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Information and Entropy
From Black Holes to Black Scholes
David Sanders

Entropy and Information
From Black Holes to Black- Scholes

Agenda:
Introduction to Black Holes
Introduction to Probability Theory and the Inversion 
Problem
A solution
Introduction to Risk Measures
Generalisation of Black Scholes with Risk Measures
Work in Progress
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A Thought Experiment – after Einstein
Take two stones of different weight
Drop them from the Tower
Which hits the ground first!

Answer – Galileo
In a vacuum both at the same time

Principle of Equivalence

This works no matter what the weight 
Even for a photon
Now throw the stones (and photon)

They will follow the same trajectory
We know the speed of light is finite

Jupiters moons
Therefore (from Newton) there is a mass from which
light can’t escape
Thus Newton and Galilieo predict Black Holes!

Don’t believe all you read in papers
Newton Predicts light bends as it passes a 

large body
Einstein (1911) did the same
Einstein bends twice as much
Eddington (1919) proved him right

By ignoring all photographic plates that  
proved him wrong!
What has this to do with actuarial science?
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Hawking Radiation

The radiation from a Sshwarzschild black hole is black 
body ratiation with temperature:

where   is the Reduced Planck Constant, c is 
the speed of light, k is the Bolltzmann Constant, G is 
the Gravitational constant, and M is the mass of the 
black hole.

Entropy and Information
From Black Holes to Black- Scholes

What does this say

In the most perfect mathematical 
physical concept all the 
Information is contained in the 
Entropy of the body!
INFORMATION = ENTROPY

Entropy and Information
From Black Holes to Black- Scholes

In reserving in actuarial science we have two main 
objectives

1. The completion of an undeveloped claims triangle 
to its ultimate position = the inversion problem

2. The measurement of uncertainty or risk in that 
estimation
THE SOLUTIONS OF BOTH THESE PROBLEMS 
INVOLVE INFORMATION AND ENTROPY
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Probability Theory

Probability is nothing but common sense 
reduced to calculation – Laplace

Probability was first stated as an explicit formal 
principle in the Ars Comjectandi of Jacob 
Bernouilli (1713). It was given an interesting 
title; the Principle of Insufficient Reason. 

Keynes renamed it the Principle of Indifference.

Plausible Reasoning

Policeman sees someone wearing a mask, 
crawling through a broken window in a jewellers 
with a bag of gemstones and watches
Conclusion – he’s a robber
Plausible reasoning – not certainty
Effected by experience
Prior information and common sense

Plausible Reasoning

Plausible reasoning of outcome
Qualitative correspondence with common 
sense
Consistency
“I know this defies the law of gravity, but, you 
see, I haven't studied law!"  - Bugs Bunny
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Plausible Reasoning Examples

Bending of light
Sun travels around the earth (and I mean this!)
The claims reserve required is £1 m
My estimate for the Katrina Loss is $20bn
My estimate for the Katrina Loss is $60bn

Plausible Reasoning - Axioms

Probability Theory

We recognise that a probability assignment is a means 
of describing a particular state of knowledge .
if the available evidence gives us a reason to consider a 

proposition A1 neither more or less likely than Proposition 
A2, then the only way is to ascribe equal probabilities; 
p(A1)=p(A2.)
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Probability Theory – Binary Trial

Assume we have a binary trial. Then we have the  

 

For such a model and for a large number of trials, the observed frequency tends to p 

 

However, we don’t know how large n must be! 

Probability Theory – Continuous case

For this we have the more detailed solution where f is considered as a continuous 
distribution and the probability that (f < m/n <f+df) becomes Guassian 

 

This is the de Moivre-Laplace Theorem 

Probability Theory – Inversion Problem
These results concern sampling distributions, and when the population numbers 
(N,M) are known, 

The problem left by Bernoulli can be summaries as follows, These results concern 
sampling distributions, i.e. given p=M/N what is the probability that we shall see 
specific sample numbers (m.n). Bernoulli tried to solve when the sample was known, 
but not only is the total population is unknown, but its existence is a tentative 
hypothesis (eg what is the number of diseases) 

This gives rise to the INVERSION PROBLEM 
Given (M.N) and the correctness of the whole conceptual model,  then it is likely that 
in many trial the observed frequency f will be close to the probability p. But can we make 
this in a theorem similar to the de Moivre-Lapalace 
The binomial law gives a probability m given (M,N,n) 
Can we find a formula for the probability of M given (m,.N,n) 
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Probability Theory – Solution
Bayes 1763

Given the data(m,n) the probability that M/N lies in the interval 
p<(M/N)<p+dp is  
 

 
 
(A Beta distribution and not a binomial!) 
 
 
But for large n the equation tends asymptopically to de Moivre 

Probability Theory – Solution
Laplace 1774

Let E stand for some observable event and (C1,….,CN) the set of conceivable causes. 
Suppose we have a conceptual model with the “sampling distribution” or “direct” 
probabilities of E for each cause: (P(E|Ci ) i= 1,2,…,N. 
Then if initially the causes were considered equally likely, then having seen the event E, 
the different causes are indicated with probability proportional to P(E|Ci); i.e 
With uniform prior probabilities, the posterior probabilities of Ci are 
 

 
 
If Ci correspond to possible values of M in the Bernoulli Model then P(E|Ci) is 
binomial. 

Probability Theory – Solution
Laplace’s Generalisation

This did NOT solve Bernoulli’s problem. 
His original motivation was that the Principle of Insufficient 

Reason is inapplicable in many real problems because we 
are unable to break things down into “equally possible” 
cases.
Laplaces only useful results relied on P(Ci|I) =1/N
PRINCIPLE OF INVERSE PROBABILITY



8

Example of Laplace Mass of Saturn

Proposition A might be the statement that the unknown mass 
MS of Saturn lies in a specified interval,
B the data from observatories about the mutual perturbations 
of Jupiter and Saturn, 
C the common sense observations that MS cannot be so 
small that Saturn would lose its rings; or so large that Saturn 
would disrupt the solar system.

Laplace reported that, from the data available up to the end 
of the 18'th Century, Bayes' theorem estimates MS to be 
(1/3512) of the solar mass, and gives a probability of.99991, 
or odds of 11,000:1, that MS lies within 1% of that value. 
Another 150 years' accumulation of data has raised the 
estimate 0.63 percent.

So where are we?

Bernoulli defining probability as a representation of a particular 
state of knowledge, with the equations of probability representing 
the process of plausible reasoning for cases with not enough 
information i.e. deductive reasoning
Laplace represents learning by experience
However, since then probability has not been seen as describing 
a state of knowledge, but a formulistic number.
To follow down the route started by Bernoulli, Bayes and Laplace
we need to throw away the concept of probability = frequency of a 
random experiment
Bayes theory has the concept of probability of an hypothesis. 
Mainline statistics is sampling theory

So where are we?

Maximum Likelihood = Bayes with Uniform 
Prior Distribution
Evidence and Bayes representation
Bayes is symmetric and can be used 
backwards to test strength of proposition
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Jaynes Definitions

Complete ignorance

How do we express “complete ignorance” of a continuously 
variable parameter
Bayes and Laplace had used uniform prior densities…but these 
are not invariant under changes of parameter.
This leads to Jeffreys Rule
To express ignorance of a scale parameter x whose possible 
domain is 0<x<infinity, assign uniform prior distribution to its log 
P(dx|I)=dx/x
It has been shown that dx/x is uniquely determined as  the only 
scale parameter that is completely uninformative in that it leads us 
to the same conclusions about other parameters as if the 
parameter x had been removed from the model
This set the stage for the for the generalisation of the Principle of 
Insufficient Reason to the  Principle of Maximum Entropy.

The Principle of Maximum Entropy

As promised no maths!
The principle of maximum entropy is a method for 

analyzing the available information in order to determine a 
unique epistemic probability distribution
Put in an actuarial  way– we analyse the available 

information to get a series of outcomes.
By PME we have NO confusion over best estimate and 

range
BUT depends on information
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The Principle of Maximum Entropy -
constraints

The principle of maximum entropy is only useful when all of our information is 
of a class called testable information. 
A piece of information is testable if we can determine whether or not a given 

distribution is consistent with it. 
For example, the statements

"The expectation of the variable x is 2.87" ; and
"p2+p3 > 0.9" 

are statements of testable information.

Given testable information, the maximum entropy procedure consists of 
seeking the probability distribution which maximizes information entropy, 
subject to the constraints of the information. This constrained optimization 
problem is typically solved using the method of Lagrange Multipliers
The maths now becomes difficult!

The Principle of Maximum Entropy -Jaynes

The maximum entropy distribution ``is uniquely 
determined as the one which is maximally 
noncommittal with regard to missing information 
and that is ``agrees with what is known, but 
expresses `maximum uncertainty' with regard to 
all other matters, and thus leaves a maximum 
possible freedom for our final decision to be 
influenced by the subsequent sample data”

Example – loaded dice

In a normal dice the probability of each side is 
1/6
Each face is equally likely
Principle of Insufficient Reason
H(max) = loge6 = 1.79176 (range 1.783 -1.792)
Average no of spots =3.5
BUT dice is loaded and average  = 4.5 
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Example – loaded dice

Max entropy distribution (using Lagrangians) 
has

Freq(1) = 0.0543, Freq(2) = 0.0788
Freq(3) = 0.1142, Freq(4) = 0.1654
Freq(5) = 0.2398, Freq(6) =0.3475
Hmax=1.614
BUT
This is the best estimate of the probabilities!

Maximum Entropy – Actuarial Science

Given a set of data and information 
(constraints) what is the best estimate and 
range of outcomes
Best estimate given by PME
Different actuaries may have different 
information and  hence different best estimates
Chain ladder MAY NOT GIVE best estimate as 
not  derived from PME

Entropy –what is it?

Entropy is connecting with 
Heat
Disorder
information theory 
statistical mechanics 

Quantitative not qualitative
Entropy is what the equation defines it to be
There is no such thing as an "entropy", without an 
equation that defines it.
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Entropy –what is it?

The entropy is a measure of the probability of a 
particular result. 
The entropy is a measure of the disorder of a 
system.

S = -k· [Pilog(Pi)] 
 

Entropy –what is it?

Entropy is also sometimes confused with complexity, 
the idea being that a more complex system must have 
a higher entropy.
In fact, that is in all likelihood the opposite of reality. A 
system in a highly complex state is probably far from 
equilibrium and in a low entropy (improbable) state, 
where the equilibrium state would be simpler, less 
complex, and higher entropy 
Relative Entropy =Kullback-Leibler Information 
Criterion,

Economic Entropy and Value

Value is a function of scarcity. Scarcity can be defined as a probability 
measure P in a certain probability space. It is generally agreed that 
value of products satisfies the following properties:  
(a) The value of two products should be higher than the value of each 
of them. 
(b) If two products are independent, that is, if the two products are not 
substitutes or partial substitutes of each other, then the total value of 
the two products will the sum of two products.  
(c)  The value of any product is non-negative. 

The  only  mathematical  functions  that  satisfy  all  the  above  
properties  are  of  the form 
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Economic Entropy and Value

In  general,  suppose  a  service  or  product,  X,  
can  perform  different  tasks,  with probability of p1,  
p2,  . pn,  Then the value of this product is the 
average of the value of each task. That is  

For Shannon b=2 (0,1)
In general b – no of producers
Entropy is fairly fundamental to economics and 
actuarial science

Fisher Information and Entropy

Fisher Information measures spread and is inversely 
related to the ENTROPY
B.R. Frieden, "Physics from Fisher Information: a 
Unification" (Cambridge Univ. Press, 1998) 
(Be careful – it’s a good read but!)
Entropy looks for minimum spread
Measure of amount of uncertainty in a distribution

Reading

Pierre Simon de Laplace (1812) Analytical Theory of Probability
Andrei Nikolajevich Kolmogorov (1933) Foundations of the Theory 
of Probability
H. Jeffreys. Theory of probability. Oxford University Press, 
Oxford 
Probability Theory: The Logic of Science. E. T. Jaynes
R. T. Cox, "Probability, Frequency, and Reasonable Expectation,"
Am. Jour. Phys., 14, 1-13, (1946). 
R. T. Cox, The Algebra of Probable Inference, Johns Hopkins 
University Press, Baltimore, MD, (1961). 
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Risk measures – an example of entropy at 
work

Risk in mathematical terms become synonymous 
with standard deviation (also variance, semi-
variance etc) of returns following Markowitz's
seminal paper
This has lead to people not understanding risk 

and hence misunderstanding many of the issues 
we face today

Risk measures

A risk measure is simply function that assigns a 
number to set of “risks”
Examples

Number of contracts
Number of underwriters
Sum insured
Variance
Semi Variance
Value at Risk
Tail at Risk 

Risk measures
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Coherent Risk Measures

A risk measure is convex if it satisfies the three axioms 
of monotonicity, translation invariance, and 
subadditivity (although some authors include a weak 
homogeneity

A risk measure is coherent if it satifies the four axioms 
of monotonicity, positive homogeneity, translation 
invariance, and subadditivity.

Risk measures –some nice requirements

Risk, Entropy, and the Transformation 0f 
Distributions

by
R. Mark Reesor and Don L. McLeish

Risk measures –some nice requirements

The exponential family, relative entropy, and distortion are 
methods of transforming probability distributions. We establish a 
link between those methods, focusing on the relation between 
relative entropy and distortion. Relative entropy is commonly 
used to price risky financial assets in incomplete markets, while 
distortion is widely used to price insurance risks and in risk 
management. The link between relative entropy and distortion 
provides some intuition behind distorted risk measures such as 
value-at-risk. Furthermore, distorted risk measures that have 
desirable properties, such as coherence, are easily generated via 
relative entropy.



16

Entropy and Information
From Black Holes to Black- Scholes

The Black Scholes Bit
Black Scholes formula is driven by the implied volatility
This requires continuous independent random shocks
BUT
Can also be derived by Martingales and MPE
Generalised Black Scholes equation
See 

Simple Entropic Derivation of a Generalized Black-Scholes Option Pricing 
Model by Michael J. Stutzer (Entropy)
Gerber, H.; Shiu, E. Option pricing by Esscher Transforms. Transactions of 

the Society of Actuaries 1994, 46, 99-140.

Work in Progress- Being reviewed by Hans 
Gerber


