - Regulators UK, other EU, Swiss, USA, ...
 - Rating Agencies
 - Shareholders
 - Policyholders

Capital Frameworks

- Common Elements
 - Reserves Explicit and Implicit Margins
 - Solvency Buffer %, Factors, Formulas, Scenarios, Probabilistic
- Varying Degrees of
 - Complexity
 - Judgement
 - Ability to Manage
- Two Key Issues
 - Security Level / Risk Tolerance
 - Time Horizon
- Overview : Different capital answers for differing purposes

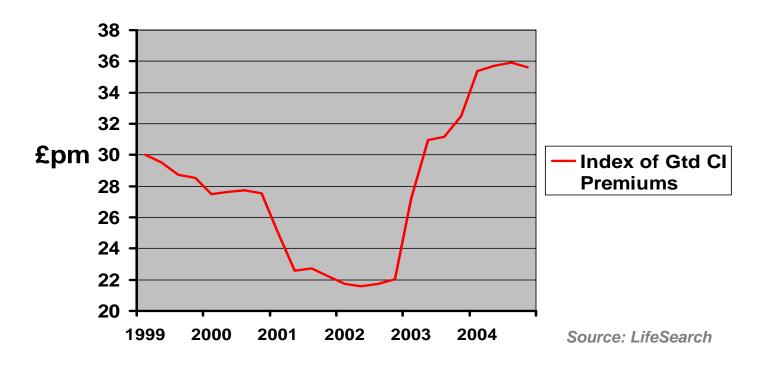
Survey of ICAS Practice, YE2004 Protection Products

- Calculation Approach
 - Deterministic load claim and trend rates
 - Worst case scenarios
 - Stochastic Models
 - Mix and match
- Calibration Justification
 - Historic analysis internal and population data
 - Opinion in-house and external expert
- Target Ruin Probability
 - 99.5% over 1 year
 - 95% (for example) over outstanding term

Survey of ICAS Practice, YE2004 Protection Products

- Time Horizon
 - 1 year only (possibly including change in reserves at end year)
 - Outstanding term of inforce block
 - Mix and match
- Risk Correlations
 - No allowance
 - Reinsurer Credit Risk
 - Correlation Matrix based on judgement and stress tests
 - Extreme scenarios investigated
- Overview
 - Wide range of practices no emerging consensus

Range of Views - Reserves


UK Statutory Valuation Bases for 8 Reinsurers

■ Source: YE2003 FSA Returns

	Leve	el (appro	x % CIB		(% pa)		
	M NSm	M Sm	F NSm	F Sm		M	F
Α	42	80	42	80		1.00	1.75
В	45	90	50	110		2.00	2.00
С	50	86	56	69		2.00	2.00
D	50	93	60	110		2.00	2.00
Е	60	60	60	60		2.00	2.00
F	56	89	69	110		1.50	1.50
G	70	70	90	90		1.50	1.50
Н	65	120	75	140		1.60	1.60

Range of Views – Prices and Capacity

There have been major changes in market prices, capacity and composition over recent years

Outline

- The CI Risk Based Capital Working Party
- Landscape
 - Capital Frameworks
 - Survey of Approaches to ICAS
 - Range of Views in the Market
- Risk Map
- Some Thoughts on CI Claims Risks
 - Past Works
 - Initial Level Estimation Risk
 - Trend Risk

Risk Map – Level 1 – All Risks

Market
Interest rates; Inflation; Equity Returns

Credit
Bond, Reinsurer or Intermediary defaults

Insurance

Liquidity

Operational

Group

Interactions between entities within a Group

Risk Map – Level 2 – Insurance Risks

- Claims Experience
 - Initial Level
 - Over Time

- Catastrophes Natural disasters; terrorism; epidemics
- Volatility
 Random incidence; seasonality
- Persistency Too low; too high complex risk
- Expenses
 Mis-estimation; poor control
- Business Mix Changes in distribution; competitor actions

Risk Map – Level 3 – Cl Claims Risks

Initial Level

Credibility

Appropriateness

Interpretation

Data volume; combination of sources

Source versus use; changing times

IBNR/IBNS; Initial selection

Over Time

Trend

Step Changes

Waves

Demographic - smoking; obesity

Accumulations of minor change

Major medical advances

Major change of practice

New cancer screening; Cohort effects

Risk Map – Level 2 – Operational Risks

Processes
Failure of systems, data or controls

Errors in Underwriting or Claim Decisions

Mismatch between assumed and actual U/w

and Claims Management standards

Mis-selling
 Misunderstanding / misrepresentation

- of CI conditions

- of premium reviews

Legal Unexpected interpretation of CI definitions

Unfair Terms (UTCCR)

Non-disclosure / fraudulent claims

Reinsurance treaty disputes

Risk Map – Level 2 – Insurance Risks

- Claims Experience
 - Initial Level
 - Over Time
 - Catastrophes Natural disasters; terrorism; epidemics
 - Volatility
 Random incidence; seasonality
- Persistency Too low; too high complex risk
- Expenses
 Mis-estimation; poor control
- Business Mix Changes in distribution; competitor actions

Risk Map – Level 3 – Cl Claims Risks

Initial Level

Credibility

Appropriateness

Interpretation

Over Time

Trend

Step Changes

Waves

Data volume; combination of sources

Source versus use; changing times

IBNR/IBNS; Initial selection

Demographic - smoking; obesity

Accumulations of minor change

Major medical advances

Major change of practice

New cancer screening; Cohort effects

Risk Map – Level 2 – Operational Risks

Processes
Failure of systems, data or controls

Errors in Underwriting or Claim Decisions

Mismatch between assumed and actual U/w

and Claims Management standards

Mis-selling
Misunderstanding / misrepresentation

- of CI conditions

- of premium reviews

Legal
 Unexpected interpretation of CI definitions

Unfair Terms (UTCCR)

Non-disclosure / fraudulent claims

Reinsurance treaty disputes

CI Risk Based Capital Working Party Terms of Reference (Revisited)

Recognising the Landscape, we will:

- Focus on modelling cashflows, independent of any specific capital regime
- Provide research to illuminate, evaluate and encourage debate on key elements of the Risk Map
- Focus primarily on CI Claims Risks, ...
 - using mortality as a benchmark
- ... then on other Insurance Risks and some Operational Risks with specific relevance to CI, and consider risk correlations
- Attempt to build / hope to encourage move towards a consensus

Outline

- The CI Risk Based Capital Working Party
- Landscape
 - Capital Frameworks
 - Survey of Approaches to ICAS
 - Range of Views in the Market
- Risk Map
- Some Personal Thoughts on CI Claims Risks
 - Past Works
 - Initial Level Estimation Risk
 - Trend Risk

Past Works - 1

Reserving for CI Guarantees

Society of Actuaries in Ireland Working Party November 1994

- Benchmark table of risk rates
- Capital standard expressed in terms of valuation basis
- Level Margin

- 35% to 50%
- Future Deterioration
- 1%pa to 3%pa

Past Works - 2

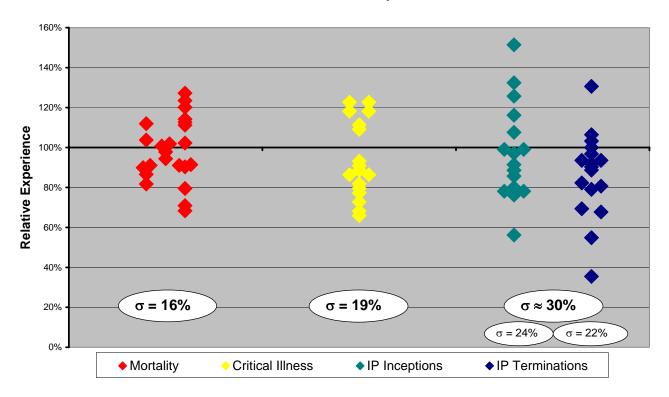
Reserving and Pricing for Healthcare Guarantees

Second Report by Healthcare Guarantees Working Party September 1999

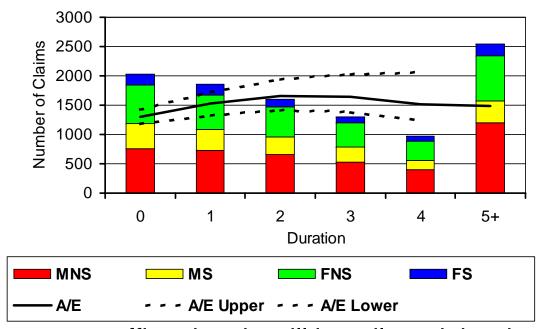
- Stochastic modelling approach
- Capital standard expressed in terms of ruin probability
- Level CredibilityN (0, 10%)
- Level Appropriateness N (0, 10%)
- Trend N (1%, 2.5%) [random walk]
- Permanent shocks also explicitly modelled

Level Risk

- Credibility
 - Data volume CMI, Individual Offices, combination of sources
 - Splits by rating factors
 - σ by Amounts is typically 2 x σ by Lives
- Appropriateness
 - Use of non-insurance data
 - Variation by office
 - Initial selection
 - Changing times changing distribution, u/w, claims mgmt
 - Changing coverage and operating environment
- Interpretation
 - Long delays from diagnosis to settlement of claims IBNR/IBNS


Level Risk - Credibility

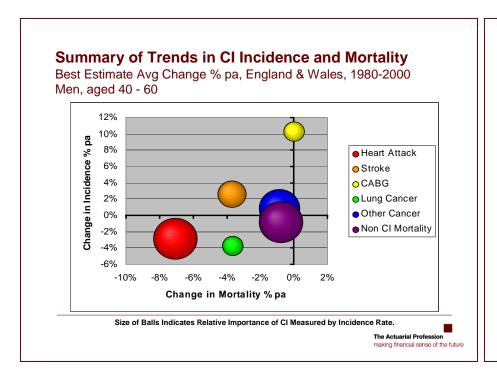
- Data Volumes
 - CMI 11,803 claims in the 1999-2002 quadrennium
 - 95% confidence interval ≈ ±2%
 - Lower volume and bigger σ for own-office data
- Splits by rating factors
 - CMI is non-homogenous data
 - 16 offices
 - by benefit type (87% Acc; 13% Standalone)
 - by sex (60% male; 40% female)
 - by smoker status (74% non-smoker; 26% smoker)
 - by age, duration, single / joint Life, ...
- So real estimation error σ is far larger


Level Risk - Variation by Office

CMI Inter-Office Experience

- Wide variation by office
- 'Ranking' of individual offices for CI hard to predict ?

Level Risk - Initial Select Period



- CMI / most own-office data is still heavily weighted to early durations
- We have no prior knowledge of shape of initial selection for CI
- Wide range of 'ultimate' experience still fits the data
- Particular issues around TPD and 'declined' / postponed claims

Trend Risk

- Underlying Trend
 - Demographic smoking; obesity
 - Accumulations of minor change
 - Review past and current trends population data
 - Compare to mortality trends and trend volatility
- Step Changes & Waves
 - Major medical advances
 - Major changes of lifestyle, law or practice
 - New screening tests / programmes
 - Cohort effects
 - Review past features population data
 - Postulate and model potential future scenarios

Trend Risk - Review Recent Trends

Summary of Trends in CI Incidence and Mortality Estimates for 40 – 60 age group, England & Wales, 1980-2000

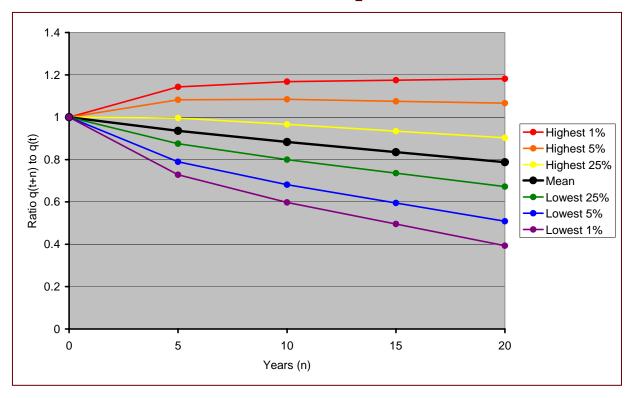
At aggregate population level:

- Mortality rates have fallen 2½%pa for men, 2%pa for women.
- CI incidence fell 1%pa for men, but has risen ½%pa for women.

But:

- Trends for the 1990's were worse than for the 1980's.
- Changes in smoking prevalence account for falls of a little under 1%pa for men and ½%pa for women, but are waning.
- Cancer is a larger part of total cost for insured lives than population.

So, for smoker-segregated rates in the 1990's the picture looks far worse :

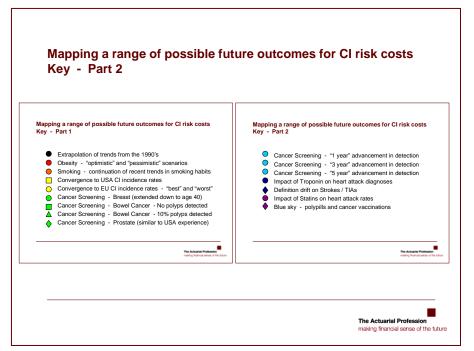

- CI incidence rose by ½ to 1%pa for men
- CI incidence rose by 1 to 1½%pa for women

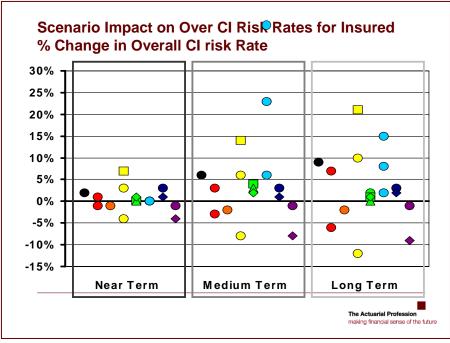
The Actuarial Profession

- Draw from CI Trends Research Group work
- Seek to learn from analysis of past trends and features in population data

Trend Risk - Compare to Mortality

- Spread of Outcomes q_{x+n} / q_x
- 5-year age bands
- England & Wales population mortality 1920 1998


Trend Risk - Compare to Mortality

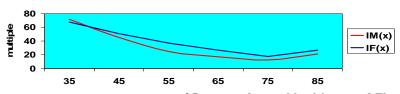

- Derive an overall distribution for portfolio
 - Allow for correlations between ages

Time period	5 years	10 years	20 years
σ ratio	5%	8%	12%
σ Trend	1.0% pa	0.8% pa	0.6% pa

- Then consider CI risks against mortality risks
 - Past trends in incidence and mortality by CI / cause
 - Different alignment of CI and mortality against medical advances and social change
 - Additional potential for shocks on CI
 - Different shape of 'funnel of doubt'?

Trend Risk - Scenarios

- Extend CI Trends Research Group work on scenario testing
- Key issue is assessing probability of scenarios alongside impact


Trend Risk - Scenarios

Traffic Lights for overall risk rating	% CI Claims	Trend	Diagnostics	Drugs	Genetics	NHS Capacity	Screening	Surgery	Technology	Treatments	Legislative
aorta graft surgery	L	L	L	L	L	L	L	L	ш	L	L
benign brain tumour	L	M	L	L	L	L	L	L	L	L	М
blindness	L	L	L	L	L	L	L	L	L	L	L
cancer	Н	Н	Н	L	М	L	Н	L	Н	L	М
coma	L	L	L	L	L	L	L	L	L	L	М
coronary artery by-pass surgery	M	L	L	L	L	М	L	L	L	L	М
deafness	L	L	L	L	L	L	L	L	L	L	L
heart attack	Н	М	Н	L	L	L	М	М	Н	L	Н
heart valve replacement or repair	L	L	L	L	L	L	L	L	L	L	М
kidney failure	L	L	L	L	L	L	L	L	L	L	L
loss of limbs	L	L	L	L	L	L	L	L	L	L	L
loss of speech	L	L	L	L	L	L	L	L	L	L	L
major organ transplant	L	M	L	L	M	L	L	М	M	L	L
motor neurone disease	L	L	L	L	L	L	L	L	L	L	L
multiple sclerosis	M	L	Н	L	Н	L	M	L	M	L	Н
paralysis/paraplegia	L	L	L	L	L	L	L	L	L	L	L
Parkinson's disease	L	L	Н	L	Н	L	М	L	Н	L	L
stroke	M	L	Н	L	L	L	Н	L	М	L	М
terminal illness	L	L	L	L	L	L	L	L	L	L	М
third degree burns	L	L	L	L	L	L	L	L	L	L	М

- Draw from ABI CI Working Party work on 'Vulnerability Matrix'
- Consider each CI condition for susceptibility to shocks and waves
- Also illustrates how range of outcomes might vary by generation of cover

Trend Risk - New Diagnostics

Stroke — a cerebrovascular incident resulting in permanent neurological damage

Ratio Silent Stroke / CIBT93 Stroke

Asource: Annual Incidence of First Silent Stroke in the US: A Preliminary Estimate Leary and Saver - April 2002

Cancer — the term cancer includes leukaemia

The harder we look, the more we find. Diagnoses of chronic lymphocytic leukemia (CLL) are becoming more common because we are looking harder. Such a finding will never have clinical effects with most people – they will die with it rather than from it.

Terry J Hamblin, M.D., New England Journal, August 2004

- It's possible to envisage extreme scenarios
- Key issue is assessing probability of alongside impact

Sample Conclusion - Personal Views! Range of Cl Claim Cost Outcomes

- Initial level
 - σ in range [15,25] and skew (more upside than downside)
- Trend

	Mean	Spread
At 5 years	+1% pa	σ ≈ 1.25 pa
At 10 years	+1% pa	σ ≈ 1.25% pa
At 20 years	+0.5% pa	σ ≈ 1.75% pa

- Your turn to shoot!
- Many interesting debates ahead!

Next Steps

CI Risk Based Capital Working Party Terms of Reference (Revisited)

Recognising the Landscape, we will:

- Focus on modelling cashflows, independent of any specific capital regime
- Provide research to illuminate, evaluate and encourage debate on key elements of the Risk Map
- Focus primarily on CI Claims Risks, using mortality as a benchmark,
- ... then on other Insurance Risks and some Operational Risks with specific relevance to CI
- Attempt to build a consensus

The Actuarial Profession making financial sense of the future

- Pursue research agenda and formulate views
- Publish and invite debate; work towards consensus
- Broad Timescale preliminary views by late 05 / early 06
- We welcome your comments, suggestions and opinions, now and at any time

Workshop A1

How Much Capital is Needed to Support Critical Illness Business?

Question / Discussion Time

Neil Robjohns
Head of Pricing, Munich Re UK Life Branch
Chairman of Critical Illness Risk Based Capital Working Party