

The 2004 Healthcare Conference

25-27 April 2004, Scarman House, University of Warwick

An Introduction to Risk Based Capital

Steve Hunnisett Watson Wyatt LLP

Copyright © Watson Wyatt. All rights reserved.

An Introduction to Risk Based Capital

Agenda

- Why has RBC achieved such prominence?
- Generic methods to calculate RBC
- Techniques to develop stress tests
- Aggregation of results

What is it?

- RBC is exactly what it says it is
- An assessment of the amount of capital required to be held by a company based upon the actual risks being run by that company

Why now?

- Not a new idea:
 - FCR
 - Advanced models for some insurers
 - RBC formula based approach to capital by some regulators
 - Economic capital

Why now?

- But:
 - Governance impact of recent corporate difficulties
 - Financial sector convergence integrated regulators
 - International harmonization of supervisory approaches
 - Increased modelling capability
 - Increased focus on effective capital management

Why now?

- The world continues to change:
 - Greater transparency demanded by consumers
 - Regulator becoming more proactive
 - Existing regulatory reporting framework has become outdated
 - Capital scarcity
 - Increased shareholder sophistication and analysis

Calculation methods

- No current standard methodology in UK
- Multiple stages each with different possibilities
- Internal model approach

Calculation methods

Copyright © Watson Wyatt. All rights reserved.

Methodology

- Clarify objectives
- Risk identification
- Run off, short term stress test, ..
- Risk aggregation and correlation

Objectives

- What are the key objectives, eg
 - Target rating
 - Earnings volatility
 - Solvency?
- How much certainty, over what time horizon?
- Internal model versus comparability for FSA

Copyright © Watson Wyatt. All rights reserved.

Risk identification

- Could identify risks using:
 - Existing risk analyses (eg traffic light scoring)
 - Senior management interviews
 - Feedback from FSA visits
- Classification of risks set out in CP195
 - Market, insurance, operational, credit, liquidity
- Model significant risks

Possible approaches

Run off or short term shock?

Body	Run off	Short term shock
ABI	No	Yes
Institute	?	?
EU (Solvency II)	No	Yes
IAA	Yes	Yes

Copyright © Watson Wyatt. All rights reserved.

Run-off method

- If based only on meeting cashflows
 - Unrealistic treatment of scenarios with fall + recovery
 - Dependent on mean reversion & equity risk premium
 - But avoids the difficulty of projecting "fair values"
 - May be harder to allow for non-market risks
 - Harder to calibrate (longer time period => less data)
- If based on projected balance sheet
 - Unduly harsh if ignores some management actions such as capital raising, reinsurance and transfer
 - Complex if stochastically generated balance sheet

Short-term shock method

- Assumes that management (or regulatory) actions can deal with any problems after the time horizon
- Leans heavily on balance sheet calculation
- Possible nested stochastic run complication
- But easier to develop plausible scenarios for all risks, but particularly non-market risks

Neither method is perfect

Realistic valuation

- Performing a realistic valuation
 - Assets at market value
 - Liabilities on "best estimate" of future payouts
 - Non discretionary benefits fairly straight forward
 - Discretionary benefits not so simple

Realistic valuation

- For contracts with non discretionary benefits
 - Use model of expected cashflows
 - Best estimate assumptions to be used
 - Discount using risk free rates
 - Investment guarantees at "market value"

Realistic valuation

- For contracts with discretionary benefits
 - Incorporate full impact of management and policyholder behaviour
 - Best estimate assumptions to be used
 - Discount using risk free rates
 - Stochastic methodologies preferable
 - Approximate methods exist eg closed form solutions

• An extract from CP195:

For each of the major sources of risk identified in accordance with *PRU* 1.2.21R, the *firm* must carry out stress tests and scenario analyses that are appropriate to the nature of those major sources of risk, as part of which the *firm*:

(1) takes reasonable steps to identify an appropriate range of realistic adverse circumstances and events in which the risk identified crystallises; and

(2) estimates the financial resources the *firm* would need in each of the circumstances and events considered in order to be able to meet its liabilities as they fall due.

- So what is an appropriate range of adverse scenarios?
- Plenty of possibilities to consider...

- Another extract from CP195:
 - Some further areas to consider in developing the *market risk* scenario might include:
 - (1) the possibility of a severe economic or market downturn or upturn leading to adverse interest rate movements affecting the *firm's* investment position;
 - (2) unanticipated losses and defaults of issuers;
 - (3) price shifts in asset classes, and their impact on the entire portfolio;
 - (4) inadequate valuation of assets;
 - (5) the direct impact on the portfolio of currency devaluation, as well as the effect on related markets and currencies;
 - (6) extent of any mismatch of assets and liabilities, including reinvestment risk;
 - (7) the impact on the portfolio value of a dramatic change in the spread between a market index of interest rates and the risk-free interest rates; and
 - (8) the extent to which market moves could have non-linear effects on values, such as derivatives.

- Several different methods available
- Different risks lend themselves to different methods
- Strengths and weaknesses mean decision is not clear cut

Developing stress tests

- Delphi method
- Expert opinion
- Simple VAR approach
- Extreme value theory
- Monte Carlo simulations

A problem with deterministic stress tests

GAO Cost vs Swaption

Stochastic modelling of risks

Aggregating results

- Ultimate objective is to calculate total capital for a given confidence level
- Hence need to combine results from separate stress tests
- The problems are correlation and non linearity

Aggregating results

- Stochastic methods combine all risks but need correlations as an input
- Capital can be easily derived from simulation output for multi-variate stochastic models
- Other methods need to combine results from separate stress tests

Risk aggregation and correlation

- Capital requirements respond to many risks in a non-linear fashion
- Combinations of risks can change the capital sensitivity e.g. mortality and yields in GAOs
- Asymmetric dependency of risks
- Correlation assumptions can have a big impact

Alternative approaches - illustrative

Copyright © Watson Wyatt. All rights reserved.

Impact of different correlation assumptions An example

Copyright © Watson Wyatt. All rights reserved.

Aggregating results

- Simple methods exist
- May suffice for now
- Robust method must consider correlations

Aggregating results

- Estimating correlations is not easy
- Historical data is a possible starting point
 - Not as objective as might be suspected
 - Sparse for some risks

A case study

Copyright © Watson Wyatt. All rights reserved.

Products – non profit

- Annuity
 - Fixed annuity for life
- Term assurance
 - Level, guaranteed term assurance
- Linked
 - Endowment with death benefit
 - No surrender penalties

Assumptions – Non-profit

	Realistic basis	Reserving basis
Mortality	Ann = 125%	Ann = 100%
	Term = 75%	Term = 100%
	UL = 75%	UWP = 100%
Persistency	Ann = 100%	100% or 0%
	Term/UL = 90%	
Expenses	Ann = £25 pa	Ann = £31.25 pa
	Term = £25 pa	Term = £31.25 pa
	UL = £36 pa	UL = £48 pa

RBC stress tests

Risk factor	Stress test
Equity prices	-40%
Bond yields	+1%/-1%
Credit spreads	+100 bps
Mortality levels	+40%/+20% or -10%/-20%
Lapse rates	+80%/+40%
Expense levels	+20%/+10%

Non-profit stand-alone (1)

Copyright © Watson Wyatt. All rights reserved.

Non-profit stand-alone (2)

Copyright © Watson Wyatt. All rights reserved.

Non-profit stand-alone (3)

Copyright © Watson Wyatt. All rights reserved.

Non-profit stand-alone (4)

Copyright © Watson Wyatt. All rights reserved.

Non-profit comparison

Copyright © Watson Wyatt. All rights reserved.

Non-profit company

Copyright © Watson Wyatt. All rights reserved.

Conclusions

Annuities

- Mortality and credit risk important
- RBC may be higher than statutory for annuity business backed by corporate bonds, switch round for gilts?

Term assurance

- Mortality and persistency risk important
- RBC likely to be lower than statutory
- Linked
 - Persistency risk important (depending on design)
 - RBC likely to be lower than statutory

The journey is a long one

... but it is a journey worth travelling! Copyright © Watson Wyatt. All rights reserved.

