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NOTES ON INTERPOLATION (PART II).*—III (i) CONTINUED.
THE ORIGIN OF THE THROW-BACK DEVICE. IV. AIT-
KEN'S NEW METHOD OF INVERSE INTERPOLATION.
V. THE CONNEXION OF THE THROW-BACK WITH

STIRLING'S AND BESSEL'S FORMULAE

BY G. J. LIDSTONE, LL.D., ETC.

III (i) (continued)

49. The throw-back device, discussed in paras. 34-43, is usually
associated with the name of Dr L. J. Comrie, who invented it
independently and has greatly developed it : but in the interests of
historical accuracy it is desirable to record that it was previously or
concurrently suggested by other writers. The writer is indebted to
Comrie himself for the information that the device seems to have
been first given and used by the eminent astronomer Prof. E. W.
Brown, F.R.S. (lately deceased), in the Introduction to his classic
Tables of the Motion of the Moon, Vol. 1, p. 110 (1919). It was also
proposed independently by an American actuary, Mr Kingsland
Camp, F.A.S., T.A.S.A. Vol. XXIX, p. 316 (1928), almost con-
currently with its first publication by Comrie. To quote the words
of D. C. Fraser (Newton and Interpolation, p. 69) in relation to
Everett's formula: "This is an example of what has continually
happened in this subject, of formulas being given and forgotten
[or overlooked] and rediscovered."

50. As Brown's work is rather inaccessible it will be well to
record his remarks in extenso. He wrote (loc. cit.) :

Denote two consecutive half-daily values of either coordinate by Fo

and F I , the first, third and fifth differences between Fo,
and the second and fourth differences lying on the same lines as Fo, F I by

Bessel's formula for any value Fn lying between Fo, F1

may be written

as far as fifth differences inclusive.

* Continued from Vol. LXVIII, pp. 267–96, referred to hereafter as Part I,
The paragraphs are numbered in sequence.

Richard Kwan
JIA 71  (1943)  0068-0095
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The required values of n are 1/12, 2/12, ..., 11/12. For the first six of
these, (n + 1) (2–n)/12 has the values

and the same values for the latter six, taken in reverse order. Their range
is small. If we use the value 318/1728 instead of any one of them, the

errors of the whole coefficient of will be

The largest of these produces an error less than and this
produces errors which are never greater than 05.0015 in right ascension
or than 0".02 in declination. [The fraction 318/1728 = .184 ....]

The coefficient of Δv is always less than .001 and the corresponding
maximum errors caused by the neglect of Δv are always less than 0s.001
and 0".01 respectively. Footnote. The formula shows, nevertheless, that
Δv can be included with Δiii by means of the common factor 0.11. [Comrie's
value is .108.]

51. Camp said, loc. cit., p. 221 :

"The suggestion may now be advanced, that when the higher
orders of differences are small (and this is usually the case), it is
entirely practicable to omit them and substitute for the differ-
ences of lower order, adjusted values which eliminate the need
for the higher orders. This would save space in the printing and
be more convenient for the user."

He also pointed out the advantage of the suggestion in simpli-
fying inverse interpolation. Suggesting specifically the sub-
stitution of (δ2u + KΔ4U) for the sum of the terms involving δ2 and δ4,
he found the value of κ from "the condition that the sum of the
squares of the errors within the range for which they are used
(for this case — 1 to +1) be a minimum". If for brevity we write
Everett's formula* as

Camp's solution may be presented as follows (note that Camp's

[where

• It is known that ε2n and e2n are the same function of x and (1 – x) respectively :
they are of degree 2n+I, while their sum—the coefficient of the meanδ2n in
Bessel's formula—is of degree 2n.

and

k is our -k):
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Then

70

is the expression whose square is to be minimized for values of ÷
lying between -1 and + 1 . Simplifying it somewhat, [the in-
tegral of]

is to be minimized with respect to κ. Therefore, as the deri-
vative with respect to κ of the coefficient of (δ4µ0)2 for any one
point χ is [twice]

the sum [integral] of the values of this for the possible values
of χ between — 1 and + 1 must come to 0.

In this way Camp finds k= —κ= 11/60 = .183.
52. It is not clear to the writer why the calculation is based on

one only of the two lines of Everett's formula, each line being, as
we have seen, of degree higher by one than the degree of the
effective coefficient of δ2n : nor why the integration is taken from
— 1 to +1, the usual Everett range being 0 to 1 .* The resulting
value of κ differs—very slightly, it is true—from that found by
taking the actual coefficients of δ2 and δ4, viz. x(x—1)/2 and
(x+1) χ (x— 1) (x — 2)/24. If for the latter we substitute
K.X(X—1)/2 the squared error is

and minimizing the integral of this between 0 and 1, we find

k= –31/168= –.1845.

53. Milne-Thomson, Calculus of Finite Differences (1933), p. 71,
finds k3= –13/120= –.1083 and κ 4 = –191/924 = –.207 by a
different method, viz. from the condition that the integrated
deviation over the range 0 to ½ or 0 to 1 shall vanish. These values
agree nearly with those found by the method of least squares as
used in para. 52; but this coincidence seems to arise from the
particular form of the coefficients since the principles involved in
the two methods are quite different. It would seem that in prin-
ciple the Least Squares method is safer and to be preferred. For

* Actually the second point makes no difference, for the integrand is an even

function, and to minimize is the same as to minimize
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a zero mean error is consistent with large actual errors of different
sign; whereas the Least Squares method tends to keep down the
largest numerical errors of either sign. This is what we want ; for
the true principle (adopted by Comrie) is to fix κ so that the worst
error may be as small as possible. After κ2 this was done by trial
and error; but the Least Square method gives a useful and very
close approximation by direct calculation. Actually indeed suffi-
ciently good results can be obtained (as suggested in para. 37, ante)
by finding κ from the coefficients at the point y= ±¼, x = ¼ or ¾.
We then have a zero error at the four points x=0, ¼, ¾, 1. The
following are numerical values yielded by this process, compared
with Comrie's "best values" and the earlier least-square values. It
will be seen that the three sets of values are barely distinguishable :

It may be remembered that a somewhat rough value of κ does
not introduce error into an interpolation, but merely restricts the
range of δ2n+2 over which the residual error is negligible.

54. The first published Table (after Brown's) in which modified
differences, on the "throw-back" principle, were tabulated were
given in the British Association Tables, Vol. 1 (1931).

54 a. Comrie's throw-back appears, so far, to have been applied
only to Bessel's formula, but it may be remarked that the same
principle is applicable to Stirling's formula. If in that formula
the coefficient of the tth difference (or mean difference) be repre-
sented by st, we have

These λ's are similar to the k's appearing in the Bessel throw-
back. Like the k's, the λ's vary only slightly with x, when x lies
in the central unit-range, and we may adopt suitable mean values
of λ, and so use the throw-back principle precisely as with
Bessel's formula. These mean values can be found in the same
way as the Bessel K'S.

Approx.
Comrie
Least Sq.

- k 2 - k 3 - k 4 - k 5 - k 6 - k 7 - k 8

.182
. 1 8 4
.185

.109
.108
. 1 8

.206
.208
.207

.147
.147
— — — —

.218
.218

.169

.169
.2243
.2246
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IV

55. Aitken's extension of his Quadratic Cross-Means method
to inverse interpolation (foreshadowed in Part I, para. 22) has
recently been published in the Proc. Roy. Soc. Edinb. Vol.
LVIII (1938), pp. 161-75,* and copies of the paper have been
placed in the Libraries of the Institute and the Faculty. The pro-
cess is remarkably effective, and readers may be glad to have an
account of it. This we give to some extent in our own way, and
with some variations and additional matter.

56. The problem may be stated thus. Having given equi-
distant values of a function u, to find the argument x corresponding
to a non-tabular value ux. Just as in direct interpolation, it is
desirable (at least, theoretically) that | x |† may be as small as
possible, and by a suitable choice of origin x may be made to lie
between —¼ and +¼. Thus, suppose ux lies between ut and ut+I

(where the tabular interval is taken as unity), and divide the
interval t to t + 1 into quarters. Then (i) if x falls in the first quarter
we take the origin at t so that ut becomes uo and x is positive:
(ii) if x is in the central two quarters we take the origin at t + ½ so
that µt+1/2 (which is not tabulated) becomes uo, and x may be
positive or negative: (iii) if x is in the last quarter we take the
origin at t + 1 so that ut+1 becomes uo and x is negative. The given
values may then be symmetrically disposed in pairs about the
central value uo ; thus in cases (i) and (iii)

and in case (ii)

In the second "form the central value u0 is not a tabular value
and must therefore be found by interpolation if it is to be used.

• The paper can be obtained separately at the price of is. 3d. It also contains
a method (not here discussed) of forming differential coefficients of successive
orders at non-tabular points. [Cf. Comrie, Interpolation and Allied Tables,
pp. 803-5].

Note the following erratum :
p. 164. u_3 should read 0.78767 ....

† |x| is the modulus of x, i.e. its numerical value without sign. Cf. J.I.A.
Vol. LI, p. 133.



Aitken's Inverse Method 73

But in practice uo is not generally used in this case ; this question
is discussed later (para. 62).

57. From any pair of values u±h we may obtain an approximate
value of x by inverse linear interpolation, or proportional parts.
We find

Or if wh = ux — uh an alternative form is

This function vh has important and interesting properties.

(i) 

This appears at once on substitution, and it is the kernel of
Aitken's method.

(ii) takes the indeterminate form 0/0, but defining it as
we find

where the accent denotes differentiation.

(iii)

i.e. the function does not change when -h is substituted for h:
it is therefore an even function of h or a function of h2 (see the
expansion in Note A, following para. 69). To such a function the
Cross-Means method can be applied without preliminary linear
interpolation, and two orders of differences are brought in at each
step.

(iv) Since vh is an even function its derivatives and central
differences of odd order are all zero for h = o. In particular its
first derivative at the point ο is zero: hence near that point the
function changes slowly, i.e. by increments approximately pro-
portional to the squares of the increments of h.

58. If we take an approximate value of x, say x+ ε1, and calcu-
late vx+εx by direct interpolation, we shall get (instead of x exactly)
a result which may be written

and it will be shown that, subject to conditions which will usually
be fulfilled, the new error ε2 is much smaller than ε1. Repeating
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the process by interpolating for vx+ε2 we shall get x + ε3, where ε3

is much smaller than ε2. Thus we approach vx = x very rapidly,*
and in fact ετ, ε2 ... are approximately in G.P. For if accents de-
note differentiation we have from (iv) above

while

so that ε2 is approximately εzxvo". Now x is numerically less than ½,
and vo" is generally small, † so in general ε2 is much smaller than ε1.

Similarly, repeating the process, we shall get

Thus as stated the errors decrease in G.P. (except so far as dis-
turbed by higher derivatives when ε has become very small), and
the quickness of convergence depends primarily on the smallness
of x and ν"o . Hence ε2, ε 3 . . . . are specially small if x is small, which
is the reason for so fixing the origin that (para. 56); but
even if x is not Kept within max range, ε2, ε3 ... are generally small

and rapidly decreasing because of a small value of v"o.

59. It is not in practice necessary to push the full iterative
process very far. There are [see next para.] limits imposed by
the data on the accuracy with which x can be found; and the
method is so powerful that when a certain stage has been reached
the remaining figures of x, within those limits, can be found more
quickly by a simple linear process. See Note B, infra, and the
worked examples which are given later.

60. The degree of accuracy with which x is obtained is that of
an interpolated v. It is shown in Note B, infra, that if the tabular
values of u and the value of ux are rounded off to the nearest unit
in the last place, the consequential "tabular error" in an inter-
polated ν may reach a maximum value of about 3/2/Y, where Y is
the smallest value of (uh—u_h)/2h used in forming the v's. This is
reduced to ¾/Y if ux itself is not rounded off but exact. There is

* The process is therefore an iterative one, as to which Whittaker and
Robinson (Calculus of Observations, p. 81) say: "A pleasing characteristic of
iterative processes.. .[is] that a mistake.. .does not invalidate the whole calcu-
lation"; though it will visually slow down the approach to the correct result.

† It appears from Note A, infra, that vo" = —µ"o/µ'o.

or neglecting
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also to be considered the "residual error" due to the approximate
nature of the interpolation. It seems hardly practicable to deduce
an explicit remainder-term : in practice (to quote Aitken, loc. cit.
p. 162), "the convergence of the interpolation is indicated to the
eye of the computer by the convergence towards equality of [two
or more] consecutive cross-means in the same column at any stage ;
the process is stopped at the stage when such entries agree to an
assigned number of digits", not exceeding the number free from
the tabular error just discussed.

61. The calculation of the v's is illustrated, with full notes, in
the examples given below, after para. 69. The subsequent working
process is as follows. Let the first two v's be va = ξ and vb (where
a and b may be 0, 1 ; or 0,1/2 ; or 1/2, 3/2). Then ξ is a first approxi-
mation to χ and a better one will be υξ, found by the Quadratic
Cross-Means process as

the second form saves one multiplication but involves writing
down figures, which is unnecessary with the direct process (Part I,
para. 11, p. 274). If the result, taken to a few digits only, is ξI we
repeat the process with ξI in place of ξ, getting as result a better
value ξ2. This part of the process takes a very short time : Aitken
himself finds that "such trials take only a few seconds to per-
form". We then work out vξ2 fully to the required number of
places, and find in practice that this differs from ξ2 only in the
later places. The complete solution is then

where  may be found as indicated in Note Β or by the
rather longer alternative process given in Aitken's paper.

62. In Aitken's examples he uses the values v½, v3/2, v5/2 ..., while
on p. 175 he suggests using v1 ,v2 ,v3 ... ;* in both cases omitting vo.
Thus the process of finding vξ is one of extrapolation. It would
appear that greater convergence would be secured by incor-
porating vo, thus interpolating instead of extrapolating for vξ and

* I.e. when ux is close to uo. This basis considerably increases the maximum
tabular error (see Note B).
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thereby greatly reducing the coefficients of neglected differences ;*
this might be of importance if the differences of u and therefore of ν
were but slowly convergent. Indeed, if for practical reasons vo is
excluded it would seem that, even if x is near to a tabular point,
it is better to use the system v1/2,3/2 than the system v1,2 . The
principal object of using the latter system would be (para. 56) to
make | x | < ¼ because this results in more rapidly diminishing
errors in successive iterative approximations (para. 58). But in
practice the direct iterative process is not carried very far (para. 59) ;
and the rapidity of convergence in the interpolation of vξ is more
important. Thus if vo is excluded—as it generally will be in
practice because it requires rather special calculation—the best
rule seems to be to use the v½,3/2 ... system, as in Aitken's examples,
even though | x | may approach 1/2. If, however, it is desired to
bring in vo it must be calculated by the formula [para. 57 (ii)]

and it will be necessary to calculate u'o, and uo when it falls in the
middle of an interval, by well-known formulae based on the u's
and/or their differences, or by the Quadratic Means process, which
Aitken ingeniously adapts to the purpose.

63. As a first illustration (Example VI) we take the following.†

* For example, if we use the system v 1 , 2 , 3 . . . with x = .1 the coefficient of

while if we bring in vo, i.e. use the system v 0 , 1 , 2 . . . , the coefficient is only

Similarly, with the system ν the coefficient is

while if we bring in and use the system the coefficient is

† This is the example which is worked by Woolhouse's powerful method in
the writer's Note, J.I.A. Vol. XLV (1911), p. 491. In this method the values of
u', u" ... are found in terms of differences and the equation expressed as

(This is our vo)

and the first approximation to t is the appropriate (smaller) root, say ω, of

Then t is expanded in a rapidly convergent series in powers of ω, thus:

The method is systematic and very effective, but it necessitates the formation of
differences if not tabulated.
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it is brought into the Table. In the first place x is determined from
the system v1/2,3/2,5/2,7/2 and is found, correct to 7 places (the maximum
number that the data will yield with certainty), to be — .1666667.
A second calculation, based on the system v0,1/2,3/2,5/2 ,is also given
and leads to the same result, but the quicker convergence is notice-
able. This arises largely from the fact that in this example the
tabular intervals are rather wide.

64. As a second illustration (Example VII) we take Aitken's
first example, but worked on the system vo,1, 2 . . . . T h e Table
gives the data and the calculation of the v's except vo which was
specially calculated by the methods indicated in para. 62 ; the even
central differences of u will be found if required in Comrie's
Interpolation and Allied Tables, Ex. 5, p. 934. In this case ux lies
between uo and u1 in Aitken's table (loc. cit. p. 164) and is nearer
to his u1 ; we therefore shift the origin and call his ut our uo, Thus x
is negative and proves to be —.263...; this becomes .736... when
referred to Aitken's origin, but it should be noted that analytically
x is —.263... in his work also. A comparison of Ex. VII with
Aitken's working shows that the introduction of uo has secured a
definite increase of convergence in the subsequent work.

65. Example VII, involving u's taken to 10 digits and a very
accurate determination of x, shows well the great power and
rapidity of Aitken's method when the new technique has been
mastered ; it must be remembered that in such a case any method
must involve some considerable amount of calculation. But as
Aitken remarks (p. 175): "For many practical purposes, when x is
required to a few digits only, the method will give x correctly with
no more than the first few trial cross means." Comparing the
new method with the Linear Cross-Means plan (see Part I,
paras. 20-1, Exs. II and III), it is first to be noticed that the calcu-
lation of the v's (which are linear approximations to x) is of the
same form as that of the approximate values of x found in the first

Given the values of a 30 at 2%, 21/2%, …41/2%, find the rate (in
fact 31/6%) at which the value is 19.1848276. This value falls
between the 3% and 31/2 value, so the origin is taken as 31/4 %,
and the interval ½ % as unit: thus the true value of x is
(31/6 - 31/4)/.5=-.16. The data and the calculation of v1/2,v1/3 … are
shown in the annexed Table (p. 81). In this case the value of 
vo=(ux-u0)/uo has been worked out, J.I.A. Vol. XLV, p. 496, and
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stage of the linear method ; but the new method involves only half
as many such values. The number of stages required to reach a
required degree of approximation is also about halved, since the
quadratic method eliminates two orders of differences at each
stage; and the divisors entering into the calculation are simple
integers instead of long decimals. On the whole the saving of
labour may be considerable if a high degree of accuracy is desired,
involving the use of a considerable number of terms. Where,
however, this is not the case some may prefer the rather more
straightforward routine of the linear method. There is one point
in which the linear method may be considered to have a slight
advantage. The process of interpolation is stopped (see para. 60)
when the entries in any column agree to an assigned number of
digits. In the absence of a calculated remainder-term this criterion
is slightly safer with the linear method than with the quadratic;
for in the former, when the terms are properly arranged, the true
value lies between successive values in a column; while in the latter
the process is one of extrapolation and the true value lies behind
the first entry in a column.

66. Aitken's method does not require the formation or use of
differences, and this is one of its advantages when differences are
not tabulated. But when they are tabulated some workers may
prefer the more usual routine of the well-tried process of sub-
tabulation followed by linear approximation. As this is only in-
cidentally alluded to in Mathematics for Actuarial Students we
may take this opportunity to illustrate it. It is thus described in
Milne-Thomson's Calculus of Finite Differences, para. 4.6, p. 99.
"A few figures of the argument are found, and the values of the
function for this and one or two adjacent arguments [differing only
in the last place] are calculated. Using these functional values we
find some more figures of the argument [by linear interpolation],
and then [if necessary] repeat the process..." with finer intervals
until we have found as many places as we wish or the data will
yield. If the primary tabular interval be taken as unit and the
approximate value of x, say ξ, is found to within (.1)n, the second
differences of u will be reduced by subtabulation in the ratio
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1 : (1)2 n, and so will not affect an interpolated value of u by more
than (.1)2n/8 of the primary second difference, and this will be
negligible if it does not affect the last place of the u'S.

67. The best interpolation formula from which to find the
approximate value ξ is this form of Bessel's (Comrie, Barlow's
Tables, 3rd edition, p. x, reviewed T.F.A. Vol. XIII, p. 476):

79

a simple and useful formula which is accurate to about 1/125 of the
third difference. It gives

Another step would give .3333... but is unnecessary: it is quite
sufficient to use .333 and .334, for by thus dividing the primary
tabular interval by 103 we reduce second differences in the ratio
1 : (.1)6, i.e. to a negligible figure if 7 digits in χ will suffice.

68. The calculation of u.333 and u.334 can be effected by any
of the usual central-difference formulae. When two parallel inter-
polations have to be performed (and a third if it is desired to verify
the whole work by calculating ux) a convenient alternative method
is that suggested by W. F. Sheppard (Article 'Interpolation':
Encyc. Brit., 11th ed., Vol. xIv, p. 707, § 3). This method is specially

* In the case of Exs. a and 3, Chap. ν of Maths, for Actuarial Students, Part II,
the first step (after the first rough trial value) gives the excellent approximations
.7646 and .0430 respectively.

Starting with the rough value and substituting in the
denominator of the foregoing expression we get a greatly improved
value, and if necessary the process may be repeated.* In the case
of our Ex. VI, which we shall take as an illustration, we get

which is not very good because second differences are large, and
then
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convenient when ξ goes to more than the 3 decimal places for
which tables of coefficients are available by direct entry. We put
ux into the form

and then beginning with the last term to be included, in our case
A4x4, we construct in sequence

Here A1, A2 ... are the same for all values of x and are the values
of u'o, u"/2!, uo'''/3!..., formed by the usual formulae for differential
coefficients in terms of differences. A useful check, found by
putting x = 1, is that the algebraic sum of A1, A2 ... taken as far as
will affect the last recorded place of ux, is u0 . Also if (as often
happens) tu and At+Iu are of alternate signs, the sum of the
arithmetic values without sign, S | At |, is ± ?u_I .

69. The working is shown in Example VIII appended. The
correct value x=.3333333 is brought out and verified by com-
putation of ux, agreeing with the datum. This value of x is mea-
sured from an origin at the beginning of the tabular interval, and
it thus indicates the same position as the value found in para. 63,
Ex. VI, viz. —.1666667 measured from the point .5, the middle
of the interval.
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Examples VI and VII : calculation of vh

h uh

19.6004414

18.3920454

20.9302926

17.2920333

22.3964556
16.2888885

24.0158380

15.3724510

.3867873682

.4796611346

.2982961527

.5772156649

.2139106129

.6797723790

.1333735852

0.4156138

0.7927822

1.7454650
1.8927943

3.2116280

2.8959391

4.8310104

3.8123766

1.2083960

3.6382593

1.2127531

6.1075671

1.2215342

8.6433870

1.2347696

ux = 19.1848276.

•0239965396

.0688772268

.1124877551

.1664317571

.1968732949

.2689883712

.2774103226

•0906346235*

.1813649819

.09068249095

.3633050520

.09082626300

.5463986938

.09106644897

ux = .4107839078.

.15606159

.06074167

— .12922040

-.41247931

.264761287

•240457269

.167581142

.046240693

Notes

The number marked * is the value of u0', found as described in the text,
paras. 62-3.

—vh = [2nd line of pair, col. 3]÷ [2nd line of pair, col. 4] — h.

The first line of each pair in col. 4 is the sum of the pair in col. 3.
The third col. may be formed thus on the arithmometer. Set up on the upper

register the arithmetic complement of ux, with enough 9's on the left for carrying
purposes. Set up µ-h on the slide and give an addition turn, recording the result :
give a subtractive turn, restoring the complement of ux to the upper register,
and proceed similarly with the next value of µ-h down to uo. Then set up uo on
the upper register and uh, on the slide giving a subtractive turn followed by an
addition turn, i.e. reversing the order of the operations.

AJ 6

- o k
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Example VI : interpolation of vξ

and we take .1666, which gives slightly easier ½ Q.P., and work out v . 1 6 6 6 by the
ordinary Quadratic Cross-Means routine, as above.

Note Β shows that, since u is taken to 7 places and Υ=1·20, the maximum
error in vh is about 1 in the seventh place. We nevertheless take in that and an
additional place as a guard, rejecting this place at the finish and taking
x=-.1666667 with a possible error of a unit in the last place. In this case it is
evident that the error Ε of the final linear approximation (see end of Note B)
is completely negligible.

1st stage 2nd stage 3rd stage 1/2 Q. P.

. 1 5 6 6 1 5 9

. 0 6 7 4 1 6 7

- .12922040

- .41247931

.166/65375

.166/62865
.166/59118

… 6 6 7 / 6 9

… 6 6 7 / 6 5 . . 7 3

1 +

3 +
5 +

.11112222

"
"
"

[Note A, case (iii).]

or case (iv),

h

Notes

With the v1/2, v3/2 … scheme the semi-quadratic parts [col. headed ½ Q.P.] are
and the same increased by 1, 3, 5 ….

Taking v1/2=.156 as a first approximation, the next is v.156. For this the ½ Q.P.
is and we get for v.156

We next try v.167 for which the ½ Q.P. is

- v h
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Example VII : interpolation of νξ

83

h

ο
I

2

3

or case (ii),

Notes

With the vo,vI ... scheme we take the full (not semi-) quadratic parts as

and using this value, .26312 is .06922 and the next approximation is v.2631 ,viz.

and we then work out, as above, v.26308 by the ordinary quadratic-means routine.
Note Β shows that, since u is taken to 10 places and Υ = .09, the maximum

error in vh is about 1 in the 9th place. We nevertheless keep that place as a guard,
rejecting it at the finish. Investigating the error Ε of the final linear approxi-
mation by the rule given in Note A, we find m = 9, n = 6, p = 1 and r = 7, and the

error does not affect the 12th place.

- v h 1st stage 2nd stage Q.P.

.264761287
.240457269
.167581142
.046240693

.2630779180
..79801
..80837

.263078987
.263078987

-.0692110864
1 -
4 -
9 -

"
"
"

0
1
2

3

[Note A, case (i).]

Taking as a first approximation vo=264, the square
of which is .0697.., the next approximation is v.264, viz.

by the Rules in Note A.]
[Here

or

or

6 - 2
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A1 
A2 
A3 
A4 
A5 
with signs 

Notes on Interpolation, Part II 

Example VIII: data as in Ex. VI 

=.333 =.334 =.3333333 

744 744 744 

248 248 248 
-23170 -23170 -23170 
-22922 -22922 -22922 

-7630 -7656 -7641 
606532 606532 606532 
598902 598876 598891 

199434 200025 
-12668046 

199630 
-12668046 -12668046 
-12468612 -12468021 -12468416 

-4152048
196004414
191852366 191848276=ux, 
191848276 -191852366 

4090

== .3333 of the interval .001, 

x=.33313333. 

-12668046 Note. A,, A, . . . are found by the 
606532 usual central-difference formulae for 

- 23170 differential coefficients. The differ- 
744 ences of u and the actual working 

- 20 (not used) out will be found in J.I.A. Vol. XLV, 
- 12083960= u, P. 496. 

ex. signs 13298512=u-1, 

- 4164319 - 4156138
196004414 196004414

191840095

A4

A4
A3

A2

A1

uo

ux

12271
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NOTE Α.* ON THE EXPANSION OF vh

We may put vh in the form

Denote differentiation by accents. Expand uh and µ_h by Maclaurin's
Theorem, and divide numerator and denominator by µ'o. Then, putting

from which we get by ordinary division

which may be written briefly as

where A2, A4, A6 ... involve χ through

The coefficients of h8 etc. are very complicated, but can be expressed
simply as determinants (see J.I.A. Vol. LI, p. 43 ; T.F.A. Vol. xIII, p. 271 ;
Todhunter's Theory of Equations, p. 291). In this form A2n is the fol-
lowing determinant of the (n + 1)th order, viz.

The convergence of the series depends largely on λ2, λ3 ... being a rapidly
diminishing sequence. This is generally the case with a well-ordered
table of ux, suitable for direct and inverse interpolation.

* The matter in Notes A and Β is not contained in Aitken's paper.

Having found Vξ, where ξ is close to x, a near value ν may be found
with close approximation by means of a linear adjustment of νξ, based on
two values va and vb, one of which should preferably be Vξ itself. Omitting
terms which are evidently insignificant, we have

Di f f .

and so on, we get
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Also

Hence

where

Ε will usually be negligible ; this point will be dealt with later.
Since, by the properties of the function, vx=x we have, when

whence

Now 2ξV < V = ½v'ξ, a small quantity, so the denominator 1 — 2ξV differs
little from unity, and the numerator vξ — ξ is very small. Thus the error in δ
due to neglecting the second term will be very nearly the error in vξ

increased by E. When ξ is very near to x, so that δ is very small, the term Ε
will be negligible; and δ, also ξ + δ = x, will be correct to as many places
as the interpolated Vξ. In any particular case the magnitude of Ε may be
estimated by means of approximate values of A, and A4,*viz.

where d is the difference between the first two values in the first column
of interpolated values pf vξ; Q1 ,Q2 and Q3 the first three Quadratic Parts,
and ½Q, etc, the corresponding Semi-Quadratic Parts. A very rough
value of A4 is sufficient. The following general rule may be formulated :
it is slightly too rigorous.

If vξ is accurate to the mth place, δ <(.1)nif νξ is accurate to the mth place,  
values of δ and x are correct to m places if 2n + p and n + r are both greater

than m. In practice this condition will generally be fulfilled.
The following are the values of 2ξV and Ε in practical cases
If the values used are vo,v1 , vz ..., as in the Paper, Ex. vII

(the and divided difference of the ν's) ; this could be found
directly, but is easily seen to have the value given, involving smaller figures.

the

(i)

(ii)
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If the values used are

(iü)

where 1/2 is the first Semi-Quadratic Part in the interpolation table.

Instances of (i), (ii), (iii), (iv) are given in the Examples. As instances
of (iii) and (iv) we take also the first example in Aitken's paper.

(iii) (iv)

The values agree with each
other, and with Aitken's
divisor.

NOTE B. ON THE TABULAR ERRORS OF THE V'S

Let the values of u be recorded to the nearest unit in the nth place :
then in terms of that unit the error in any u is between — ½ and + ½. Now

and as h is exact the error of vh will be that of the fraction. If a, b and c
are the actual errors (in units of the last place) in u-h ,uh and ux, we may
write down the following scheme :

True value Recorded value

= divided-difference
per unit interval*

* It is assumed that an additional place is taken in forming Y, so that the
rounding-off of ν is not combined and confused with a further rounding-off of Y.
The point does not arise with the alternative form

87

as in Aitken's work:

(iv)

Put C-A=X

t h e n

A A + a

B B + b

C + cC
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Thus the error in vh is

Since vh is positive and less than 1, this expression will have its greatest
numerical value when

when it becomes ± (½ +½ - ½vh/2h + ½vh/2h)/Y

This is reduced to ± ½/Υ, if c = 0, i.e. if ux is an exact value. If Y is
varying much we must take the smallest value we are dealing with.

As an illustration we take the u's of Aitken's first example (loc. cit. p.
164) cut down to 3 places and assumed to have approximately the extreme
errors stated above.

Assumed
To 3 places exact values

uo
uI
ux
vh

= .742
last place.

If ux has no error the error in v is reduced to about 5 units in the last
place.* In Aitken's second example (p. 174), 1/Y= 1/.320 = 30, reduced
to 15 if ux is exact. This agrees with his statement, p. 174, that the 7th
decimal may be almost [possibly more than] a unit in error.

Since an interpolated value of vx is a linear blend of individual v's, the
error in vx will be a similar blend of the individual errors, and in practice
this will often be less than the greatest individual error involved. But for
the purpose of measuring accuracy the worst possible combination must
be considered. If the interpolated value is based on vo,v1,v2 ... and
these have individual errors e0 , eI ,e2 , the error ex in vx may be expressed
as follows by Lagrange's Interpolation Formula:

* We cannot follow Aitken's statement (loc. cit. p. 172) that the tabular
errors of the v's do not exceed ¼ in the 9th place, that is 2½ in the 10th and last
place.

.480 .47951
.387 .38651
.411 .41149
.069/.093 .06802/.093 1/Õ=1/.093 = 10.6

= . 7 3 1 Error 11 units of the
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Now algebraically ?=1,but the C's will not all have the same sign,and
the maximum numerical error of ex will arise when every e has its maximum
numerical value with the same sign as the corresponding C. Considering
the numerator and denominator of C, from Lagrange's Formula, it is
readily seen that (the given v's being vo, v1, v2 ..., and x between 0 and 1)
the signs are as follows :

Numerator
Denominator
C and e

Upperor lower signs as the number
of terms is even or odd.

Assuming that e0 , et ... have the value 1 with the signs indicated above,
the value of ex may be found by using the Quadratic Means formula, as
for the main interpolation. The value of |x| being less than |½| we shall
give the results for | x | = .1,.2,.3,.4 and .5 (see below). The numbers
represent the maximum errors in the interpolated vx (the errors in the
given values being taken as unity) when 3 or 4 v's are used in the inter-
polation. It is seen that the tabular errors of ν are not much increased in
interpolation. This is because vo has been used and vx is close to vo: if
vo is not used, but the calculation is based on v1/2,v3/2,v5/2... as in Aitken's
paper, the process is one of extrapolation, and the maximum error in the
interpolated value may be as high as 1.4 times the maximum error in
the given v's if three are used, and 1.5 times if four are used. If vl ' v2 ,v3...
are used, the maxima are considerably greater.

To sum up: if the v's, including ux, are correct to the nearest unit in
the nth place, the maximum error in the original v's is 1/Y, and in the
interpolated v's > 1.06/Y, if the values ν ο , ν 1 ,ν 2 . . . are used as the basis;
or 1/Y and 1.5/Y if v1/2,v3/2... are used. These values are to be halved if
the value of ux (the argument of which is to be found) is exact. As Aitken
remarks, loc. cit. p. 172, " this maximal error, or even half of it, is in the
highest degree improbable in practice".

Table (basis, v0,1,2,3)

ξ

.1

.2

.3

.4

.5

3 terms

1.002
1.006
1.014

1.022
1.031

4 terms

1.003
1.011

1.024
1.040
1.055
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V

70. Suppose that we base an interpolated value of ux on the
given values uo, u1 . . .u n , arranged in that order, using any
formula involving only tabular differences, not mean differences :
thus we may use the advancing-difference formula, the receding-
difference formula, the Gauss forward or backward formula, or
any other "zig-zag" formula. All of these will give identically the
same result, and all will end with the difference Δ n u 0 . From
Sheppard's Rules (see Maths, for Act., Part II, Chap.III, para. 7 and
references there given) it is easily seen that, corresponding to the
four possible routes A, B, C, D shown in the following diagram of
the apex of the difference triangle:

there will be four forms for the last pair of terms, viz.

71. Let the coefficient of nu0 in the [ ] be represented by c,
distinguished if necessary as cA, cB, etc. Then we may allow approxi-

(A)

(B)

(C)

(D)
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mately for nu0, without using its actual coefficient, by giving to c
any convenient approximate value k (for example a fraction in
low terms). For a particular x, any value of k between 0 and 2c
will be better than the value k=0 which corresponds to the entire
omission of the Δn term. Conversely, any given k will be better
than ο for some range of x, viz.

72. In using the method the coefficient of (where α is 0
or 1) is to be multiplied into

assuming that Δnu may be regarded as practically constant. Thus
the effect may be regarded as equivalent to a shift of the line of
Δn - 1uα, upwards if k is negative, downwards if k is positive.

73. If x has a range of unity, say from t — 1/2. to t+1/2, the selected
value of k should be as near as convenient to the true value of c
at the midpoint t; e.g. cA to - (n-t - 1)/n= -1 + (t + 1)/n, cB to
t/n, cc to (t - n)/n = - 1 + t/n. If these exact values be taken the
maximum numerical error will be ±1/2n, which diminishes as n
increases.

74. The advancing difference formula. This falls in Case A, and
if as usual x falls between 0 and 1, i.e. t = 1/2, the best value of k
will be — 1 + 3/2n, which gives the following values :

n = 2 k=-.25 n = 4 k = -.62
n = 3 K = -.50 n = 5 k = -.70

so that in general, if we wish to end with an (n - 1)th difference,
the result will be considerably improved by taking k = -1/2, i.e.
replacing Δn-1u0 by

Or if a high order of differences is involved we might take k =-2/3,0
i.e. use

Case A.

Case B.

.Case C.

Case D.

or

or

or

or

1 as k is + ve or -ve.
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75.* The Gauss formulae. (For brevity we shall use G F and GB

to denote the Gauss forward-difference and backward-difference
formulae respectively.) Consider Cases Β and C of para. 70 and
assume x to lie within the range of ½ on each side of the line ½n.
Then t = ½n, and our value of k will be ½n/n = + ½ in Case Β and
(½n-n)n = -½ in Case C. Thus in Case Β we shift Δn-1u0 down-
wards by half a space, i.e. replace it by

this mean difference falling on the central line. In Case C we
shift Δn-1u1 upwards by half a space, so replacing it by the same
mean difference. Thus in each case the last two terms will be
replaced by

But since the two formulae both include the same (n - 2}th differ-
ence their sums up to that term are identically equal. Adding the
common mean-difference term just given, the total of this and all
preceding terms will be the same for Case Β and Case C and there-
fore also for the mean of the two†. But this mean represents
precisely :

(1) Stirling's formula when n is even and n - 1 odd, x falling
between ½n -½ and ½n + ½ : these are mid-interval points.

(2) Bessel's formula when n is odd and n — x even, x falling
between ½ (n - 1) and ½ (n + 1): these are tabular points.

76. Thus Stirling's and Bessel's formulae are particular cases of
what may be called (para. 78) the one-step throw-back, x being
placed in the central unit-range with the effect of giving k the most
convenient values ±½, leading to simple means of differences. It is
also clear that the benefits of Stirling's and Bessel's formulae may
be obtained without the labour of forming all the odd or even
mean differences : the same results are obtained by using G F or G B

with ordinary differences except the final mean difference. This
was pointed out and illustrated by D. C. Fraser, in his instructive

* The work in the remaining paragraphs may be read in conjunction with
D. C. Fraser's illuminating paper, J.I.A, Vol. 1.(1916), p. 15, and with the writer's
paper, T.F.A. Vol. IX (1922), p. 346.

† The difference diagram shows that if n is even both GF and GB start with
the term u½n, but if n is odd G F begins with u½(n-1) and G B with u½(n+1) .
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paper above referred to. To adapt his precept (loc. cit. p. 27),
applicable when x is in the central unit range :

The point to be remembered is that the best results are
obtained by ending on a mean odd difference in line with the
central u, or by ending on a mean even difference in line with the
centre of the middle interval : in each case this mean difference
is in line with the preceding ordinary difference. It is necessary
to add that the rules may not be applicable if the differences
of the order at which we stop show wide fluctuations. The
order of the final mean difference should be so chosen that the
first neglected term shall be small; and this largely turns on
the first omitted difference being small, since its coefficient is
made small by the adoption of the throw-back.
Thus the formation of all the odd or even mean differences

is of advantage only when Comrie's throw-back is used. It may
be mentioned that the coefficients in GF are given inter alia to 8
decimal places, for differences up to the 6th and for 3 decimal
places in x, in Chappell's Interpolation Coefficients, privately
published.

77.* The investigation of paras. 75-6 fixes the position of the
final mean difference and the preceding ordinary difference and
hence the values of u to be used ; but as seen in para. 70 there is
considerable latitude as to the particular u with which the formula
begins. In practice it is convenient to use the GF or GB formula,
modified by the substitution of a mean difference for an ordinary
difference in the last term only, according to the following rule,
which is Fraser's (loc. cit. pp. 25-7) otherwise expressed. Cf.
T.F.A. Vol. IX, p. 252, para. 12.

Fix the origin so that uo is the nearest value to ux, x thus
ranging between — ½ and + ½, If x is positive, use the modified
GF formula, and if x is negative use the modified GB formula;
in either case beginning with uo, proceeding as usual by ordinary
differences but ending with a mean difference in line with the
preceding ordinary difference.

When the final mean difference is of even order, the following
alternative (involving only one formula) may perhaps be regarded

* In framing this paragraph the writer has had much benefit from consulta-
tion with Mr Fraser.
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as simpler [see Woolhouse, J.I.A Vol. xI, p. 69 (1863), and G. King,
Life Contingencies, pp. 448-50, where an example is given] :

Fix the origin so that ux falls between u0 and u1 , x thus ranging
between 0 and 1. Use the modified G F formula, beginning with
u0, proceeding as usual by ordinary differences but ending with
a mean difference in line with the preceding ordinary difference.
Since

(x + t)(2t) = (- x + t - 1)(2t) and (x + t)(2t+l) = - ( - x + t)(2t+t),

the coefficients in the G B formula for ux are numerically the same
as those in the G F formula for ux, a relation which also follows at
once from writing the u's in reverse order (see Whittaker and
Robinson's Calculus of Observations, pp. 37-8, para. 22, or their
Interpolation, same ref.): thus Chappell's tables of coefficients can
be used in all cases. It is this relation that makes it convenient
(though not necessary), when the last difference is of odd order
and x is negative, to use the G B formula rather than the equivalent
G F formula, which is equally available.

78. The use of an approximate k is equivalent to a throw-back
of one step, from one difference to the immediately preceding
difference, instead of a Comrie throw-back of two steps, from one
odd or even difference to the preceding odd or even difference. We
have seen that Bessel's and Stirling's formulae are essentially based
on this one-step process, and that it may be capable of useful
extension to other cases. There is, however, a distinction to be
noted as regards the value of k. If C is the coefficient of Δn-1u, the
error resulting from an approximate k is (c – k) C nu. We have
found k so that, for a given range of x, the value of (c – k) and
therefore of the error may approximately vanish in the middle of
the range; whereas Comrie's κ is such that the worst value of the
deviation of (c – K)C may be numerically as small as possible.
This is the more strict criterion but for our present purpose the
difference is not of great practical importance ; for our k has small
error near the middle of the range of x where C is most sensible,
while at the extremes of that range, where k has its greatest error,
C is small and the error in k has little effect.



The One-step Throw-back 95

Editorial Note

Mr Kingsland Camp has submitted the following additional
remarks on his derivation of the throw-back coefficient outlined
in para. 51 above.

He points out that each difference in Everett's formula is used
throughout two intervals, and that if a function is not too extensive
and not recorded to too many decimal places it can be compactly
tabulated in short columns of figures whose higher differences,
say of the fourth order, might easily change rapidly. Then the
best value of the throw-back coefficient for modifying second
differences would minimise especially the errors involving the
larger of the fourth differences.

Suppose, for example, δ4u1 = rδ4u0. Then, by the reasoning out-
lined in T.A.S.A. Vol. XXIX, pp. 222-3, the error is a multiple of
δ4u0 involving r and a fifth-degree expression in x. The maximum
errors occur where the derivative vanishes. Mr Kingsland Camp
finds that, when r = 1, his value of k (11/60) gives a maximum
error of .00053δ4u0, and that the value found in para. 51 above
(31/168) gives a maximum error of – .0005δ4u0; so that the latter
is slightly superior, as was to be expected since its method of
calculation assumes equal fourth differences. On the other hand,
when r=2, the maximum errors are –.0012δ4u0 and - .0013δ4u0

respectively, so that in this case the value 11/60 for k is slightly
the better. The difference between the two values of k is, however,
so small that the choice between them is hardly likely to be a
matter of great importance.




