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Abstract: 
 

This paper briefly investigates some ways of modelling information structures in 
capital markets. We introduce the new concept of white thunder, and apply it to equity 

markets. 
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PART I: ORIENTATION 

 
A Common Modelling Problem 
 
You are building an asset-liability model for an insurance company. You know that 
next year's expenses will be about £100,000, and you also expect them to vary 
according to inflation over the next year. You use an off-the-shelf actuarial model to 
generate simulated macro-economic outcomes. 
 
To your surprise, you find that, in one simulation in 4, the expense projection is above 
£105,000 or below £95,000. Even more extreme events can happen; we fall outside 
the range £90,000 to £100,000 about one simulation in 50. 
 
This seems very strange. These expenses have become one of the most variable items 
in the projection. And yet the risks supposedly only reflect the risk of inflation in the 
underlying economy. Even the government manages to forecast inflation a year ahead 
within 1% or so. So why does the model seem so hopeless? 
 
So you go back to check the model, and examine historic inflation data. To your 
surprise, you find that the model fits the data pretty well. There seems to be little 
scope for improving the fit from a statistical perspective. Certainly, there is nothing in 
past inflation data to suggest that future inflation could be predictable to with 1% a 
year ahead. So we have the puzzle of a model which passes all the statistical tests, and 
yet the insurance company is unhappy with the model you have delivered. 
 
We will see that the problem here is not one of statistics, but one of information. 
Much of the information regarding next year's inflation is already in the market. 
However, under the time series inflation model, that information appears in next 
year's residual term. What we need is some way of allowing future error terms to be 
predicted, without undermining their independence from each other. 
 
A Tale of  Two Exchanges 
 
We illustrate this problem further with a tale of two stock exchanges. These are 
located in two towns: Donner and Blitz. 
 
Both these towns publish a daily share price index. In each case, to the statistical eye, 
the log index seems to perform a standard Gaussian random walk. The observant also 
notice that these indices are exactly the same - except that the Donner index always 
lags the Blitz index by a day. So to find out the Donner index on a particular day, it 
suffices to look up the Blitz index from the previous day. 
 
Now, given the speed of modern communications, we might be rather surprised at the 
behaviour of the Donner market. We might wonder why arbitrage traders did not pile 
in and out of the market each day until the lag against the Blitz market disappeared. 
However, we would not suspect anything was odd until we looked at Blitz. Donner, 
viewed on its own, appears an ordinary stock market with ordinary random walk 
behaviour. Statistical analysis of prices would throw up nothing - absolutely nothing - 
to give us a clue. 
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Separating Stationary Laws from Information Structures 
 
In both these examples, we need to make a distinction between stationary laws and 
information structures. The stationary law of a stochastic process is the probability 
law driving that process. It is an unconditional probability law, and if the process is 
stationary then we can hope to estimate the probability law by statistical analysis of 
past history. 
 
All this statistical analysis does not rule out the possibility that someone might be able 
to make better forecasts, by allowing for other information. But, to determine if this is 
so, we must look outside the initial series to other sources of information. We now 
consider some practical models to help us achieve this. 
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PART II: MATHEMATICAL MODELS OF INFORMATION 

 
Information Structures and Sigma-Algebras 
 
In probability theory textbooks, information structures are captured by a structure 
known as a "sigma algebra". Without getting into measure theoretic technicalities, we 
note that for most financial models, the relevant sigma algebra is an infinite set of 
(mostly) infinite sets. This is not the kind of structure that readily lends itself to 
empirical observation. However, the fact that mathematicians see the need to 
introduce these complexities indicates that information structures may be important, 
in any area where probabilities are used. In this note we seek to construct a more 
concrete approach to information structures. 
 
 
Canonical White Thunder 
 
Having described the idea of separating information and processes, we now describe 
our canonical white thunder process. 
 
We start with a white noise process et, defined for all positive and negative integers t. 
We suppose these are a series of independent N(0,1) random variables. At time t, we 
know the values of et and all previous e's, but not the value of any future e's. 
 
Let us  pick a constant A, with |A| < 1. We define another process xt inductively, as 
follows: 
 

xt = Axt-1 + Aet – et-1 
 
starting the induction at a very early value of t. By induction, we can show that 
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Letting the starting point tend back to minus infinity, we have 
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The process x then defines canonical white thunder.  
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Probability Law for White Thunder 
 
What is the probability behaviour of our white thunder process? With a little effort, 
we can demonstrate that the xt are also independent N(0,1) random variables. For 
those who like that sort of thing, here's the proof. 
 
We can calculate the variance as follows: 
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and if h ≥ 1, we have 
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This enables us to verify that the white thunder process is also a series of independent 
N(0,1) variables. No statistical test could possibly distinguish between the a true white 
noise process and our white thunder process. 

 
The Embedded Autoregressive Process 
 
Although both xt and et are series of independent N(0,1) variables, sums of these 
series are not independent. Indeed, we can re-arrange the regression equation to give: 

[ ] ttttt eAeAxAeAx )1( 2
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We can immediately recognise this as the law of a first order autoregressive process, 
for which the stationary distribution is: 
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This is intriguing; although xt is a series of independent N(0,1) variables we can 
express it as a sum of white noise and a mean reverting process. This aspect can lead 
to confusion – the fact that a mean reverting process enters somewhere in a model 
does not imply that the mean reversion will be evident from the final output. 
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Invertibility 
 
We have shown how to construct a white thunder process from white noise. It is 
reasonable to ask whether the same idea can be applied in reverse. In other words, 
given observations only of the xt, can we construct the et? 
 
To do so would require recursive application of the equation relating e and x. On 
rearrangement, we have 
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Our problem here is that the recurrence relation is unstable – remember that |A| <1.  If 
we guess an initial et a very long way back, and then try to compute the e's recursively 
by substituting for the observed x's, the effect of any error in this initial guess grows 
exponentially as we move forward. 
 
Thus, although we have two statistically indistinguishable processes, the information 
structures are different. We can deduce the x's from the e's, but not the other way 
round. In other words, there is more information in the e's than in the x's. 
 
 
Prediction 
 
The white thunder property of the process xt only works because we can observe the 
original error series et as well. 
 
As xt is, on its own, simply a white noise process, there is no way that we could use 
the past of xt to predict its future. But suppose we had the history of x and also the 
history of e – could we use this to forecast x? 
 
The answer to this question is yes. We use Et to denote the conditional expectation 
given xt, et and all history of both processes prior to time t. Then, by substitution into 
the recurrence relation, we can show that for h > 0 we have 
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It is this predictability which distinguishes white thunder from white noise. 
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PART III: CONSEQUENCES FOR ECONOMIC MODELS 
 
Efficient Market Hypothesis 
 
One of the most important hypothesis of modern finance is the efficient market 
hypothesis, or EMH. EMH states that market prices reflect available information, with 
varying definition of information. So any test of EMH must involve a specification of 
the information set to be considered. 
 
It market prices fully reflect information, then price changes should be due to 
surprises, that is, new information. A major theme in the market efficiency literature 
involves testing whether market price changes are unpredictable (as implied by EMH) 
or whether they can be predicted in some way. 
 
If, as is commonly found, market price changes have small correlations with changes 
in earlier periods, then this seems to support EMH. But there is a danger here. Even if 
prices can be shown to approximate a random walk, EMH does not follow. The price 
changes might be white thunder, in which case EMH would not hold. So to return to 
our original example, Blitz could have an efficient stock market, but Donner certainly 
does not. 
 
Dividend Growth as White Thunder 
 
It is commonly observed that real changes in dividends across different years do not 
seem to be highly correlated. So, at first sight, we might try to model changes in 
dividends as a white noise process. 
 
If dividend changes were white noise, then future dividend changes would be 
independent of the past. If prices were to be computed by discounting dividends, and 
the discount rate were constant, we would then expect prices to be a constant multiple 
of dividends. In other words, the dividend yield should be constant. 
 
In fact, of course, dividend yields fluctuate considerably over time, although many 
would argue that they should at least be a stationary process. The challenge is to 
reconcile this to the apparent random walk behaviour of dividends. 
 
One explanation is that the changes in dividends are governed not by white noise but 
a mixture of white noise and white thunder. Specifically, let us suppose that xt is a 
white thunder process, and that yt is white noise, independent of x. Let us denote the 
real dividend index by Dt, and let us suppose that 
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Moments of the White Thunder Dividend Model 
 
We now manipulate this to determine means and variances. We recall that: 
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Substituting in, and using the normal moment generating function, we can deduce that 
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Dividend Discount Models 
 
We now seek expressions for the equity price using discounted dividends, at some 
rate r. Unfortunately, we cannot sum the dividends analytically. However, if h is 
reasonably large, we can neglect terms in Ah and hence obtain the approximation: 
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Now summing, and denoting the yield by Yt, the price is given by 
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then the yield is: 
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Price Changes 
 
We can consider the distribution of price changes; we have 
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We can see then that price changes are pure white noise – there are no white thunder 
terms lying around. The price changes will be correlated with dividend changes, the 
main correlation arising because of the σy term. 
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Behaviour of the Yield Process 
 
Examining the yield itself, we can see that 
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We now recall that Axt – et was our embedded first order autoregressive process. We 
can then deduce that log Yt is also a first order autoregressive process, with covariance 
function: 
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This would allow us to calibrate both A and σx. We notice that the yield variability is 
associated entirely with the white thunder coefficient – it is unaffected by the white 
noise terms. 
 
Applications to More Complex Models 
 
Although our white noise approach to equity markets looks promising, our model so 
far contains a number of empirical deficiencies, including the fact that dividend 
volatility and price volatility are constrained to be equal. In practice, the price 
volatility is usually two or three times the annual dividend volatility. 
 
One way to square this circle is to turn to more complicated dividend models. For 
example, if we allow the mean underlying the dividend growth to be a random 
process itself, we can obtain price volatility than substantially exceeds the annual 
volatility in dividend growth. Plainly a great deal of empirical research is needed to 
validate these ideas; however, initial investigations are encouraging. This may even 
provide a resolution of the long-standing equity volatility puzzle in finance. 
 
More generally, the concept of white thunder can be used to enhance any time series 
model which depends on white noise for inputs. For example, we could take an 
autoregressive inflation model, and use white thunder instead of white noise to 
improve the accuracy of short term model predictions, while having no effect on the 
long term statistical properties of the model. 
 
 


