
THE OPTIMALITY OF THE NET SINGLE PREMIUM 

IN LIFE INSURANCE 

BY COLIN M. RAMSAY PH.D., A.S.A.* 

(of the Department of Actuarial Science in the University of Nebraska—Lincoln) 

INTRODUCTION 

VADIVELOO et al (1932) introduced a criterion for choosing, among the 
various net risk premium payment plans, the so-called optimum one. They 
considered a life insurance situation where benefits were payable at the end of the 
year of death. Of course. premiums cease after death! This optimum criterion was 
the minimization of the discounted net profit variance. Their model can be 
mathematically described as follows. Consider an insured life aged exactly x 
having a death benefit with present value, if death occurs at time t, denoted by 
B(t). If the present value of the total premiums paid up to time t is R(t) and the 
random variable T denotes the time of the death of x, then the profit at death has 
present value Z(T) where 

Z(T)=R(T)–B(T). 

The optimum net premium payment plan, R*(t), is the one that minimizes 
Var[Z(T)] subject to E[Z(T)] = 0. 

Two cases were considered: 
(1) B(t) as a non-increasing, deterministic function of time. It was proved that 

the optimum net premium plan was a single premium, paid at t = 0, of amount 

E[B(T)]. 
(2) B(t) as a non-decreasing function of time. This is typical for annuity-type 

benefits. The optimum net premium payment plan was to let R(t) = B(t) for all 
t 0, a savings account in other words. 

The model used by Vadiveloo et al was quite restrictive in the sense that they 
considered both non-stochastic benefits and non-stochastic interest rates. In 
modern insurance product design, there is a move to allow for stochastic 
variations in the value of the benefit to be paid. An increasingly popular practice 
is to ‘index-link’ or ‘unit-link’ the maturity value of the insurance benefit to the 
performance of some stochastic index or unit such as the rate of inflation, the 
Consumer Price Index, the yield rate of a group of stocks, etc. See Wilkie (1981) 
for the treatment of linked financial contracts. However, the vast majority of 
insurance contracts are still written using non-stochastic interest and benefit 
assumptions. 

* The essence of this research was completed during the summer of 1985 while the author was 
visiting The City University, London. 
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In the sequel a life insurance situation is considered where, without any loss of 
generality, the insurance death benefits are assumed to be paid immediately upon 
death. The size of these benefits is considered stochastic and can depend on the 
time of death, the evolution of some ‘index’ over the life of the contract, and/or 
other factors such as interest rate and inflation rate fluctuations. It is proved that, 
under certain conditions, the net single premium remains optimal (using the 
minimum variance of the discounted profit at death criterion), and this optimal 
premium produces the smallest expected underwriting gain at death. In practice 
these results will serve to highlight the conflict between the need for greater 
stability (as represented by the minimization of the discounted profit variance) 
and the desire for larger under-writing profits at death. Thus, for example, an 
insurance company interested in greater stability will prefer the net single 
premium plan or a plan where most of the premium payment is completed during 
the early life of the policy. 

2. THE MODEL 

Consider an insurance company which is about to insure a group of N similar 
lives all aged exactly x, each effecting the same type of insurance policy. The 
following seven assumptions will be made about the nature of the insurance 
environment: 

(1) If Ti denotes the time of death of the ith life, i= 1, 2, . . . , N, then the Ti’s are 
independent and identically distributed (i.i.d.) random variables with known 
distribution function F(t), The Ti's are independent of market 
conditions. 

(2) Without loss of generality, the benefits are paid immediately upon the death 
of each insured life. The size of the death benefit paid, if death occurs at age x + t, 
is Y(t). Y(t) is considered to be a non-negative stochastic process. For 
‘traditional’ life insurance products such as whole life or ordinary term insurance 
policies, Y(t) is usually deterministic. However, over the past decade or so, 
insurance companies have been selling ‘linked’ policies. Such policies have no set 
(or fixed) insurance benefits, instead these benefits depend on the performance of 
certain ‘units’ or ‘indices’ which fluctuate in a random manner and thus yield 
random returns. The resulting Y(t) is therefore a stochastic process. 

(3) The rate of interest used to calculate the premium is a non-negative 
stochastic process. Let V(t) be the discounted value of 1 to be paid at the end oft 
years, then V(t) is a decreasing stochastic process. In most life insurance 
premium calculations this rate of interest is a deterministic function of time. 
However, since we assumed Y(t) is stochastic, it seems natural to extend this 
assumption to V(t). 

(4) Premiums are non-negative and are not paid after death. Let P(t) denote 
the total monetary premiums paid in [0, t) i.e., excluding any interest earned. P(t) 
will be called a premium payment plan if it is deterministic and is completely 
specified, a priori, for all t 0. The present value of the aggregate premiums paid 
up to time t is a stochastic process and will be denoted by R(t), i.e. 
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(2.1) 

Both P(t) and R(t) are of course non-negative and non-decreasing. 
(5) The present value of the death benefit Y(t) is denoted by B(t) where 

(2.2) 

B(t) is considered to be a non-negative and non-increasing stochastic process. 
The assumption that B(t) is non-increasing is not a restrictive one. In fact a large 
class of insurance policies have death benefits which adhere to this condition. 
Among them are policies where (a) the sum assured is fixed or decreasing over 
time, and (b) the death benefit increases at a fixed or variable rate. For policies in 
(b), it is standard actuarial practice to discount such benefits, for the purpose of 
obtaining the present value, by assuming the discounting rate of interest exceeds 
the rate of increase of the death benefits. 

(6) The variance of B(Ti) does not depend on P(Ti). This assumption is 
necessary for the purpose of separating the variances of B(Ti) and R(Ti), and it 
will simplify the subsequent analysis. Policies which include a return of premiums 
at death will violate this assumption. 

(7) All stochastic processes have finite first and second moments with respect to 
t as well as Ti. 

Overall these assumptions are not too restrictive in practice and are valid for a 
large class of insurance plans. However, in some insurance schemes the benefits 
are paid not only at death, but are paid if the insured life survives the duration of 
the policy (e.g., an endowment assurance). To include these types of insurance 
policies, we will assume throughout the rest of this paper that, if there exists a 
non-random point n beyond which the possibility of a benefit being paid is zero 
(i.e., B(t)=0 for t > n), then premiums are not paid beyond this point (i.e., 
dP(t) = 0 for t > n). Hence Ti can be viewed as the time at which a benefit is paid to 
the ith policy (with the appropriate change in its distribution function). For 
example, if there is an n year endowment insurance, the new distribution function 
of Ti is Fn(t), given by 

This adjustment to the representation of B(t) and P(t) for values oft beyond n 
will ensure that the random variables Tare not defective, i.e., 

Finally, having placed constraints on B(t) and P(t), we now consider a 
criterion for choosing the optimal premium payment plan. Let Φ be the class of 
all functions P(t) satisfying E[Z(Ti)] = 0, where 

(2.3) 
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Formally, Φ is defined as 
N and P(t) is a non-decreasing, non- 

negative, deterministic function of t} 
Any P(t) ε Φ is called a net premium payment plan. Note that the expectation of 
Z(Ti) is taken with respect to both Ti and the various possible realizations of the 
stochastic process Z(t), i.e., 

(2.4) 

A net premium payment plan P*(t) is said to be optimal if and only if P*(t) ε Φ 
and P*(t) minimizes the variance of 

Quantities associated with this optimum plan will have an asterisk (*) appended 
to them. Since the Ti's are i.i.d., P*(t) will be optimal if and only if, for i = 1, 2, 
. . , N, 

(2.5) 

In view of this, the subscript on T will be dropped in the subsequent analysis 
when there is little likelihood that confusion will be caused. 

3. THE OPTIMUM PREMIUM 

In their paper, Vadiveloo et al considered only the cases where B(t) and R(t) 
are deterministic functions. Using the model described in Section 2 will result in 
our considering a larger class of insurance policy types. However, the crux of the 
proof used to establish the optimality of the net single premium still remains the 
same, i.e., that Cov[B(T), R(T)] is negative. Vadiveloo et al proved that 
Cov[B(T), R(T)] is negative if B(t) and R(t) are non-increasing and non- 
decreasing functions respectively. Is this covariance negative for B(T) and R(T) 
described in Section 2? To answer this question the nature of the covariance of 
B(T) and R(T) must be more closely investigated. 

In order to find the P*(t) ε Φ which minimizes Var[Z(T)], we must first expand 
Var[Z(T)] in terms of Var[B(T)], Var[R(T)] and Cov[B(T), R(T)]. TO this end, 
let A be the net single premium for the insurance B(T), i.e., for all P(t) ε Φ , set 

(3.1) 
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This leads to 
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Var[Z(T)] = E[(R(T)–A + A–B(T))²] 

= Var[R(T)] + Var[B(T)]–2Cov[B(T), R(T)]. (3.2) 

But by assumption (6), P(T) does not affect Var[B(T)], therefore P*(t) must 
minimize Var[R(T)] – 2Cov[B(T), R(T)]. This covariance can be written as 

Cov[B(T), R(T)] = E[(B(T)–A) (R(T)–A)] 

(3.3) 

Clearly, under the condition of a negative covariance in (3.3), Var[Z(T)] is 
minimized when R*(t) = A for all t 0 because both Var[Z*(T)] and Cov[B(T), 
R*(T)] are zero. This gives P*(t) = A for all t 0 and 

Var[Z*(T)] = Var[B(T)]. 

If, however, this covariance is non-negative, it might be possible that Var[Z(T)] 
can be made less than Var[B(T)] by choosing a net premium payment plan 
different from the net single premium. Thus it is important that Cov[B(T), R(T)] 
be negative or zero in order to establish the optimality of the net single premium. 
Since B(t) and R(t) move in opposite directions as t increases, then one will 
expect a negative co-variance to exist between them. Clearly if, for each t 0, B(t) 
and R(t) are deterministic or are uncorrelated, the method of Vadiveloo et al’s 
Proposition A1 proves this covariance is non-negative. Thus, intuitively, one 
would expect a negative co-variance if both B(t) and R(t) are stochastic and there 
is not much random fluctuation between them at each value oft. In other words, 
the covariance will tend to be negative if market conditions (e.g. interest rate and 
stock price levels) do not fluctuate too wildly. See the Appendix for a ‘probability 
theoretic’ justification of this assertion. 

So far we have considered only the class of net premiums. In practice, 
companies have to obtain gross premiums because of expense and profit 
considerations. The natural question to ask is whether or not the conditions 
described above will ensure that the gross single premium remains optimal. To 
investigate this further, assume the expenses incurred in (t, t + dt) are expressed as 
percentages of the gross premium and death benefit, the percentages being 
denoted by ρ (t) and β (t) respectively. H(t) is the discounted value of all other 
expenses paid in (0, t). 

Let G(t) be the total monetary amount of gross premiums paid up to time t and 
R1(t) be discounted value of this less expenses related to premiums, i.e., 

If death occurs at time t, the present value of expenses not related to premiums is 
X(t) where 
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If a profit margin with present value L is included, the gross premium G(t) must 
be chosen in such a manner that it satisfies the following equation: 

E[R1(T)] = L + E[X(T) + B(T)]. 

If X(t) + B(t) is a non-increasing stochastic process, the single premium equal 
G*(t) is optimal, where 

It must be pointed out that p(t) will depend on the type of gross premium 
payment plan. For example, if premiums are level and are paid at the start of each 
year for, say, 20 years, it usually is the case that ρ (0) 1. However, in the case of 
single premium this cannot be the case. Next we consider a property of the net 
single premium not considered by Vadiveloo et al, i.e., the expected underwriting 
gain at death. 

4. THE UNDERWRITING GAIN 

The underwriting gain at death, as a random variable, was introduced in the 
context of a paradox by Jewell (1980). It was shown by Chan and Shiu (1982) to 
have a positive expectation if interest rates are positive and constant, and 
premiums are of the level annual variety. The underwriting gain at death, U(T), 
is the accumulated value of the profit on the net premium immediately after the 
payment of the death claim. Let S(t) be the accumulated value of 1 to the end oft 
years, i.e., 

then 

S(t) = 1/V(t), 

U(T) = S(T)Z(T), (4.1) 

where T is the random time of death. It will be proved that under certain 
conditions, the net single premium P*(t) = A produces a non-negative expected 
underwriting gain at death and that this underwriting gain is the lowest among all 
net premium payment plans. 

If U*(T) is the underwriting gain at death under the optimum plan P*(t), it 
satisfies 

E[U*(T)] = E[S(T) Z*(T)] 

= E[S(T) (A – B(T))] 
= –Cov[B(T), S(T)]. 

However, since B(t) and S(t) move in opposite directions as t increases, the 
arguments used in the Appendix suggest that Cov[B(T), S(T)] will be negative if 
the market conditions do not fluctuate too much. This covariance is obviously 
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negative if B(t) and S(t) are non-random for each t 0. Therefore under 
conditions of low ‘market’ volatility. 

(4.2) 

Consider any other premium payment plan P(t) εΦ and let U(T) be its 
resulting underwriting gain at death. Clearly 

U(T)–U*(T) = S(T)(R(T)–A) 

and 

E[U(T)–U*(T)] = Cov[S(T), R(T)] 

Since both S(t) and R(t) are increasing functions of t, one would expect their 
covariance to be positive if there is little market volatility. This leads to 

(4.3) 
Hence the expected underwriting gain at death is minimized under the net single 
premium plan (under stable market conditions). 

5. COMMENTS 

The object of this research has been to extend the results of Vadiveloo et al to 
cases where factors are stochastic. In so doing, it was demonstrated that their 
results can be extended successfully. In practice this means that the optimal net 
single premium puts a high probability on the discounted profit per life being 
close to zero. Due to the law of large numbers, this will be especially true for a 
large block of insured lives. These authors also suggested that if paying a single 
premium is unreasonable, then in order to maintain a smaller profit variance, it is 
desirable to collect most of the premium payments as early as possible in the life 
of the policy (see their Theorem 1). Even though this result was not proved in this 
paper, it seems clear that a similar result can be established if market conditions 
are not too erratic. Thus the insurance company selling ‘linked’ insurance 
contracts will, in the interest of variance reduction. design contracts with most of 
the premiums collected early in the life of the policy. However. in order to market 
this contract, the company will have to pay close attention to the preferences of 
the prospective policy holders. 

The perspective thus far has been from the point of view of the insurer. 
However, to the insured life. the problem of choosing an optimum premium 
payment plan requires optimum criteria that are different from those we have 
considered so far. The insured life is usually- interested. not in minimizing the 
profit variance, but in the types of premium payment plans and their respective 
periodic costs. Several authors have studied the effects of the various methods of 
paying premiums. Meyer and Power (1973). using the concept of opportunity 
cost, developed a model for the optimal number of payments the insured should 
choose (for non-life insurance). Their method can be used in life insurance 
situations with appropriate modifications. Polk (1974) introduced the flexible 
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premium life insurance concept which permits the utmost freedom for policy- 
holders to choose premium and benefit scales which best suit their needs. Since 
mortality tables are constructed with integral ages, the method of calculating the 
non-annual premiums is important. Skipper (1980) compared the relative cost 
rankings between premiums paid annually and those paid more frequently, and 
showed that the mode of premium payment has a substantial effect on the 
rankings of at least some insurers. Overall, it is clear that the interests of the 
insurer and the insured are, in large measure, conflicting. In general, the choice of 
an optimality criterion for the insured will be a difficult task and will depend 
almost totally on the particular individual’s utility with respect to the various 
premium plans. 

Finally, if one considers a casualty insurance portfolio then no random 
variable similar to T exists. Therefore the optimality criteria considered in this 
paper cannot be used. However, Ramsay (1986) considered an optimality 
criterion based on deviations of the risk reserve from its expected path. Since the 
process does not terminate at a random time, the net single premium is not 
optimal. 
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Let us now take a more detailed look at the form of Cov[B(T), R(T)]. This will 
require a slight indulgence in probability theoretic concepts. An elementary 
reference is the text by Grimmett and Stirzaker (1982). Formally we denote the 
probability space on which both B(t) and R(t) are defined, by For any 
fixed w ε Ω there is a corresponding collection [B(t;w): t 0] and [R(t;w): t 0] 
called the realization or sample path of B and R respectively at w. For our 
purposes Ω can be regarded as the totality of all possible market conditions that 
can affect either Y(t) and/or V(t) (and as a result B(t) and/or R(t)) for all t 0. 
Thus each w εΩ represents one possible evolution of the market and dµ 
represents the probability of an W. τ represents the sigma-algebra generated by 
the subsets of Ω . It is reasonable to assume that the times of death and the market 
conditions are mutually independent. 

The covariance can now be written as 

Cov[B(T), R(T)] = E[E[(B(t;w) – A)(R(t;w) – A)]|w] 

(A.1) 

Once w ε Ω is specified, B(t;w) and R(t;w) are non-random functions oft. Let 
b(w) and r(w) be conditional expectations, i.e., 

and 

The equation (A.1) can now be rewritten as 

Cov[B(T), R(T)] = 

(A.2) 

From assumption (5), B(t) is a non-increasing function of t, so B(t;w) is a 
non-increasing deterministic function of t for each w ε Ω. Similarly R(t;w) is a 
non-decreasing deterministic function of t for any given w. Using a method 
similar to Vadiveloo et al Proposition A1 yields, for each w, 

Thus, the first expression on the right hand side of (A.2) is negative. 
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The determination of the sign and the size of the second expression on the right 
hand side of (A.2) is by no means a simple matter. In fact, except for extremely 
simple or artificial examples, it will be almost impossible to evaluate this 
expression. The major difficulties will lie in the determination of the elements in Ω 
and the probability measure µ. However we know that if market conditions are 
completely predictable (i.e., V(t) and Y(t) are completely specified and non- 
random) then h(w) and r(w) will be identical to A (since Ω will be a singleton set), 
and 

So if Ω is such that the market conditions do not deviate too widely from its 
expected path, the above integral should be small in absolute value compared to 
the absolute value of the first term on the right hand side of (A.2). As a 
consequence one would expect Cov[B(T), R(T)] to be negative. Once this 
covariance is negative, the net single premium will be the optimal premium. 
Clearly each of the following conditions on B(t;w) and R(t;w) is sufficient to 
ensure the expression (A. 1) is non-positive: For each t 0 

(i) B(t;w) is non-random: 
(ii) R(t;w) is non-random: 

(iii) Cov[B(t;w), R(t;w)] is non-positive. 




