
Operational Risk
Bending the tail of the dragon

Jim Gustafsson
RSA Scandinavia & University of Copenhagen 

AGENDA

AGENDA

Operational Risk



AGENDA

Operational Risk

Model Assumption

AGENDA

Operational Risk

Model Assumption

Case Study

Operational Risk Universe

Crime

Employment 
Practices

External 
Requirements

External Events

Internal Changes

Systems

Business
Processing

Relationship with
Counterparties

Operational Risk 
Universe

External Fraud Internal Fraud

Diversity and 
Discrimination Employee Relations

Money Laundering Market Misconduct

Natural Disasters War and Terrorism

Internal Change Mergers, Acquisition 
and Disposals

Hardware Failures Software Failure

Transaction Capture, 
Execution and 
Maintenance

Customer 
Management

Outsourcing Contracts Vendors and Suppliers

Level 1 Level 2 Level 3



Operational Risk Universe

Crime

Employment 
Practices

External 
Requirements

External Events

Internal Changes

Systems

Business
Processing

Relationship with
Counterparties

Operational Risk 
Universe

External Fraud Internal Fraud

Diversity and 
Discrimination Employee Relations

Money Laundering Market Misconduct

Natural Disasters War and Terrorism

Internal Change Mergers, Acquisition 
and Disposals

Hardware Failures Software Failure

Transaction Capture, 
Execution and 
Maintenance

Customer 
Management

Outsourcing Contracts Vendors and Suppliers

Level 1 Level 2 Level 3

Internal Fraud  
Barings Bank - $1 billion -

fraudulent trading.

Internal Fraud  
Barings Bank - $1 billion -

fraudulent trading.

Operational Risk Universe

Crime

Employment 
Practices

External 
Requirements

External Events

Internal Changes

Systems

Business
Processing

Relationship with
Counterparties

Operational Risk 
Universe

External Fraud Internal Fraud

Diversity and 
Discrimination Employee Relations

Money Laundering Market Misconduct

Natural Disasters War and Terrorism

Internal Change Mergers, Acquisition 
and Disposals

Hardware Failures Software Failure

Transaction Capture, 
Execution and 
Maintenance

Customer 
Management

Outsourcing Contracts Vendors and Suppliers

Level 1 Level 2 Level 3

Employment Practices and 
Workplace Safety 

Merrill Lynch - $250 million - legal 
settlement regarding gender 

discrimination.

Employment Practices and 
Workplace Safety 

Merrill Lynch - $250 million - legal 
settlement regarding gender 

discrimination.

Operational Risk Universe

Crime

Employment 
Practices

External 
Requirements

External Events

Internal Changes

Systems

Business
Processing

Relationship with
Counterparties

Operational Risk 
Universe

External Fraud Internal Fraud

Diversity and 
Discrimination Employee Relations

Money Laundering Market Misconduct

Natural Disasters War and Terrorism

Internal Change Mergers, Acquisition 
and Disposals

Hardware Failures Software Failure

Transaction Capture, 
Execution and 
Maintenance

Customer 
Management

Outsourcing Contracts Vendors and Suppliers

Level 1 Level 2 Level 3

Business Disruption and System 
Failures

Solomon Brothers - $303 million -
change in computer technology resulted 

in “unreconciled balances”.

Business Disruption and System 
Failures

Solomon Brothers - $303 million -
change in computer technology resulted 

in “unreconciled balances”.



Operational Risk Universe

Crime

Employment 
Practices

External 
Requirements

External Events

Internal Change
Changes

Systems

Business
Processing

Relationship with
Counterparties

Operational Risk 
Universe

External Fraud Internal Fraud

Diversity and 
Discrimination Employee Relations

Money Laundering Market Misconduct

Natural Disasters War and Terrorism

Internal Change Mergers, Acquisition 
and Disposals

Hardware Failures Software Failure

Transaction Capture, 
Execution and 
Maintenance

Customer 
Management

Outsourcing Contracts Vendors and Suppliers

Level 1 Level 2 Level 3

More than 100 losses exceeding 
$100 Million over the last decade in 

the financial industry

More than 100 losses exceeding 
$100 Million over the last decade in 

the financial industry

Operational Risk Loss Characteristic

High frequency low Impact operational risk events

Low frequency high impact operational risk events

Operational Risk Quantification

Loss Distribution Approach (LDA)

Frequency 
Distribution

Severity 
Distribution

Monte Carlo
Simulation



Questions we hope to answer…

1. How much is the capital calculation affected by the choice of model for 
operational risk assessment? 

2. Is it necessary to make use of more sophisticated models? 

Data Availability 

Internal data not collected.

Insufficient internal data.

Insufficient internal data / external data.

Internal data / external data.

Internal data / consortium data / 
publicly available data.

Scenario Analysis Model

Expert opinions on annual frequency and on percentile values of the severity.

Distribution assumption for the severity and frequency distribution.

Find the inverse function of the distribution.

Solve system of equations.

Weibull distribution
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Parametric Model

Parametric fit based on internal data / external data.

Distribution assumption for the severity and frequency distribution.

Maximum likelihood estimation.

For example, the lognormal distribution.
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Underreporting Model
Underreporting means that not all losses in the company are reported.

Occurred losses                   ~g501)( ≤≤iiX
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Underreporting Model
An underreporting function encodes the likelihood that a loss of particular size is reported.
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Semiparametric Model
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Semiparametric Model
When data are limited, the model is close to a parametric model.

As the number of losses increases, the model becomes more non-parametric.
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Include prior knowledge from external data.

Correct the external global start with internal observed data.
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Mixing Model
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Questions we hope to answer…

1. How much is the capital calculation affected by the choice of model for 
operational risk assessment? 

2. Is it necessary to make use of more sophisticated models? 

Very much! The model choice depends on the information available.

‘All models are wrong, but some models are useful’
- Box (1979).

Thanks for your attention. 

Questions?
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