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Abstract: We've all been to see A Beautiful Mind, the Oscar winning
film about John Nash, starring Russell Crowe. Although Nash won a
Nobel for economics, the film focuses on the love story and mental
health aspects. So if you're the rare actuary whose education has left
intact some residue of intellectual curiosity, you might have left the film
with a few unanswered questions. In insurance, game theory has been
proposed for evaluation of strategic options involving competitor
responses, and explanation of phenomena such as premium cycles.
This note explains the concept of a Nash equilibrium, outlining the
game theory context and the key results for which Nash gained his
Nobel.
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Introduction

In 1994, the Bank of Sweden Prize in Economic Sciences in Memory of
Alfred Nobel was awarded to John Harsanyi, to John Nash and to
Reinhard Selten, for their pioneering analysis of equilibria in the theory
of non-cooperative games.

Subsequently, John Nash found himself the focus of some media
interest. John Nash’s biography, “A beautiful mind”, written by Sylvia
Nasar became a best seller in 1998. A film of the same title, starring
Russell Crowe as John Nash and Jennifer Connelly as his wife Alicia,
has won four Oscars.

The popular interest was largely due to John Nash’s tragic personal
circumstances. In 1958, on the threshold of his career, paranoid
schizophrenia struck. Nash lost his job at M.I.T. in 1959 and was
virtually incapacitated by the disease for the next two decades.

This note provides a brief summary of the economic contributions
recognised in the 1994 Nobel Prize. For the human interest we refer
you to the book. If you want a good cry and a hopelessly romantic “love
conquers all” view of the world then go see the film.

Game Theory – a Short History

Game theory considers situations where someone’s behaviour is
influenced by his forecasts of his opponents’ behaviour. The classical
examples relate to pricing and capacity decisions in oligopoly
situations.

An 1838 paper by the French economist Cournot is usually cited as the
genesis of game theory. Cournot investigated the situation of two
suppliers to a market, who have to make decisions as to how much to
produce. The optimal production for each supplier depends on the
other supplier's production decision. As the suppliers must choose their
production simultaneously, each producer must estimate the other
supplier’s decision. It is this circularity, which characterises game
theory.

The next major contribution to game theory was von Neumann and
Morgenstern’s 1994 book The Theory of Games and Economic
Behaviour. Actuaries know this text better for introducing the concept
of a utility function, and setting it up on an axiomatic basis. The game
theoretic contribution was far more than this though. Particularly
groundbreaking was the treatment of two-person zero sum games.



In 1950, Nash proposed what came to be known as “Nash
Equilibrium”. This extended the von-Neumann and Morgenstern
solution to non-zero-sum games and to multiple players. A Nash
equilibrium applies when each player’s strategy is a payoff-maximising
response to the strategies pursued by the other players. This concept
has been the point of departure for most economic work in the field of
game theory.

Nash also provided a mathematical proof that, under certain
conditions, a Nash equilibrium exists. There are a number of
complexities to applying this in practice, including the problem of
multiple equilibria and the strong economic assumption that a game’s
participants are aware of each other’s constraints and preferences.
The other Nobel winners have contributed to resolving these issues.

In 1965, Selten published a paper investigating multi-stage games. In
such games, a player’s move can be contingent on what she observes
from the moves of other players in previous stages of the game. In
such games, many Nash equilibria may exist, so an economist seeking
to predict the game’s outcome must find some way of ranking the
equilibria in order of how likely they are to occur. Selten argued that in
multi-stage games, many of the Nash equilibria rely on “empty threats”;
the remaining “subgame perfect” equilibria are more plausible.

Harsanyi’s contribution in 1967 was to extend the concept of Nash
equilibrium to situations where players are uncertain about other
players’ payoffs. He did this by allowing players to start with a Bayesian
prior distribution describing other players’ payoffs – an idea with which
many actuaries will be familiar.

Cournot Equilibrium – An Example

We start with a simple example of a Cournot equilibrium. There are two
manufacturers in the widget market. Player 1 has a production cost of
€1 per unit, while player 2 has a production cost of €2 per unit. The
market price depends on the total production, and is given by the
formula:

market price per unit = €6 * (1 – total production / 120)

The Cournot equilibrium applies when player 1 makes 40 units and
player 2 makes 20 units.  The market price is then €6 * (1 – 60/120) =



€3 per unit. Player 1 therefore makes a profit of €80, and player 2 a
profit of €20.
To see why this is a Cournot equilibrium, let us suppose that player 1
already knows player 2’s strategy. Player 1’s strategy then is to
maximise profit, knowing that player 2 will make 20 units. For each
possible level of own production, player 1 can add 20 to get the total
production, and thus a forecast both of the market price per widget and
of player 1 profit. Player 1’s profit maximisation is shown in the chart
below:

Player 1 maximises his own profit producing 40 units.

For Player 2, the situation is the similar. Given player 1’s strategy of
producing 40 units, player 2’s optimal response is to produce 20 units.
In this case, (40, 20) is the unique Cournot equilibrium in which each
player responds optimally to the strategy of the other.

Cournot equilbria provide rich hunting grounds for would-be social
planners. There are ways in which the Cournot equilibrium could be
improved for both players, if they cooperate. For example, player 1
could produce more of the goods, and provide player 2 with a side-
payment as an incentive not to produce anything.  Both players could
then increase their profits. As the goods are now being produced at
lower average cost, there may also be a wider benefit to society. Is
there then a case for price regulation to tame player 1’s monopoly?
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von Neumann – MorgenStern Equilibrium – An Example

A simple example of the von Neumann – Morgenstern equilibrium is
the two-player children’s game “rock, paper, scissors”, also known (in
the UK) as “scissors, paper, stone”. The following rules are an
abbreviation of the full set which are published by the World Rock
Paper Scissors society:

The two players must each release one fist in any of the following manners:
� Rock: represented by a closed fist with the thumb resting at least at the same

height as the topmost finger of the hand. The fingers must not conceal the
thumb.

� Scissors: Is delivered in the same manner as rock with the exception that the
index and middle fingers are fully extended toward the opposing player. It is
considered good form to angle the topmost finger upwards and the lower
finger downwards in order to create a roughly 30–45 degree angle between
the two digits and thus mimic a pair of scissors.

� Paper: Is also delivered in the same manner as rock with the exception that
all fingers including the thumb are fully extended and horizontal with the points
of the fingers facing the opposing player.

Each player has the full range of throws to play, as follows:
� Rock wins against scissors, loses to paper and stalemates against itself
� Paper wins against Rock, loses to scissors and stalemates against itself
� Scissors wins against paper, loses to rock and stalemates against itself

These are sometimes summarised as “rock sharpens scissors, scissors cut paper,
paper covers rock”. In the case of a stalemate, where players reveal the same throw
the round must be replayed. There are no limits to the numbers of stalemates, which
may occur in any given match. Should players find themselves in a continuous
stalemate situation, also known as "Mirror Play", a good approach can be to take a
short "timeout" to rethink your strategy.

Plainly no deterministic strategy wins Rock Paper Scissors. For
example, if my strategy is to choose “rock” then my opponent will
choose “paper”. The only strategy, which cannot be beaten in this way,
is a strategy to choose the position randomly between the three
alternatives. This doesn’t give me a winning strategy – on average I
break even – which is the best that can be hoped for in a symmetric
zero sum game. Such randomised strategies are sometimes called
“mixed”, as opposed to the “pure” strategies, which involve
deterministic play.



This example is important because it indicates how randomness can
be introduced into the solution to a game, even when the rules contain
no random element.

Although von Neumann and Morganstern applied their work to the
theory of games, the mathematical results on which they base their
exposition are much more general – and indeed represent the first step
in formalising solutions to linear programming. For many years, linear
programming problems were regarded as applications of game theory,
even when the problem formulation was unrelated to any game.
Benjamin (1959) is one of the few attempts to apply this literature in an
actuarial context – in this case to a minimax definition of prudent
valuation bases.

Nash’s Theorem

We now extend the concept of a game to allow many players and
possible non-zero sums. An N-player game is characterised by its
payoff matrix, and N+1 dimensional matrix describing the payoff to
each player for every combination of plays.

Nash’s major contribution to game theory was a proof that such games
always have a mixed-strategy equilibrium. Pure strategy (Cournot)
equilibria may not exist. The proof itself is a few pages only, but it relies
on a deep topological result – the fixed-point theorem of Kakutani
(1941). Other authors were quick to generalise the result to compact
strategy spaces with continuous payoffs. Debreu (1952) characterised
a subset of problems with concave payoffs where a pure strategy
equilibrium could be guaranteed.

The Bargaining Problem

We now consider a version of a classic problem, which Nash (1950)
solved prior to his more general game theory paper.

Consider a game with two players. Player A has an asset, which he
wishes to sell. He knows that he can sell the asset to a third party
dealer for €5, but he hopes that by bargaining with player B, he can get
a better deal.

Player B has the reverse situation of wanting to buy the asset, but the
dealer’s asking price is €10, incorporating a €5 dealing spread over the
market bid price. Player B is also hopeful that by bargaining with player



A he can negotiate a price better than either can achieve by going to a
third party dealer.

The process works as follows. The payers take it in turns to suggest
prices to each other. As each price is suggested, the other player may
accept or decline. The gain to player A is the extent to which the
negotiated price exceeds the dealers bid price of €5; for player B the
gain is the extent to which the negotiated price falls short of the €10
asked by the dealer. After declining a price, either player may
terminate the game, in which point each player goes to a dealer and
there are no gains to either player.

Edgeworth first proposed this problem in 1881.  He argued that,
without competition, the solution was indeterminate; there is no way of
predicting what bargain might be struck. Over the next 70 years many
other great economists, including John Hicks and Alfred Marshall, took
up this problem but made no headway.

To make some progress, let us assume that both players are also
impatient. Let us suppose that for every step of the game (that is, for
every price suggestion followed by an accept/decline decision), beyond
the first step, player A incurs a cost of €1 and player B incurs a cost of
€2. Can we then solve the game?

Even with these cost structures, there are many Nash equilbria. For
example:

Nash Equilibrium #1
Player A always asks a price of €5 and accepts any bid of €5 or more
Player B always bids €5 and will pay a maximum asking price of €5

is a Nash equilibrium – indeed one of many. Each strategy is a rational
response to the strategy of the other.

However, this equilibrium looks wrong. It would result in player A selling
the asset to player B for €5 at the first move. Player B has captured all
the gains from private negotiation. This seems odd given that player B
has the higher time cost; we would expect that player B would be
keener to do a deal. Player A should be able to exploit player B’s
impatience to extract a higher price than  €5.

Selten (1965) provided a more precise diagnosis of the problem with
our equilibrium #1. It involves player B making empty threats. For
example, if player A offers to sell for €6, then player B should accept.
This is because, if player B is to wait, he’ll still pay at least €5 anyway,



and incurs an additional waiting cost of €2. Player B’s threat to reject
an offer to sell at €6 is an empty threat.

So let us focus on strategies, which eliminate empty threats. In this
case, we find the following unique solution:

Selten Equilibrium
Player A always asks €10 but accepts any bid of €9 or above
Player B always bids €9 but pays any asking price up to €10

In other words, if player A moves first, he succeeds in selling for €10.
Player A, with more patience, has gained all the benefits of negotiation.
However, if player B moves first, he can expect player A to accept a
bid of €9. This situation is described as a first mover advantage. Even
in this case, it is clear that most of the gains from bargaining have gone
to the more patient player.

How does this fit to the way the world works? In real life, we might
commonly observe two players agreeing to “split the difference”, and
transact at €7.50. A strategy where each player suggests €7.50 and
accepts €7.50 is a Nash equilibrium but not a Selten equilibrium. Game
theory defines the notion of a Selten Equilibrium. It is an empirical
question whether Selten Equilibria or other concepts are best able to
explain the outputs of  real life games.

Our Selten equilibrium predicts that players will agree a bargain in the
first round, but in practice we know that haggling does take place. This
may point either to a failure in the theory’s predictive power, or
alternatively a weakness in our formulation of the problem.

Haggling is sub-optimal for both players if they have complete
information about each other’s cost structures. On the other hand, it
might be more realistic to assume the players have patchy information
about each other. In that case, we could see a situation where an initial
haggling phase is useful in providing information to each player about
the other’s cost structure. This would be an example of a Harsanyi
(1967) equilibrium. Needless to say, incorporating such a Bayesian
updating process into the game makes the analysis far more
complicated.  These are the same Selten and Harsanyi with whom
Nash shared the Nobel prize.

Other softer factors may also be at work in the bargaining process, and
some have argued that bargaining must be set in a cultural context of
what is fair, given the possibility of further business following a
successful deal. The acceptability of haggling in a shop or street



market varies greatly from one part of the world to another. Can these
differences really be captured by reference to different time costs and
information structures?

Does it Work?

The relevance of Nash equilibria to modern economic practice is still
controversial. Perhaps the most promising area is the design of
auctions. Milgrom (1995) built on the work of Nash, Selten and
Harsanyi to consider the optimal design of public auctions. At the time,
Milgrom was advising the US government on ways of selling licenses
to use airwave bandwidth for cellular telephones. In March 1995, the
US government announced that the winning bids totalled more than
US$7 000 million. Milgrom described this as “the biggest sale in
American history of public assets and one of the most successful (and
lucrative) applications of economic theory to public policy ever”.

This auction followed a number of less successful previous attempts.
According to Nasar (1998), “before 1994 Washington simply gave
away licenses for free. Until 1982 it had been up to regulators to decide
which companies deserved the licenses. … After 1982 Washington
awarded licenses using lotteries”. The successful American auction
also followed costly flops of less well-designed auctions in Australia
and New Zealand.

These auctions can be long and protracted affairs. In April 2000, the
UK government announced the results of its own airwave auction,
using similar techniques to the US. After 150 rounds, the accepted bids
totalled £22 470 m.

This proved to be the high point of the telecom auction frenzy. In April
2001, the BBC reported that ” as companies began to balk from paying
huge sums for the licences, the only way governments were
guaranteed to make money was to set the price in advance and award
the licences on merit through a beauty contest. “ Amounts raised from
these less sophisticated means were as follows:

France: £ 6 320m
Germany: £ 30 400m
Italy: £ 7 500m
Netherlands: £ 1 680 m
Poland: £ 1 900 m
Sweden: £ 26 m
Switzerland: £ 80 m
Belgium: £ 300m



Australia: £ 500m
Spain: £ 12m

Game theory enthusiasts might explain the low revenues by poor
auction design. But were the fluctuations simply reflecting the boom
and subsequent collapse in the fortunes of telecom companies? Does
game theory justly deserve the credit Milgrom claims?

Historically, the US Military has been one of the biggest spenders on
game theory research – and indeed, employed Nash for several years.
More recently, Major (2002) provided a description of game theory, and
an approach to managing terrorism risk, although the relationship
between the two parts of the document is not entirely clear. We can
describe some well-known conflicts in game theoretic terms. For
example, the cold war strategy of “mutually assured destruction” is an
example of a Nash equilibrium, but not a Selten equilibrium.  For
example, suppose that USA makes an unprovoked nuclear attack on
Moscow. The USSR has threatened to retaliate, but given the existing
damage to Moscow, and that the USA has already launched its deadly
attack, would this be a rational response? There is no sense of
teaching a lesson, because the destruction is final. Furthermore, by
launching a nuclear attack on the USA, the USSR would deliver to its
Asian citizens a far more lethal does of radiation via the trade winds,
than they would have suffered as a result of Moscow’s bombardment.
Arguably, the USSR threat of retaliatory action is empty in the Selten
sense. But few forecasted the end of the cold war – not even game
theorists seeking Selten equilibria.

The Financial Times of 25 March 2002 recounted another application
of game theory, as applied by a UK firm:

“In 1994, Yorkshire Water, the privatised UK utility, made extensive
use of game theory while preparing for a regulatory review that would
set prices from 1995 to 2000. Trevor Newton, then managing director,
felt confident on the basis of his game theoretic analysis that the
company would secure a favourable outcome.

In fact, the industry regulator not only set tougher price controls than
the company and its investors had expected; it also opened an inquiry
into Yorkshire's operating performance. Following a year of drought
and regional water shortages in 1995, Mr Newton resigned from the
company. “

Green (2002), a New Zealand based academic, tried the following
experiment. Twenty-one game theorists made 99 forecasts of



decisions for six conflict situations. The same situations were
described to 290 research participants, who made 207 forecasts using
unaided judgement, and to 933 participants, who made 158 forecasts
in active role-playing. He found that role-play predictions were better
than chance and unaided judgement for all situations, and better than
game-theory experts’ predictions for all but one situation. Game
theorists’ forecasts, on the other hand, varied more widely in their
accuracy than did role-play forecasts.

So overall, the case for using game theory in corporate decision-
making is not yet proven. There are success stories and there are
failure stories.

Actuarial Applications?

Are Nash equilibria ever going to be of practical use to actuaries? Is
this a fast developing area where actuaries must work hard to catch
up, or is game theory a peripheral discipline which most of us can
leave to the specialists?

The first thing to stress is that applied game theory is not yet a
quantitative discipline. I am not aware of a single example where a
businessperson has sought to calibrate his own and competitors’
payoffs and then successfully forecasted the future by solving for a
Nash equilibrium. Instead, most claimed applications of game theory
actually involve people using ideas, concepts or insights from game
theory in a judgmental fashion. In fact, it is not clear whether game
theory is actually being used at all. Claims to use Nash equilibria may
turn out to be the application of simpler general reasoning, given a
veneer of rigour by the adoption of a Nobel-winning name.

Why has the quantitative progress been so slow? The main reason is
the difficulty of formulating even simple problems in a game-theoretic
framework. There are many parameters to estimate to formulate the
problem, most of which relate to hypothetical payoffs under strategies,
which have not in the past been followed – so for which no supporting
data is available. On top of this, Nash’s equilibrium theorem is merely
an existence result, which gives us no guidance on how to characterise
numerically the set of Nash equilibria. Such numerical algorithms are
not well developed. Furthermore, Nash’s result applies to finite games
– computations for the real world of continuous time and continuous
valued decision variables are uncharted territory. For these reasons,
several major leaps forward on the theoretical front are needed before
the computation of Nash equilibria could be useful for day-to-day
decision support.



One promising avenue of research applies game theory to capital
allocation. Denault (2001) treats the allocation of capital in a company
as a multi-player game, each line of business representing one player.
He derives a capital allocation based on work by Aumann and Shapley
(1974), using bargaining theory to establish a formula for distributing
capital credits for diversification.

In life assurance, there is an element of game theory in underwriting
decisions. How much should an insurer spend on checking health
details of assurance applicants? As an insured life, what is the
incentive to lie on assurance forms (for example regarding non-smoker
status). What are the potential selection effects for example from HIV
positive individuals who withhold details of medical tests? What is a
rational underwriting response to these moral hazards? Such effects
are considered in Cummins et al (1982). It is unclear to what extent
these techniques are used in practice, but the Society of Actuaries in
the US requires some knowledge of Nash equilbria in this context for
its specialist life subject.

There are also public policy implications. The neo-classical
perspective, initiated by Adam Smith, has long argued that private
contracting is likely to give rise to resource allocations, which are in
some sense socially optimal. If these arguments were completely
accepted, then there would be no role for any form of government
intervention in the economy. But game theory gives us a whole host of
examples where non-cooperative games can have socially sub-optimal
Nash equilibria. This could lend weight to those who would replace
Adam Smith’s invisible hand with the long arm of the state. Such views
remain controversial. Many would argue it is more realistic to model
government as yet another class of players, with their own selfish
objectives, rather than as a benign coordinator. Even so, on balance,
the concept of the Nash equilibrium has given comfort to advocates of
interventionist economic policies.

Another possible game theory application relates to market volatility. It
has been widely noted (see, for example, Geman and Ané, 2000) that
high trading volumes often accompany times of high market volatility.
The question here is of cause and effect. One explanation would be
that at times when markets are moving fast, investors’ preferred asset
allocations and dynamic hedges will also move, and this alone should
increase trading volume. Another school argues that the trading itself
causes the volatility (with the consequence that regulatory or fiscal
intervention to reduce trading volume could have a social benefit of
reduced market volatility). Where does this volatility come from – a



mixed strategy Nash equilibrium perhaps? Disappointingly, most
formulations of investment problems result in concave payoffs, in which
case equilbria are pure strategy.

The market impact of sales and purchases is an area of much current
study. Until recently, the dominant belief was that an attempt to sell a
large quantity of a share would automatically produce a large price fall
– although the mechanism causing other players to be prepared to sell
at a lower price was unclear. Investment managers would suggest
strict secrecy and small incremental trades to beat the market impact.
Recent literature has suggested that market impact is instead
attributable to rational fears of inside information – of which large
attempted trades are a signal. The consequence is that a large trade
not motivated by inside information should have a smaller price impact
– provided this fact is communicated credibly to the market. Arguably,
trades by Boots pension fund out of equities into bonds, have had a
smaller market impact thanks to clear communication of the matching
rationale for these trades (see Alexander, 2002). Many life insurers and
pension funds are seeking to reduce equity exposure. Is there a game
theoretic angle to the timing and information management decisions
involved?

Insurance premium cycles have ruined many insurance companies,
inconvenienced customers and confounded regulators. Many popular
explanations resort to assuming irrationality on the part of market
participants. From an economist’s view this is unsatisfactory, as it
implausibly supposes the economist has more information about the
market than its own participants do. Furthermore, surveys seldom
reveal insurers taking the blame for their own participation in the
premium cycle. Indeed, insurers are near unanimous in their diagnosis
of the problem – its everybody else’s strategies that forces an insurer
to behave in they way he does. This is essentially the definition of a
Nash equilibrium.

Feldblum (1992) provides persuasive explanations of market cycles in
terms of rational participants in the presence of principal/agent conflicts
and costs of entry / exit. Feldblum’s theory has a number of parallels
with recent developments in the theory of repeated non-cooperative
games, which combine Nash equilibrium concepts with ideas from
dynamic programming. Such games can produce cyclical behaviour. It
is possible that Feldblum’s explanations of market cycles can be
expressed in terms of a Nash equilibrium. The important question from
a practical perspective is whether re-casting an insurance
phenomenon in terms of games theory provides any extra insight into



the insurance problem. More work remains in order to investigate
whether general theorems from game theory will yield specific insights
to insurance phenomena, or might even suggest ways that a well-
designed regulatory environment could mitigate adverse social
consequences of insurance cycles.

Game theory is still developing rapidly. It holds out a promise – as yet
unfulfilled – of explaining puzzling effects in insurance and capital
markets. Without some major breakthroughs, game theory is not going
to be running our lives next week. However, actuaries should keep
abreast of developments, and be ready to adopt game theoretic tools
as they become more practical to apply.
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