Optimisation in a capital scarce world Edinburgh, October 2009

The Actuarial Profession making financial sense of the future

Gareth Haslip Colin Kerley

Outline

- Plan to talk about ways to investigate the structure of an "optimal" portfolio
- Start with risk / return definitions
- Look at investment portfolios
- Extend the idea to portfolios of liabilities
- And possibly mix the two

Introduction

- The problem : we want to maximise the return from our investment of risk capital subject to a defined level of risk
- We'd like to talk about some possible approaches to this problem

Applications

- Selecting the optimal investment strategy for a given risk budget
- Optimising reinsurance portfolios or insurance linked security fund allocation
- Minimising regulatory capital requirements for a target required level of asset return

Definitions : Risk and Return

Return :

- Assets : income + capital gains or losses
- Liabilities : premium expenses losses

Risk :

- Many definitions of risk
- StDev / PML / VaR / TVaR
- We will focus on TVaR as it has some attractive properties as a risk measure

Why TVaR ?

- Let f(x) be the distribution of possible returns from the proposed portfolio
 - VaR looks at a single point on the distribution, say the 99%
 - TVaR is the average of all losses for f(x) given they are greater than a certain point
- Coherent risk measure
 - Lots of good properties including sub-additivity
- CoTVaR gradient
 - For hill climbers can calculate "risk gradient" from co-TVaR

General Problem

- Optimisation problem
- Maximise return function subject to constraints
 - or minimise risk subject to constraints
- Lots of algorithms to do optimisation
 - Analytic solution
 - Random search
 - Hill Climbers
 - Linear programming
 - Genetic Algorithm

The Actuarial Profession making financial sense of the future

Simple Example : Investments

Simple example : investments

- Case study from a paper
- Consider 3 asset classes : S&P 500, US Gov Bonds, US Small Cap
- Over a one month time horizon we want to choose the amount to invest in each class to minimise the risk – given a certain minimum target return
- Underlying assumptions
 - Returns normally distributed
 - Gaussian copula defines the dependencies

Simple example : investments

- Definitions
 - r1,r2,r3 returns from each asset class
 - w1,w2,w3 chosen weights for our portfolio
 - Portfolio return R = w1*r1 + w2*r2 + w3*r3
- For a given return we want to find weights to minimise the risk of the portfolio subject to some constraints
 - w1+w2+w3=1
 - for this problem all weight must be > 0
- We will assume we can generate return distributions via montecarlo simulation so have access to vectors r(i) with n samples

The Actuarial Profession

Random Search

- Start with the simplest numeric algorithm : random weight selection
 - "brute force and ignorance"
- Method
 - Choose random weights subject to constraints
 - Generate the return distribution for the portfolio
 - If the return exceeds the target threshold then look at the risk
 - If the risk is the smallest so far, remember the results
 - Repeat until bored

Results

Linear programming

- Constrained maximisation where risk is measured using TVaR can be expressed as a linear programming problem
- Using Monte Carlo simulation output with n samples the problem is translated into a linear system with n + q + 1 variables
 - (q = # asset classes)
 - E.g. for 50K simulations we have to maximise a linear constrained system with over 50K variables...

Linear programming

- ...luckily modern computing power can handle large linear systems with ease
 - Optimal solution can be found within minutes and is guaranteed to be the true global maxima
 - Additional constraints can easily be added with virtually no additional overhead, e.g.
 - Restrictions on the movement in book value
 - Min / max allocations to each asset class
 - Rating agency capital requirement

Genetic Algorithms

- Have been used successfully for a wide variety of optimisation problems
- Basic recipe
 - Create a population of individuals all candidates for a solution
 - Define a "gene" that specifies how fit an individual is for solving the solution
 - Repeatedly create new generations of individuals where those with the highest fitness are more likely to have their genes passed on to the next generation
 - Each generation genes are altered via mutation & crossover

The Actuarial Profession making financial sense of the future

Some initial results

						Weights	
TVaR%	Method	VaR	TVaR	Time (mn)	S&P 500	Bonds	Small Cap
1%	Random	13.26%	15.279%	1.89	0.3891	0.1374	0.4735
1%	Linear	13.23%	15.264%	0.62	0.3927	0.1367	0.4706
1%	GA	13.24%	15.268%	1.84	0.3359	0.1555	0.5085
5%	Random	9.06%	11.614%	1.89	0.4256	0.1231	0.4513
5%	Linear	9.06%	11.599%	0.67	0.4364	0.1199	0.4437
5%	GA	9.06%	11.603%	1.83	0.4013	0.1333	0.4654
10%	Random	6.77%	9.706%	1.89	0.4221	0.1251	0.4528
10%	Linear	6.76%	9.701%	0.68	0.4529	0.1136	0.4335
10%	GA	6.76%	9.704%	1.82	0.4312	0.1254	0.4434

Used the three methods to solve the problem

- We wanted to find the portfolio with the minimum risk subject to a minimum return threshold
- Both random & GA can be run forever but we set them to run until they came to a solution within x% of the "true" solution

Some initial results (2)

						Weights	
TVaR%	Method	VaR	TVaR	Time (mn)	S&P 500	Bonds	Small Cap
1%	Random	13.19%	15.301%	4.90	0.4444	0.1177	0.4379
1%	Linear	13.18%	15.298%	9.50	0.4447	0.1177	0.4376
1%	GA	13.18%	15.302%	4.63	0.4183	0.1409	0.4408
5%	Random	11.57%	11.571%	4.91	0.4746	0.1059	0.4195
5%	Linear	8.97%	11.564%	9.50	0.4418	0.1188	0.4394
5%	GA	8.98%	11.566%	4.63	0.4203	0.1270	0.4527
10%	Random	6.80%	9.685%	4.94	0.4372	0.1204	0.4423
10%	Linear	6.80%	9.684%	9.50	0.4492	0.1160	0.4349
10%	GA	6.80%	9.685%	4.62	0.4311	0.1229	0.4460

Models run against 50k simulations of output

Optimisation Speed

Random and GA scale linearly with volume of simulation data

Linear scales o(n²) – stratified sampling is recommended

Observations

- Linear method will find an optimal solution
- Random and GA can come arbitrarily close to a good solution but time is a problem
- Disappointing the GA does not perform much better

Investments – six assets

- We ran the same optimisation exercise with six assets
- Again, the linear approach found the best solution
- However clear difference between the Random and GA
 - Random finding it hard to get close to a good answer

Good algorithm

- Linear programming works well for these sort of problems
- Some issues though
 - The constraints need to be linear
 - Careful in definition of TVaR if the underlying risk distributions are not continuous
 - Algorithm scales o(n²) with respect to sample size

Problem 2 :Insurance world

Insurance world

- No linearity in risk
 - Risk not 100% correlated
 - The payoff distribution from a class of business is a function of how much you have invested and where
- Complex payoff functions
 - Excess of loss
 - Multi year structured deals
- Dependencies odd
 - Primary vs xl
 - Cat models

The Actuarial Profession making financial sense of the future

Possible solutions

- Linear approach works well
 - Only restriction is linear constraints but probably not a major problem for many standard applications
- Use GA
 - Slower
 - Allows non-linear constraints
 - Not restricted to TVaR as risk measure
- Random should be a last resort

A Reinsurance case study

- We have a pool of risk capital and six property cat reinsurance treaties to participate in
- We can participate up to 100% in each risk
- Must find a portfolio mix that maximises our expected profit given our risk capital limit
 - All the treaties are exposed to US Hurricane risk
 - Mixture of ILW's and Cat XL
 - RI Premiums consistent with the market

Mixture of binary / high xs payoff – not very smooth

The Actuarial Profession

Cat Portfolio returns

The Actuarial Profession making financial sense of the future

Random - scatterplot

Results

- Target max return on portfolio subject to TVaR < 100 (risk capital target)
- Time ran for Random set to be the same as the GA
- GA run time set so answer about 1% near optimal value

TVaR%	Method	TVaR	Return	Time (mn)	w1	w2	w3	w4	w5	w6
0.5%	Random	98.51	9.63	20.10	43.4%	2.3%	96.0%	97.9%	61.5%	6.4%
0.5%	Linear	100.00	10.53	11.10	51.4%	0.0%	100.0%	100.0%	100.0%	0.0%
0.5%	GA	99.64	10.12	21.51	45.1%	2.2%	79.9%	98.6%	97.3%	0.3%
1.0%	Random	92.37	9.63	20.20	43.4%	2.3%	96.0%	97.9%	61.5%	6.4%
1.0%	Linear	100.00	10.53	11.12	51.4%	0.0%	100.0%	100.0%	100.0%	0.0%
1.0%	GA	99.54	10.38	21.48	45.7%	0.4%	99.2%	98.6%	97.3%	8.7%
2.5%	Random	99.01	11.28	20.10	43.0%	3.2%	94.2%	99.7%	66.6%	59.5%
2.5%	Linear	100.00	11.73	11.14	36.0%	20.0%	100.0%	100.0%	100.0%	0.0%
2.5%	GA	99.86	11.70	21.20	31.9%	6.1%	100.0%	99.1%	100.0%	60.1%

Convergence

- We can see the GA outperforming the Random approach very clearly now
- Random does not get close to an "optimal" solution

Portfolio Composition 100.0% 90.0% 80.0% 70.0% 60.0% TVaR 0.5% TVaR 1.0% 100.0% 90.0% 90.0% 80.0% 70.0% 60.0% **Treaty Participation Treaty Participation** 50.0% 50.0% 40.0% 30.0% 50.0% 50.0% 40.0% 30.0% 20.0% 20.0% 10.0% 10.0% 0.0% 0.0% w1 w2 w3 w4 w5 w6 w**1** w2 w3 w4 w5 w6 TVaR 2.5% 100.0% 90.0% 80.0% 70.0% 60.0% 50.0% 40.0% 30.0% 20.0% Portfolio mix relatively stable with change of risk measure **Treaty Participation** • Optimisation - algorithms often find problems in the question Need human judgement – we can keep 10.0% 0.0% our jobs w1 w2 w3 w4 w5 w6

Problem 3 : Asset Liability Management

Understanding Market Risk

- Market risk is often misunderstood for insurers
- It is **not** about how the value of assets change due to movements in the financial markets
 - It is about how the surplus (net asset value) changes in response to market movements
- Worse case scenario is where market movements can decrease assets and increase liabilities simultaneously
- Managing market risk is about managing the sensitivity of the surplus process to movements in market variables

Asset Liability Optimisation

- Aim of asset allocation for insurers is to maximise expected outperformance of assets over liabilities
 - Subject to constraints on the potential downward movement in the surplus process
- We can use the same optimisation framework to solve the asset allocation problem in this setting
- Procedure is very similar to before except that an additional Monte Carlo output vector is required
 - The % change in the discounted value of the liabilities at the end of the time period under consideration (e.g. end of year for Solvency II / SST)
 - Important that the interest rate scenarios applied to generate asset returns are ordered consistently with the liability simulation
 - Only works for non-life insurance where liabilities are independent of asset allocation

Asset Liability Optimisation

Optimisation method is applied to surplus process:

S = Initial Assets * (w1*r1 + w2*r2 + w3*r3) - 100% x Initial Liability x r_I

- Idea is that there is a fixed -100% holding in the liabilities and then the optimisation algorithm is applied as before
- This allows asset allocation strategies to be developed in the context of Solvency 2 and the Swiss Solvency Test definitions of market risk
- For example, develop an asset strategy that minimises the regulatory market risk capital requirement subject to achieving a target level of return
 - Allows insurers to control market risk budget and concentrate on applying capital to insurance risk

35

Conclusions

- Linear Programming approach seems to work best for these optimisation problems
 - But only works for TVaR as a risk measure, not VaR
 - And again, constraints need to be linear
- Powerful tool for risk management...for both assets and liabilities

The Actuarial Profession

making financial sense of the future

The Actuarial Profession making financial sense of the future