
How to be more productive:

Using programming

Shaun Lazzari

01 December 2016

Agenda for this session

• What it mean to be productive, and why you should care

• The fundamentals of programming

• Why these skills important for you and the profession

• What good programming look like

• Examples of using programming at work

• How to go about building programming skills

01 December 2016

Non-goals of this session

 How to use any specific programming language

Programming within actuarial systems and platforms

01 December 2016

Before we start – gauging your existing

capabilities

1. I carry out most of my work using pen, paper, and judgement

2. I’m a user of computer programs, e.g. Excel

3. I’ve recorded a few VBA macros

4. I occasionally use coding as part of my role

5. Coding is (or has been) a key part of my role

6. I am the subject of this article

01 December 2016 4

It seems a lot of people want to be more

productive…

• Some titles from around the world wide web:

01 December 2016 5

10 Productivity

Questions to Ask

Yourself Every Day

12 Easy Ways to Be

More Productive at

Work

Just Knowing These

8 Facts Will Make

You Way More

Productive

The Only 3 Ways to

be More Productive

5 Ways to Instantly

Become More

Productive

21 Tips to Become

the Most Productive

Person You Know

9 Habits Of

Productive People

The Research-

Backed Guide to

Increasing Office

Productivity

The 6 essential

lessons of a

satisfying,

productive career

5 Traits To Cultivate

To Become A More

Productive Manager

There’s two levers to productivity

• The denominator is important, but don’t forget the

numerator…

01 December 2016 6

Value of

output
Effort

inputted

You’re likely at a point in your career

where productivity really begins to matter

• There’s ever-increasing demands upon your time…

01 December 2016 7

0

5

10

15

20

25

Oct-10 Oct-11 Oct-12 Oct-13 Oct-14 Oct-15 Oct-16

Time

Emails sent by me per day – one month moving average

You’re likely at a point in your career

where productivity really begins to matter

• …and scope for your work to have increasing levels of

impact for you and your employer

• Some role descriptions for nearly/newly qualified

actuaries

01 December 2016 8

“Leading teams to deliver large, complex projects”

“You will write unbiased, in-depth company and industry forecasts which will be reviewed by a wide audience”

“Lead the Internal Model Validation, working with other professional teams to establish and manage a validation plan”

“Leading a small team, covering all bases of financial management, methodologies and assumptions”

“Oversee the production of progress reports in improving profitability and implementation of business initiatives”

“Leading and managing relationships with clients”

Source: www.theactuaryjobs.com

Fundamentally, what is programming?

• Constructing an unambiguous model of

a process or algorithm (“code”), and

specifying it in a way that is interpretable

to a computer

• Programming is performed in a chosen

language

01 December 2016 9

Java
23.4%

Python
13.7%

PHP
9.8%

C#
8.4%

Javascript
7.6%

C++
7.1%

C
7.0%

Objective-C
4.7%

R
3.2%

Swift
3.2%

Matlab
2.6%

Ruby
2.0%

VBA
1.5%

Visual Basic
1.4%

Scala
1.2%

Perl
1.0%

lua
0.5%

Go
0.5%

Delphi
0.4%

Haskell
0.3%

Rust
0.3%

PYPL Popularity of Programming Language Index (Nov 16)

There are a lot of different programming

languages

01 December 2016 10

Source: http://pypl.github.io/PYPL.html

There’s a lot of parallels between

programming and “natural” languages

01 December 2016 11

Tools for
communication

Syntax Semantics

“Egg rides jelly bicycle”

for (init; condition; increment) {

statement(s);

}

• Programming languages are unambiguous

• i.e. they can’t grasp context or tone

There is one notable difference compared

to natural language…

01 December 2016 12

So why is programming important for

actuaries?

• From the IFoA website:

01 December 2016 13

• Actuaries use financial and statistical techniques to
solve business problems… Actuaries have sufficient
technical understanding to solve very demanding
financial and risk management problems.

• It is essential that actuaries have excellent
communication skills to enable them to communicate
actuarial ideas to non-specialists in a way that meets
the needs of the audience.

What are the skill sets of an actuary?

Some benefits of being able to program

• Helps you to communicate with

your computer, so you can use it

in the most flexible way to solve

your business problems

• This includes both:

– Carrying out difficult maths and

spotting relationships that would be

impossible for a human to spot

– Automating procedures to reduce

processing timescales and the risk

of human error

01 December 2016 14

Some benefits of being able to program

• Having a programmer’s mindset can also help in your

broader work:

01 December 2016 15

Clear specification of

problems and ideas

Understanding

technology and better

interaction with

technology team

Collaboration
Creative, optimally

structured solutions

Some benefits of being able to program

• Get computers to work for you, instead of them one day

replacing you

01 December 2016 16

Some benefits of being able to program

01 December 2016 17

“Our policy at Facebook is literally to

hire as many talented engineers as we

can find. There just aren't enough

people who are trained and have these

skills today.”

“Learning to write programs stretches

your mind, and helps you think better,

creates a way of thinking about things

that I think is helpful in all domains.”

Source: www.code.org

http://www.code.org/

For actuaries, programming is a means to

an end…

• Don’t learn to code, but code to learn!

01 December 2016 18

w
w

w
.x

k
c
d

.c
o

m

http://www.xkcd.com/

So what’s the problem with Excel?

01 December 2016 19

www.xkcd.com

http://www.xkcd.com/

So what’s the problem with Excel? (1/2)

• This doesn’t always necessarily happen in spreadsheets

• It’s harder to fall into this trap in code

Separation of input, calculations and output

• It’s often a separate process to record what a spreadsheet does

• Documentation may end up living quite far away from the calculations

• Code can be self-documenting

Documentation

• Some complex processes can be hard to step-through in Excel

• Code can make it easier to debug and traverse calculations

Clarity of calculation flow

• Excel doesn’t support all of the actuarial techniques you might require

• Other packages may – or you can build them!

Limited maths functionality

01 December 2016 20

So what’s the problem with Excel? (2/2)

• Excel is based on cells in spreadsheets, i.e. 2D data arrays

• Programming in object-oriented languages allows you to specify the optimal structure for your data

Lack of support for data structures more complex than 2D matrices

• No formal version control within Excel

• Workbook protection can be easily overridden, making it hard to resist making ad-hoc adjustments

• Vast swathes of version control and unit testing systems can be used to manage code

Controls and testing

• The same calculations are often done across many spreadsheest - a waste of time which also
introduces scope for inconsistency

• Modular nature of code means that operations can be packaged up separately and re-used

Re-usability

• Excel is not always the fastest option, and may struggle to process large data sets

• Other approaches offer more flexibility in handling usage of processors and memory

Processing speed and memory constraints

01 December 2016 21

What does good code look like?

01 December 2016 22

Componentisation:

• Each routine should do as few distinct things

as possible

– Ideally one thing and one thing only

• So many benefits!

– Clear what the routine you’re looking at is doing

– Helps you break down a problem into small chunks

– Able to re-use code and ensure consistency

– Easier to find and solve any bugs that arise

What does good code look like?

Variable naming and operation complexity:

• Descriptive names will make your code easier to follow

• It is rarely necessary to lump lots of operations together

01 December 2016 23

ExpectedCashflow = ProbabilityOfClaim * ClaimAmount

DiscountFactor = (1 + RiskFreeRate) ^ -YearsToClaimDate

PresentValueOfPolicy = ExpectedCashflow * DiscountFactor

pvpol = claimPrb * pol_sa * (1 + rf) ^ -T





Understanding programming principles

through some high level use cases

• We’ll consider:

– Data interpretation: Charting

– Automating data flow: Documentation

– Building models: Ad-hoc investigations

– Analysing and reacting to data: Email

• This is far from a prescriptive set of uses

– If something was useful for everyone you wouldn’t have to

program it, as someone else would have!

01 December 2016 24

Data interpretation: Charting

• Excel is a really powerful charting

tool, even for data produced using

other systems

• Every aspect of an Excel chart object

can be modified programmatically

via VBA

• Therefore, you can write some VBA

routines to help you and your

colleagues quickly make their

favourite and/or most obscure charts

01 December 2016 25

Source: FrankensTeam

(https://sites.google.com/site/e90e50charts/)

https://sites.google.com/site/e90e50charts/

Automating data flow: Documentation

• All the structure, style and contents

of a Word document are encoded in

the file, and can be modified

programmatically

• Bookmarks can be used to specify

markers within a document so

numbers and charts can be

imported automatically using VBA

• Focus only on the content of your

documents. The style is almost

certainly someone else’s concern!

01 December 2016 26

Building models: Ad-hoc investigations

• Often you might have an

idea you want to test, or be

asked to do a brief analysis

of

• In the likely event it grows

and evolves, you’ll be glad

you made use of code

01 December 2016 27

“Can you fit a curve to
this UK bond data and

tell me how it’s moved in
the past 12m?”

“What about the forward curve?”

“Can you show me the
same for USA and

Eurozone data?”

“Are these moves
correlated?”

“Does the same relationship hold for
daily movements?”

“Oops, I meant % movements, not
absolute changes!”

Analysing and reacting to data: Emails

• Emails and calendar form a very rich,

constantly evolving data set

• There’s both a lot of structured data

(From, To, Date etc.), plus the

unstructured body data, to learn from

• Good way to understand Events

– Outlook has inbuilt Rules functionality, but

you can also code your own

• Search functionality is a form of code,

with its own syntax, as well

– …As is the case in most search tools

01 December 2016 28

Building your programming skills

01 December 2016 29

“For the things we have to learn before we

can do them, we learn by doing them, e.g.

men become builders by building and lyre-

players by playing the lyre”

Aristotle

Building your programming skills

• Find yourself a problem that you’re motivated to solve

• Break-down what you want to do into component parts

• Have a go – writing code is an iterative process!

• Check online – there are vast communities of people

willing to help, and high quality tutorials and guides freely

available

– For VBA, Chip Pearson’s site (www.cpearson.com) is outstanding

• Ask colleagues and draw upon their knowledge

01 December 2016 30

http://www.cpearson.com/

So, to summarise…

• Having an awareness of programming, and an ability to

do so, could help you do your work:

– more efficiently

– with greater impact

• Programming is a skill that:

– enables you to get the most out of technology

– will further increase in demand industries and working practices

evolve

• You learn by doing!

01 December 2016 31

01 December 2016 32

The views expressed in this presentation are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views

stated, nor any claims or representations made in this presentation and accept no responsibility or liability to any person for loss or damage suffered as a

consequence of their placing reliance upon any view, claim or representation made in this presentation.

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice

of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this presentation be

reproduced without the written permission of the IFoA.

Questions Comments

