The Actuarial Profession making financial sense of the future

2

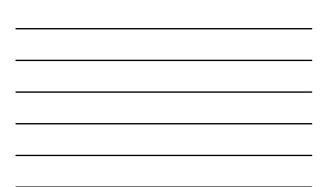
3

Modelling the Effects of Treatments for Heart Disease Workshop D4

Tushar Chatterjee, Angus Macdonald & Howard Waters

Heriot-Watt University, Edinburgh

Plan of Talk


- 1. Background
- 2. Model
- 3. Data
- 4. Parameter estimation
- 5. Applications
- 6. Questions

Background

Increasing life expectancy

	UK Males - Age					UK Females - Ag			ge
Year	0	30	50	70	Year	0	30	50	70
1981	70.8	42.7	24.1	10.1	1981	76.8	48.2	29.2	13.3
1991	73.2	44.7	26.0	11.1	1991	78.7	49.7	30.6	14.3
2001	75.7	46.9	28.3	12.5	2001	80.4	51.2	32.1	15.2

(UK Office of National Statistics)

Background

UK actuarial profession (Faculty & Institute)

- Social Policy Board
 - Actuaries Panel on Medical Advances (APMA)
 - Terms of Reference:
 - 'To identify current and future medical advances that may affect future levels of mortality and health needs and the possible extent of the effect'

4

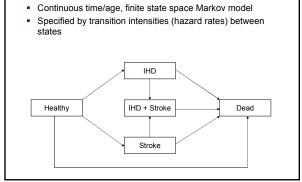
5

6

- Research project:
- October 2004 \rightarrow 2007, funded by EPSRC, supported by the UK actuarial profession

Develop a continuous time/age model for an individual's life history incorporating significant events relating to IHD, Stroke and their risk factors

Background


- Ischaemic Heart Disease (IHD) Angina (Stable and Unstable) Myocardial Infarction (MI)
- Stroke
 Transient Ischaemic Attack
- Hard Stroke (HS) (Ischaemic and Haemorrhagic) Major risk factors
 - Age Sex
 - Sex Smoking
 - Hypertension
 - Hypercholesterolaemia
 - Diabetes
 - Body Mass Index

Background

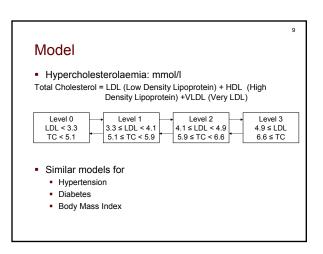
Uses of the model

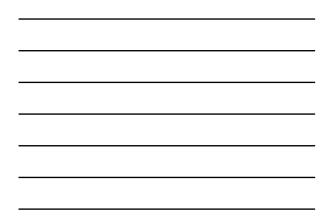
- Quantify the effect of new treatments
 Statins
- Quantify the effects of changes in behaviour
 Smoking
- Quantify the effects of trends
 - Obesity

Model

7

8

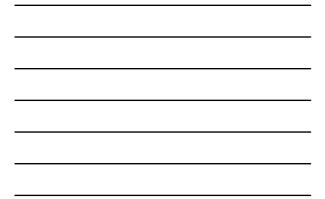



Model

Healthy has 160 sub-states:

I
Levels
5
4
2
4
modelled deterministically

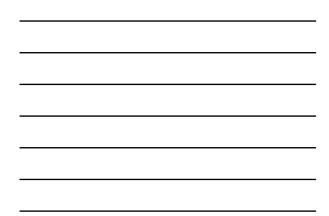
- · Model allows for multiple cases of MI and HS
- IHD and/or Stroke = 10 separate states (x 160)
- Total number of states = 160 + 10 x 160 + 1 = 1761

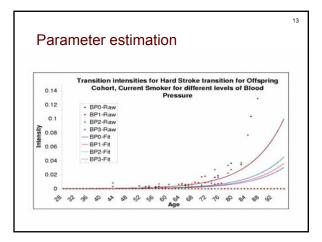

Data

Framingham data sets

	Sex	Original Cohort	Offspring & Spouses
Dates		1948 - 1986	1971 - 1998
No. of Examinations		20	6
Total exposure (in years)	М	57,911	42,779
	F	77,545	45,449
Median age for exposure	М	58	48
(years)	F	59	47
No. cases of IHD	М	416	263
	F	322	105
No. cases of Stroke	М	279	51
	F	373	41
No. of deaths	М	1606	288
-	F	1532	140

10

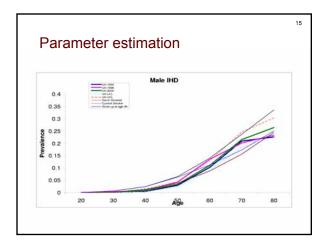

11



Parameter estimation

- Raw transition intensities
 - Occurrence/Exposure rates
- Smoothed transition intensities
 - Generalised linear model
 - Poisson errorsLog link
 - Log link
 - Include factors if significant
 - StatisticallyMedically
 - Total number of parameters = 153

12 Parameter estimation Significant factors										
Transition	Age	Sex	Smoking	BMI	H'tens	H'chol	Diabetes	Cohort effect	IHD	Stroke
→ MI (1 st)	(1)	(2)	(4)		(5)	(3)	(6)	(7) 1.60	-	
\rightarrow HS (1 st)	(1)		(3)		(2)			(4) 2.05		-
$\text{H'tens} \rightarrow \leftarrow$	•	•		•	-			-		
$\text{H'chol} \ \rightarrow \leftarrow$	•	•				-		•		
$Diabetes \to$	•	•		•			-	•		
÷	•						-	•		
$BMI \to \leftarrow$		•	•	-				-		
\rightarrow Dead	(1)	(6)	(5)	(7)	(2)	(10)	(9)	(8) 0.58	(3)	(4)


Parameter estimation


Parameterise model to reflect UK experience

Adjustments to the coefficients from Framingham

14

- data
- Age
- Sex
- Age-Sex interaction
- Age SquaredAge Squared-Sex interaction
- No adjustments to other coefficients

Applications - Treatment

Statins

- Cholesterol lowering drugs
- · First licensed in the UK in 1987
- Rosuvastatin licensed in 2003
- Effect
 - Standard dose reduces cholesterol by 1.8 mmol/l
 - Reduction in IHD risk increases over 5 years
 - Reduction in stroke risk is constant
 - % reduction in IHD/stroke risk is independent of baseline cholesterol level

16

17

18

Applications - Treatment

Condition	Years of treatment	% reduction in risk				
		1 mmol/l	1.8 mmol/l			
	1	11%	19%			
	2	24%	39%			
IHD	3-5	33%	51%			
	6 +	36%	55%			
Stroke	All durations	10%	17%			

Duration dependence → Semi-Markov model

Applications - Treatment

Regimes

- No treatment
- Treated according to NCEP guidelines
- Treated according to NCEP guidelines as well as everyone over the age of 55
- Treated according to NCEP guidelines but with 30% take up rate

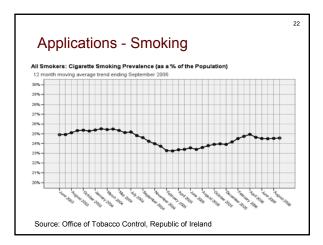
Treated on being diagnosed with IHD and/or Stroke

- Population profile

 - Starting age = 20
 UK prevalence at age 20
 Deterministic smoking profile (never, started before age 20 and given up at age 49 (Ex), current)

	pplications - Treatment								
Expected	Sex	Smoking		Treatment regime					
time to		category	1	2	3	4	5		
-		Never	51.51	52.53	52.68	52.45	51.51		
	Male	Ex	48.51	49.72	49.85	49.59	48.51		
IHD, stroke or		Current	44.25	45.85	46.03	45.69	44.25		
death		Never	56.16	56.85	56.94	56.80	56.16		
	Female	Ex	53.63	54.34	54.43	54.28	53.63		
		Current	49.32	50.32	50.49	50.23	49.32		
	Male	Never	57.78	58.41	58.47	58.36	58.00		
		Ex	54.93	55.66	55.71	55.59	55.15		
		Current	50.18	51.20	51.29	51.11	50.41		
Death		Never	61.05	61.43	61.46	61.40	61.20		
	Female	Ex	58.55	58.96	58.99	58.92	58.71		
		Current	54.01	54.60	54.67	54.54	54.17		

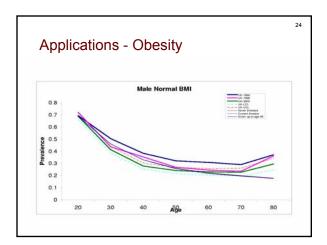
20


21

Applications - Smoking Relative risk at any time t(RR(t)) of MI and HS decreases with time since giving up smoking $\mathsf{RR}(t) = [\mathsf{RR}(0) - \mathsf{RR}(\infty)] \; \mathrm{e}^{-t/\tau} + \mathsf{RR}(\infty)$ MI HS where, RR(0) 3.436 2.15 RR(∞) 1.1 1.1 т years 1.59 1.35

Applications - Smoking

- Effect of ban on smoking in enclosed places
 - Republic of Ireland (2004)
 - Scotland (2006)
 - England (2007)
- Change in behaviour?


Applications - Obesity

Obesity

- Indicated by BMI
- BMI = Weight (kgs) / (Height (mtrs))²
- Usual Classification:

Category	Range
Normal	BMI ≤ 25
Overweight	25 < BMI ≤ 30
Obese	30 < BMI

23

Applications - Obesity

Body Mass Index

More detailed classification

Category	Range	Mortality rate as a multiple of base		
Underweight (base)	BMI ≤ 18.5	1		
Normal	18.5 < BMI ≤ 25	0.5875		
Overweight	25 < BMI ≤ 30	0.4588		
Moderately Obese	30 < BMI ≤ 35	0.5263		
Morbidly Obese	35 < BMI	0.5868		

26

Not a significant risk factor for MI or HS
 Significant risk factor for

 Diabetes and Hypertension
 Death

