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The project

• Work carried out by Taylor Fry personnel
• Data (Medical Liability) provided by a large 

specialist insurer
• Supported by research grant of ₤15,000 

from Institute of Actuaries for Stochastic 
Reserving

• Paper at 
http://www.actuaries.org.uk/files/pdf/library
/taylor_reserving.pdf
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Why individual claim loss 
reserving ?
• What is meant by individual claim loss 

reserving ?
• Or let’s call it micro-reserving
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Why micro-reserving (cont’d)
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Why micro-reserving (cont’d)

Claim 1

Claim 2
Claim 3

Claim n

:

:

:

Raw data Summary data
Accident period

Development period

Information lost
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Why does quantity of data matter?
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One form of micro-reserving model
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One form of micro-reserving model
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Yi = Xi β + εi

Parameter 
vector

Stochastic 
error
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Why case estimates?

1. Simply more information
• So more efficient prediction
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Why case estimates?

1. Simply more information
• So more efficient prediction

2. Tail data
• Few finalised claims

• Claim sizes often at their largest
• So extrapolating heavy tail from 

few data points

• But usually plenty of case 
estimate data

In “old” triangle terms

Data

Few data 
points
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Factoring case estimates into model

• Natural to think in terms of modelling a 
development ratio:

Finalised claim size
Current estimate of incurred cost

• But what about nil claims? either
• Nil finalised cost; OR
• Nil current estimate of incurred cost
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Factoring case estimates into model 
(cont’d)

Frequency
Severity 

+0

Frequency 0+

Severity ++

Model requiredFinalised claim 
size

Current estimate 
of incurred cost
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Final estimate of liability

• Possibilities are
• Adopt the “paids” estimate
• Adopt the “incurreds” estimate
• Adopt some mixture of the two

• There are two versions of the last
• “Blended” estimate: weighted average of the 

two estimates for each accident year with 
weights dependent on accident year

• “Unified” estimate: fit a generalised model 
that includes “paids” and “incurreds” models as 
special cases
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Some (very brief) results

3.4%$1,071MUnified 

3.8%$1,021MBlended 

5.3%$1,040MIncurreds

5.3%$1,000MPaids

10.5%$888MMack (chain ladder)

Predictive 
CoV

Forecast Model 
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Bootstrap distribution of unified 
forecast of loss reserve
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Conclusion 

• Micro-reserving useful as a means of 
reducing prediction error associated with 
liability estimates

• Can be carried out by means of a “paids”
model

• Significant further reduction may be 
achievable by extension of the model to 
include case estimates


