The Actuarial Profession

making financial sense of the future

The Model Underlying Solvency II

Andrew D Smith (Deloitte) Andreas Tsanakas (City University)

2007 GIRO Convention Session D07 11:45-12:45 Tuesday 4 October

Overview

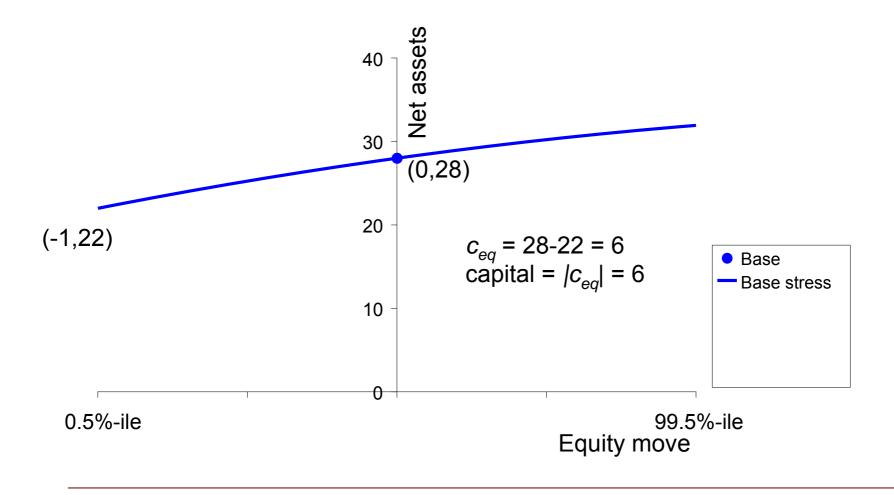
- Capital calculation under Solvency II (QIS 3)
 - Stress tests
 - Aggregation
- Analysis of Change Components
 - Elliptically contoured distributions
- Internal Hedges
 - Analytical capital compared to QIS3
 - The "absolute capital" bias
- Investigating Interactions
 - Combined stress events
 - Risk geographies

The Actuarial Profession

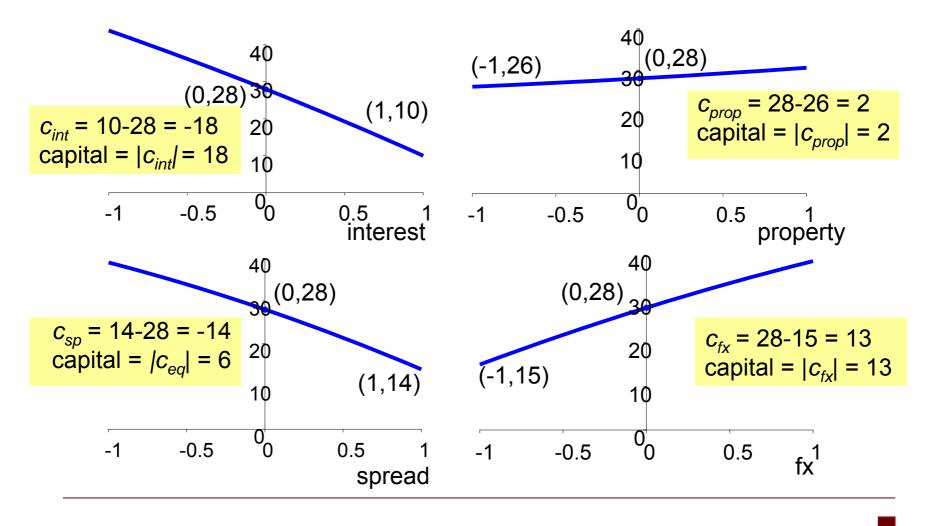
making financial sense of the future

Capital Calculation under Solvency II

Calculation of Equity Capital



Capital: Other Risks



Stress Test Result Summary

Stress test	C _i	C _i
Interest	-18	18
Equity	6	6
Property	2	2
Spread	-14	14
Foreign Exchange	13	13

Assumption: net assets are monotone in each risk factor Note convention: c_i is a finite difference approximation to net asset gradient, under a choice of units so for each driver, 0.5%-ile = -1 and 99.5%-ile = +1. Only the absolute value $|c_i|$ is required for QIS 3.

QIS3 Aggregation Formula

$$C_{agg} = \sqrt{\sum_{i=1}^{n} C_i^2 + 2\sum_{i=1}^{n} \sum_{j=1}^{i} r_{ij} |C_i C_j|} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} r_{ij} |C_i C_j|}$$

where

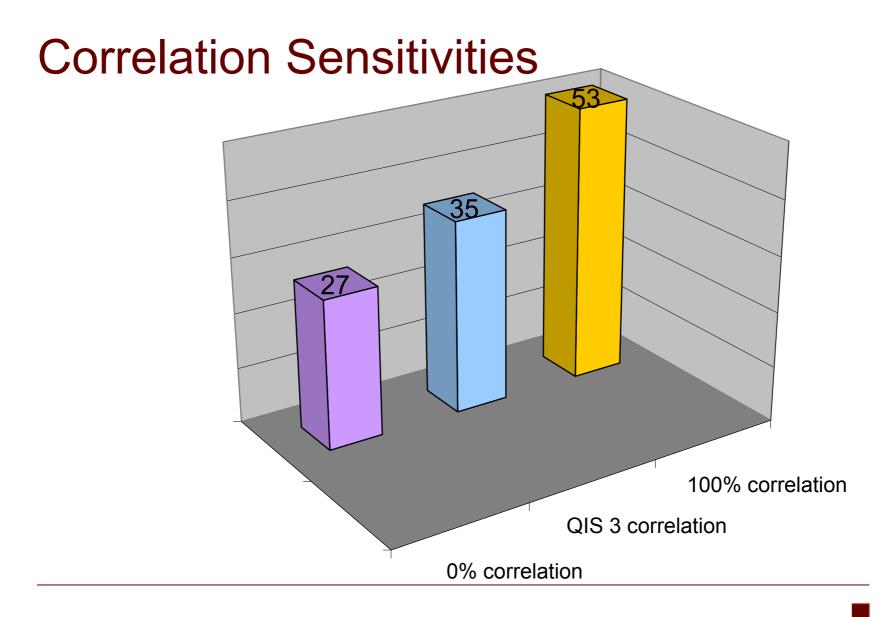
- C_{agg}: aggregate capital
- C_i: individual capital amounts
 - Signed: positive for increasing functions, negative for decreasing functions
- {r_{ii}}: Correlation matrix

QIS3 Risk Correlation Matrix {r_{ii}}

	Mkt _{int}	Mkt _{eq}	Mkt _{prop}	Mkt _{sp}	Mkt _{fx}
Mkt _{int}	1	0	0.5	0.25	0.25
Mkt _{eq}	0	1	0.75	0.25	0.25
Mkt _{prop}	0.5	0.75	1	0.25	0.25
Mkt _{sp}	0.25	0.25	0.25	1	0.25
Mkt _{fx}	0.25	0.25	0.25	0.25	1

QIS 3 Capital Example

$$\begin{pmatrix}
1 & 0 & 0.5 & 0.25 & 0.25 \\
0 & 1 & 0.75 & 0.25 & 0.25 \\
0.5 & 0.75 & 1 & 0.25 & 0.25 \\
0.25 & 0.25 & 0.25 & 1 & 0.25 \\
0.25 & 0.25 & 0.25 & 1 & 0.25 \\
14 \\
13
\end{pmatrix} = 35$$



Motivation

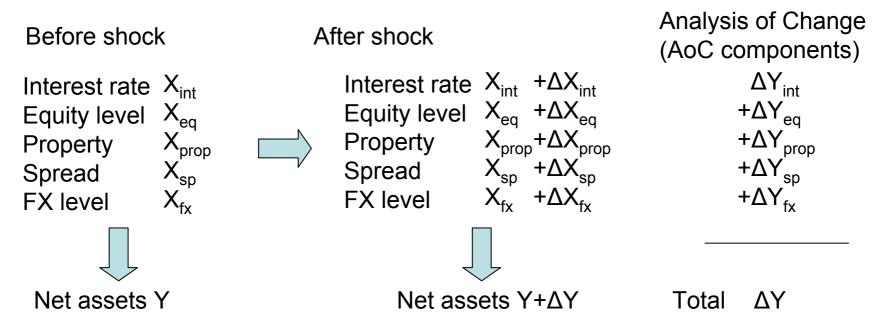
- We have been given a standard formula for aggregating capital amounts
- ... but no word about the model that this formula corresponds to
- If we don't understand the model, we can't say whether we like or dislike the formula
- The model underlying a standard formula is a useful benchmark for discussion of internal models.

The Actuarial Profession

making financial sense of the future

Analysis of Change Components

Drivers and Profits



For solvency purposes, we are interested in the distribution of ΔY This is built up from the distribution of change to each risk factor. Later in this workshop, we will think about the X's too.

What model?

Recall the standard deviation of a sum

$$Stdev\left(\sum_{i}Y_{i}\right) = \sqrt{\sum_{i,j}r_{ij}Stdev(Y_{i})Stdev(Y_{j})}$$

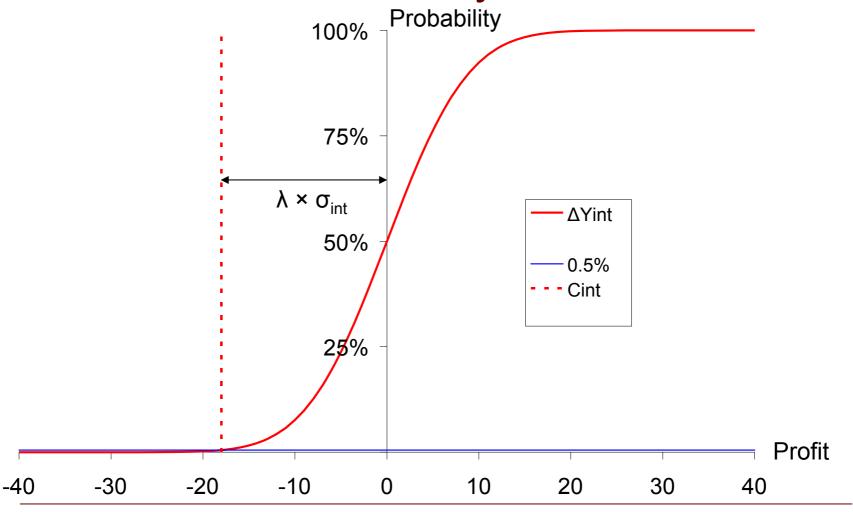
• Obviously, then, for any $\lambda > 0$:

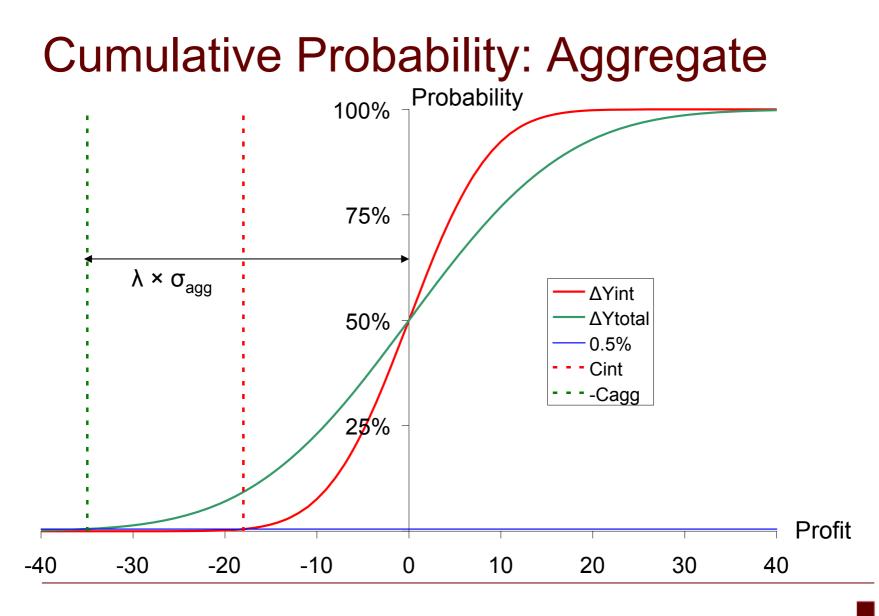
$$\lambda Stdev\left(\sum_{i} Y_{i}\right) = \sqrt{\sum_{i,j} r_{ij} \left\{\lambda Stdev(Y_{i})\right\} \left\{\lambda Stdev(Y_{j})\right\}}$$

• Suppose $|c_i|$ is a multiple λ of standard deviation

$$C_{agg} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} r_{ij} |C_i C_j|}$$

Cumulative Probability: Interest Rates





Model existence

- Vital property:
 - For each component, p-%-ile = mean λ * stdev
 - For the total, p%-ile = mean λ * stdev
 - Same value of λ in each case
- Does a model displaying the above properties exist?
 - Yes, multivariate normal works with $\lambda = 2.58$ (p=0.5%)
- More generally, the AoC components can follow an elliptically contoured distribution
 - Multivariate normal
 - Multivariate t
 - Laplace
 - • •

Elliptically Contoured Distributions +1 ß -1 +11 0.5 0 -0.5 -1 $r = \frac{\alpha^2 - \beta^2}{\alpha^2 + \beta^2}$ -1 -0.5 -1 0 0.5

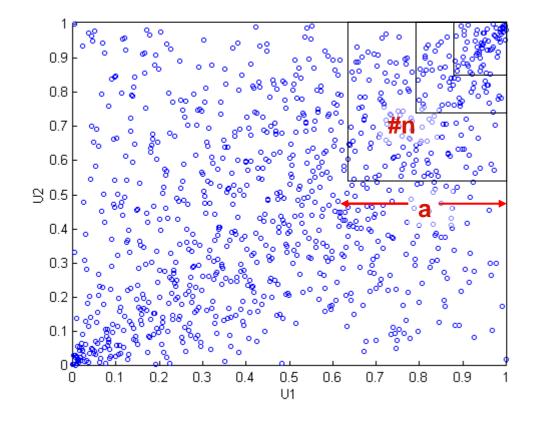
Tail dependence according to CEIOPS

- "Further analysis is required to assess whether linear correlation, together with a simplified form of tail correlation, may be a suitable technique to aggregate capital requirements for different risks." (CfA 10.138)
- "When selecting correlation coefficients, allowance should be made for tail correlation. To allow for this, the correlations used should be higher than simple analysis of relevant data would indicate." (CEIOPS CP20)

Assumptions and Extensions

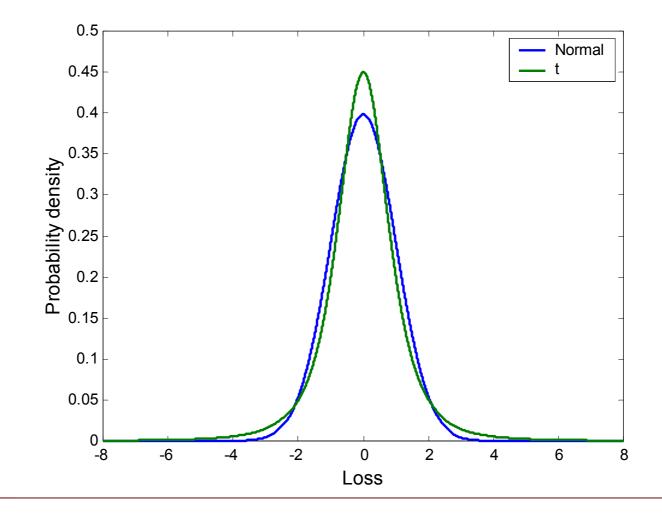
Solvency II (QIS 3) Assumption	How to Extend the Assumption
Heavy-tailed distributions Tail dependency	

Asymptotic tail dependence

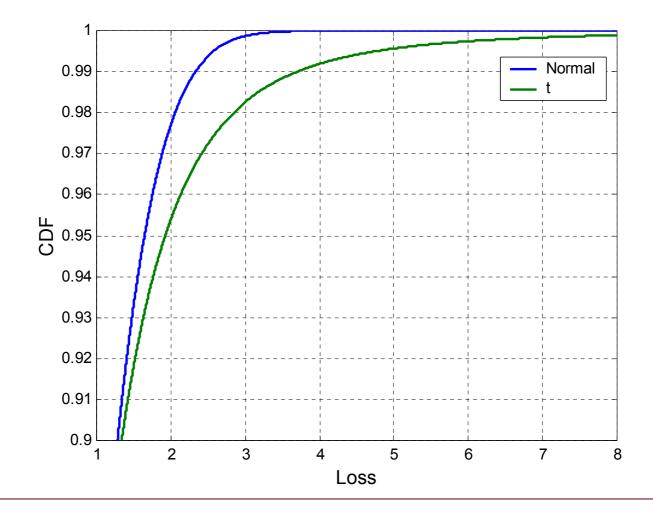


 $\lambda = \lim_{a \to 0} \frac{n}{a}$

Elliptical distributions – heavy tails

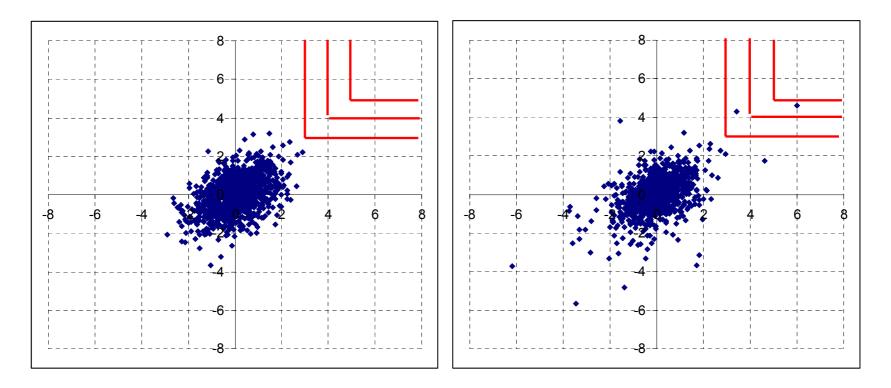


Elliptical distributions – heavy tails



Elliptical distributions – tail dependence

Normal



Elliptical distributions – summary

- Elliptical distributions are perfectly capable of demonstrating tail dependence
 - E.g. the t-distribution does
- Heavy tails ⇔ tail dependence
- "Linear correlation" and "tail dependence" refer to completely different things
 - CEIOPS got it wrong

Assumptions and Extensions

Solvency II (QIS 3) Assumption	How to Extend the Assumption
Heavy-tailed distributions Tail dependency	Consistent with QIS3 methodology

The Actuarial Profession

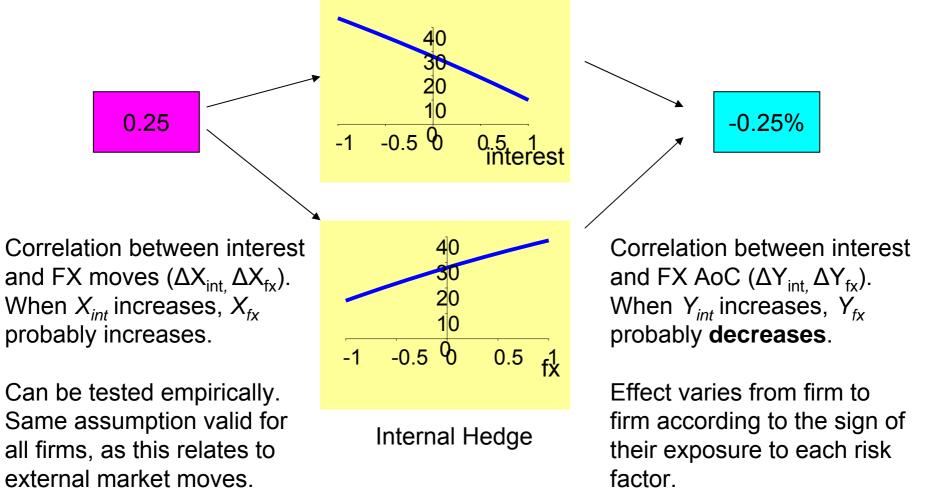
making financial sense of the future

Internal Hedges

Interest / FX correlation

	Mkt _{int}	Mkt _{eq}	Mkt _{prop}	Mkt _{sp}	Mkt _{fx}
Mkt _{int}	1	0	0.5	0.25	0.25
Mkt _{eq}	0	1	0.75	0.25	0.25
Mkt _{prop}	0.5	0.75	1	0.25	0.25
Mkt _{sp}	0.25	0.25	0.25	1	0.25
Mkt _{fx}	0.25	0.25	0.25	0.25	1

25% Correlation: Interpretation



Assumptions and Extensions

Solvency II (QIS 3) Assumption	How to Extend the Assumption
Heavy-tailed distributions Tail dependency	Consistent with QIS3 methodology
No internal hedges	

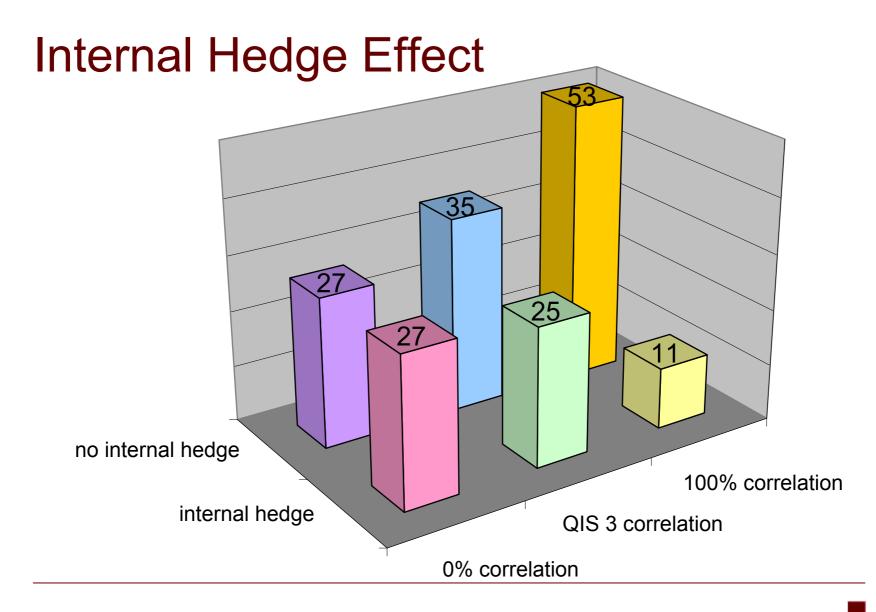
Allowing for Internal Hedges

With internal hedging – use the signed capital amounts in the aggregation:

$$C_{agg} = \sqrt{\sum_{i=1}^{n} C_i^2 + 2\sum_{i=1}^{n} \sum_{j=1}^{i} r_{ij} C_i C_j} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} r_{ij} C_i C_j}$$

Compare this to no internal hedging (QIS3) with "absolute capital" bias.

$$C_{agg} = \sqrt{\sum_{i=1}^{n} C_{i}^{2} + 2\sum_{i=1}^{n} \sum_{j=1}^{i} r_{ij} |C_{i}C_{j}|} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} r_{ij} |C_{i}C_{j}|}$$



Assumptions and Extensions

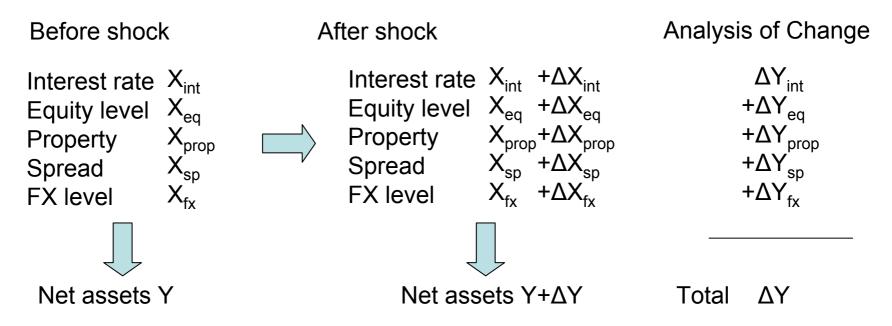
Solvency II (QIS 3) Assumption	How to Extend the Assumption
Heavy-tailed distributions Tail dependency	Consistent with QIS3 methodology
No internal hedges	Signed capital for aggregation

The Actuarial Profession

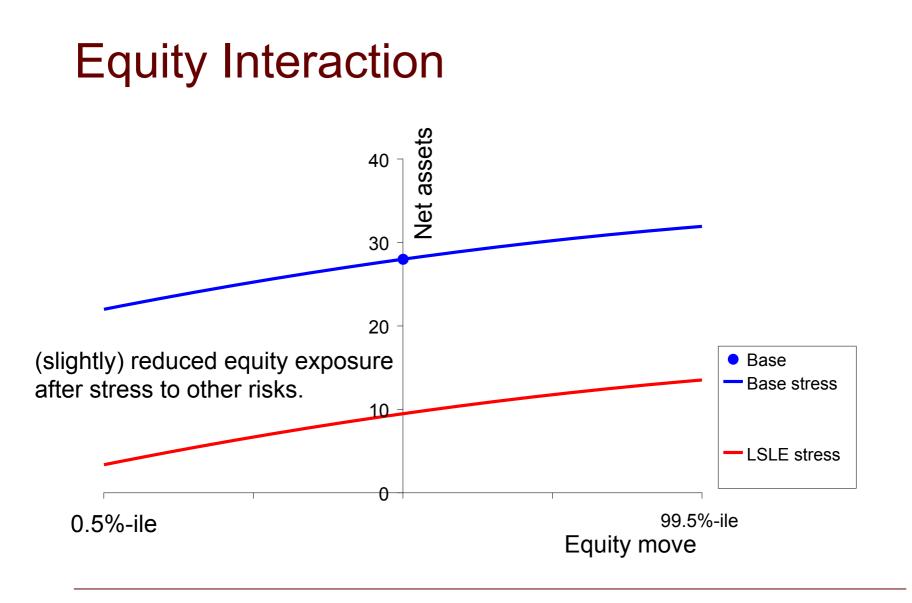
making financial sense of the future

Investigating Interactions

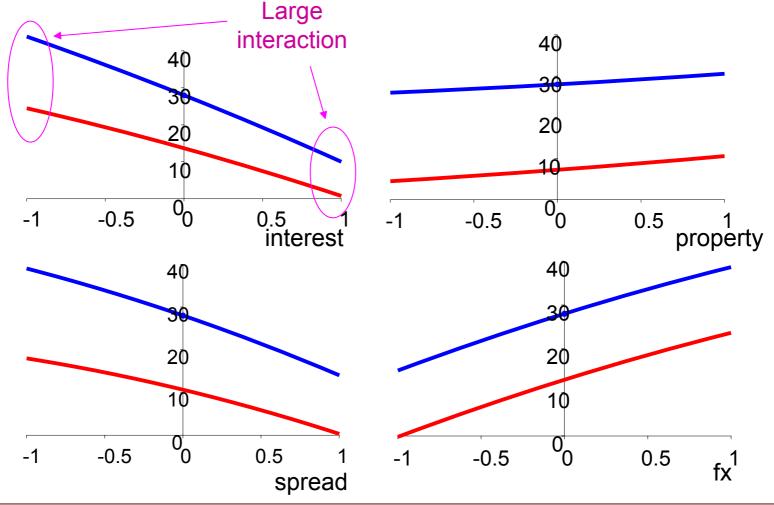
Drivers and Profits



We estimate the distribution of ΔY_i by stressing one variable at a time. But in AoC, ΔY_i depends on the moves of the previous X_i . This is called an *interaction*. Interaction is the reason why the order matters in analysis of change.

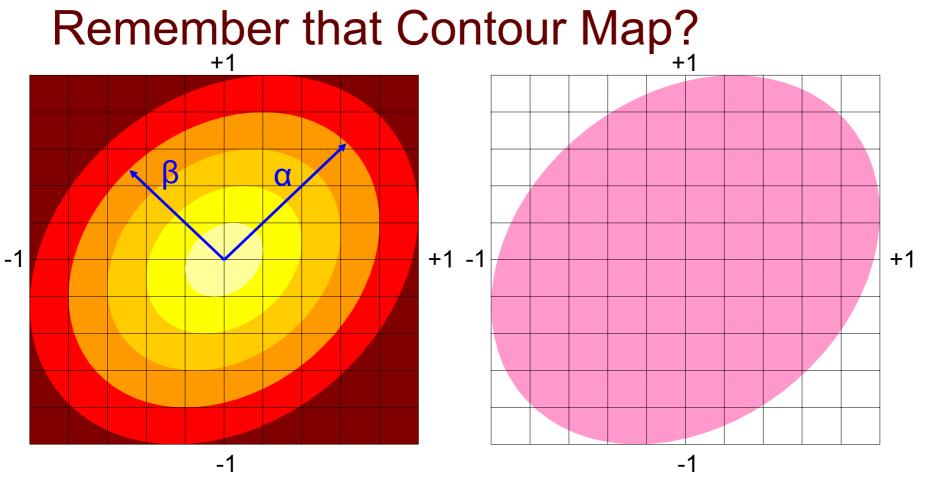


Interactions: Other Risks



Assumptions and Extensions

Solvency II (QIS 3) Assumption	How to Extend the Assumption
Heavy-tailed distributions Tail dependency	Consistent with QIS3 methodology
No internal hedges	Signed capital for aggregation
Linear response No interactions	

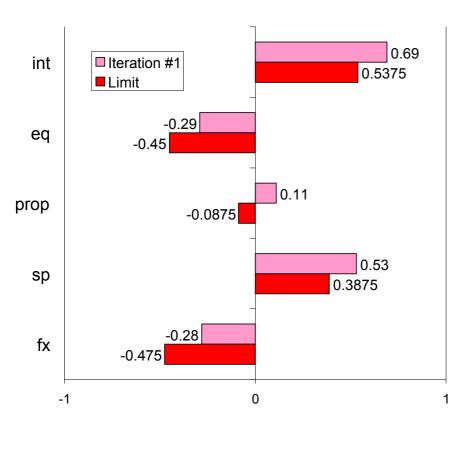


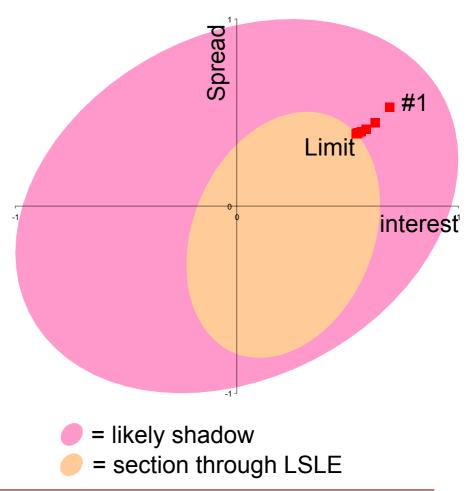
The *likely locus* is the blob touching ± 1 in each direction.

The LSLE

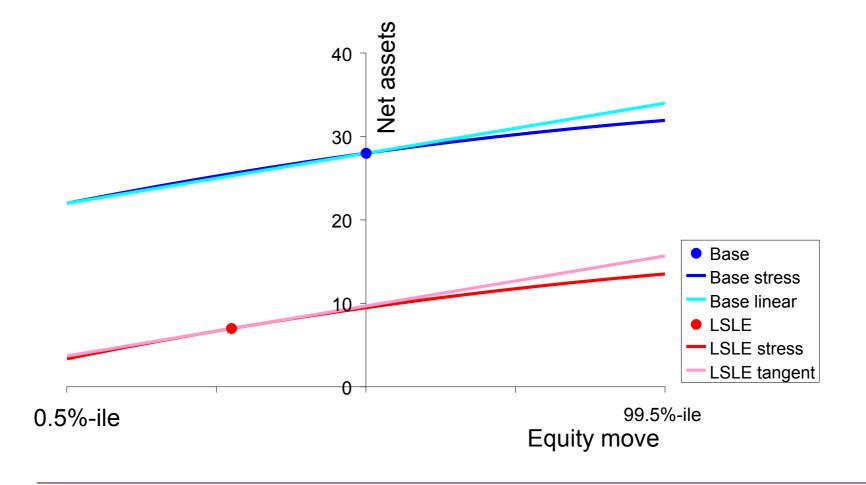
- LSLE is the "Least Solvent Likely Event"
- Minimises net assets over the likely locus
- Computed using iterative / hill-climbing approach
- We will see why:
 - 0.5%-ile {Y(X)} \approx Y(X_{LSLE})
 - Where X_{LSLE} minimises Y(X) over likely X.
 - So, capital required = Y(0) Y(LSLE)
- This result is robust, even with interactions

Iterating to Find LSLE

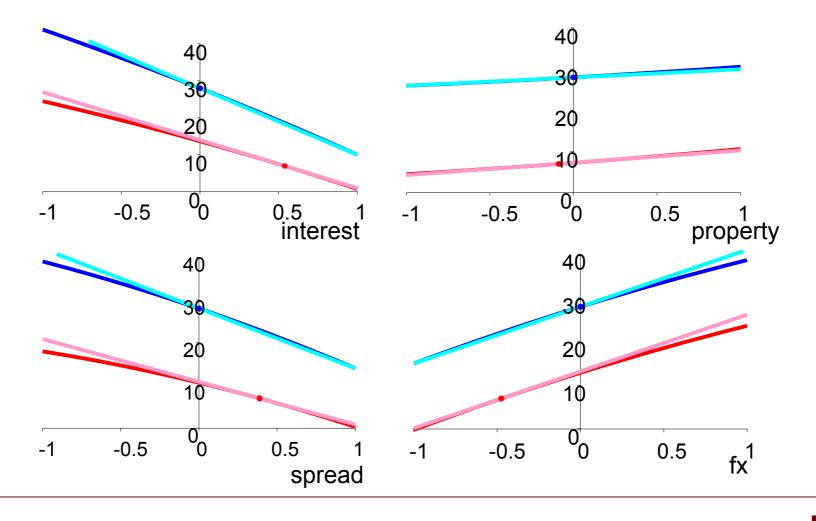




Linear Approximations: Equity



Linear Approximations: Other Risks



Two Linear Approximations

	Finite difference fitting x=0 And stress tests	Linear expansion around LSLE	
Y(0)	28	27	
Cint	-18	-13	
C _{ea}	6	6	
Cprop	2	3	
C _{sp}	-14	-10	
C _{eq} C _{prop} C _{sp} C _{fx}	13	13	
Y(LSLE) 0.5%-ile Required ca	3.85 3 pital 25	7 Always equal f 7 expansion abo 21 LSLE	for out

Linear expansion about the LSLE is most relevant for capital calculation, because it is more accurate in the region that is likely and painful.

Assumptions and Extensions

Solvency II (QIS 3) Assumption	How to Extend the Assumption
Heavy-tailed distributions Tail dependency	Consistent with QIS3 methodology
No internal hedges	Signed capital for aggregation
Linear response No interactions	Capital requirement = Base net assets – LSLE net assets LSLE = least solvent likely event

Assumptions and Extensions

Solvency II (QIS 3) Assumption	How to Extend the Assumption
Heavy-tailed distributions Tail dependency	Consistent with QIS3 methodology
No internal hedges	Signed capital for aggregation
Linear response No interactions	Capital requirement = Base net assets – LSLE net assets LSLE = least solvent likely event
Non-elliptical contours Asymmetric distributions	Asymmetric likely locus

The Actuarial Profession

making financial sense of the future

The Model Underlying Solvency II

Andrew D Smith (Deloitte) Andreas Tsanakas (City University)

2007 GIRO Convention Session D07 11:45-12:45 Tuesday 4 October