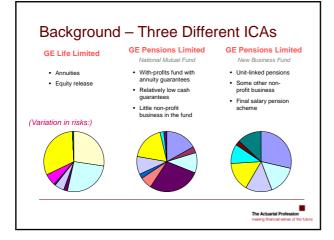
The Actuarial Profession making financial sense of the future

ICA and ICG

A life office's experience Workshop E05 Miles Baillie and Giles Woodruff, GE Life

Actuarial Life Convention, 7 November 2006

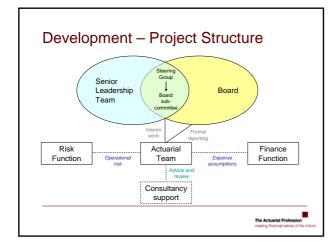
Contents

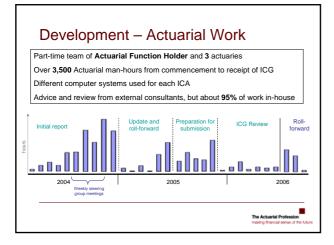

- Background
- Development
- Technical Issues
- ICG Experience
- Future Developments
- Summary

The Actuarial Profession making financial sense of the fu

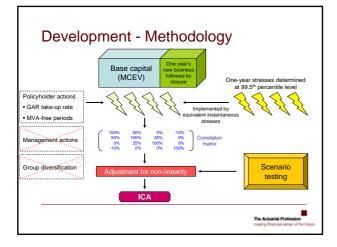
Background

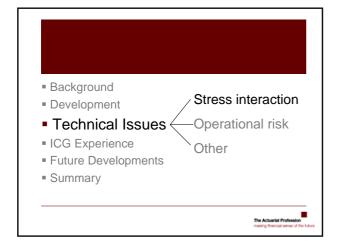
- Development
- Technical Issues
- ICG Experience
- Future Developments
- Summary

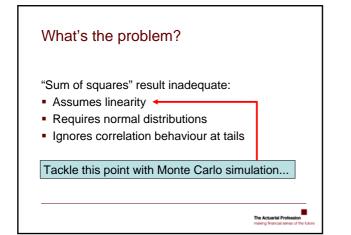


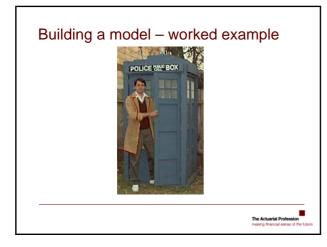


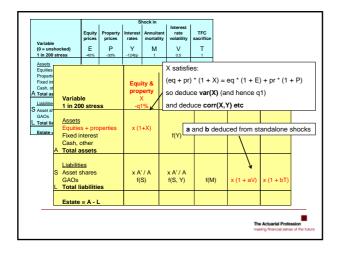
- Development
- Technical Issues
- ICG Experience
- Future Developments
- Summary

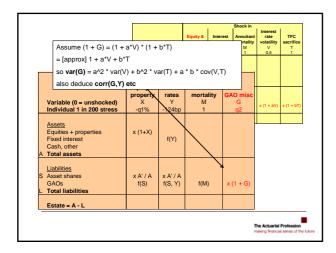




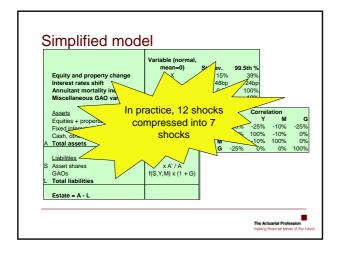


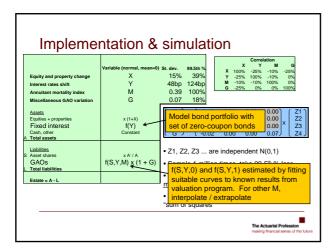


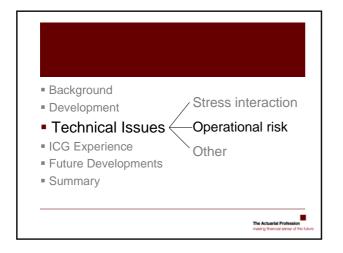


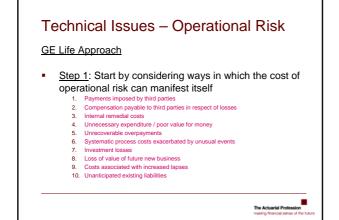


		Shock in				
	Equity prices	Property prices	Interest rates	Annuitant mortality	Interest rate volatility	TFC sacrifice
Variable (0 = unshocked)	E	Р	Y	м	v	т
1 in 200 stress	-45%	-30%	-124bp	1	0.5	1
Assets Equities Properties Fixed interest Cash, other A Total assets	x(1+E)	x(1+P)	f(Y)			
Liabilities S Asset shares GAOs L Total liabilities	x A' / A f(S)	x A' / A f(S)	x A' / A f(S, Y)	f(M)	f(V)	f(T)
Estate = A - L						



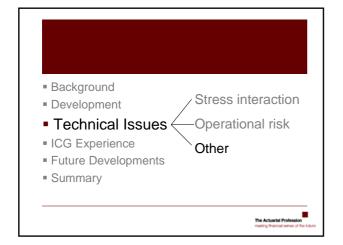






Interaction modelling - comments

- Model implemented in Excel using VBA: 25 minutes to run through 1,000,000 x 7 Z-values
- Use tail of losses coming out of simulation:
 Estimate confidence interval for 99.5th %
 - Estimate confidence interval for 99.5" %
 Identify shock combinations of particular concern
 - Demonstrate scenario testing (FSA)
 - Model robustness rework some results accurately
- Can use log-normal shock variables algebra on correlations more tricky



Technical Issues - Operational Risk

- <u>Step 2</u>: Develop each category
 e.g. "Payments imposed by third parties" → fines, levies, unanticipated tax, legal settlements, regulatory development, Euro entry ... etc.
- <u>Step 3</u>: Estimate 99.5th percentile loss / loss distribution for each risk
 Draw or data where available
 - Draw on data where available
 Consultation with managers
 - > 'Delphi' techniques (e.g. impact on lapses as a result of reputational damage)
- Step 4: Aggregate losses
 Initially using correlation matrix and estimates of correlations ...
 ... later by developing risk distributions and stochastic modelling
- <u>Step 5</u>: Consider correlations with other risks

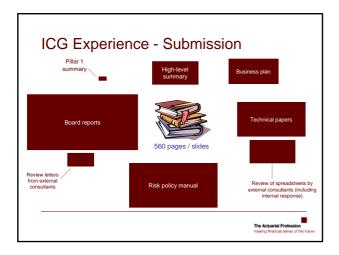
The Actuarial Profession making financial sense of the ful

Technical Issues - Miscellaneous

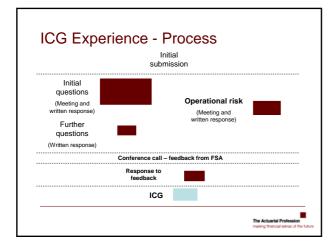
- Low volumes of data difficulties with:
 - valuing assets for which a market does not existsetting certain stress assumptions
 - setting certain stress assumptions
 setting certain correlation assumptions
- Judgement as to what is a "1 in 200 year" event
- Valuation of pension scheme liabilities
- > differences in mortality assumptions
- Non-linearity issues
- Tax issues
- Validity of correlation matrix for fat-tailed and one-sided risks

The Actuarial Profession making financial sense of the fut

Risk	Distribution	Assume no correlations		
А	Normal, with 99.5th percentile loss calibrated to -37	or interactions		
В	Normal, with 99.5th percentile loss calibrated to -2			
С	Displaced lognormal, with mean of zero, 99.5 th percentile calibrated to -26 and 99.9 th percentile calibrated to -60	<u>"Sum of squares"</u> 99.5 th percentile =		
D	Displaced lognormal, with mean of zero, 99.5 th percentile calibrated to -70 and 99.9 th percentile calibrated to -200	-104.65		
Е	Normal, with 99.5th percentile loss calibrated to -22	1,000,000 simulations		
F	Normal, with 99.5th percentile loss calibrated to -39	Mean = -0.06		
G	Displaced lognormal, with mean of zero, 99.5^{th} percentile calibrated to -25 and 99.9^{th} percentile calibrated to -75	Median = +1.65		
н	Displaced lognormal, with mean of zero, 99.5 th percentile calibrated to -37 and 99.9 th percentile calibrated to -75	99.5 th percentile =		
1	Normal, with 99.5th percentile loss calibrated to -2	-100.27		


Background

- Development
- Technical Issues


ICG Experience

- Future Developments
- Summary

Background

- Development
- Technical Issues
- ICG Experience
- Future Developments
- Summary

Background

- Development
- Technical Issues
- ICG Experience
- Future Developments
- Summary

The Actuarial Profession making financial sense of the full

Summary - Achievements

- Board and management now better placed to quantify risks and prioritise management actions.
- Greater impetus given to risk mitigation measures.
- ICA work has influenced other business decisionmaking (e.g. MCEV replacing premiums as a measure of sales achievement).

The Actuarial Profession