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1. Introduction 
 
Many consider efficiency as a Boolean property – a market is either efficient or it is 
not. A more detailed investigation reveals that efficiency is a matter of degree. 
Investors can either make small expected profits from taking risks, or they can make 
large expected profits. 
 
In this note we express no view on whether markets are efficient or not. Instead, we 
try to measure objectively whether a given stochastic model describes an efficient 
market. We deve lop quantitative measures of market efficiency which can be used to 
classify models according to the degree of market inefficiency they imply. Model 
builders may want to use our efficiency measures in order to construct models which 
deliberately reflect either efficient or inefficient markets. 
 
2. Utility – Based Efficiency Measures 
 
Sharpe Ratios 
 
The simplest measure of efficiency is the optimised Sharpe ratio. This can be 
calculated over a finite time horizon, in a market with finitely many assets. 
 
Let us suppose we have n+1 assets, and that the risk free return factor (ie 1 plus the 
risk-free rate) is r. Let us suppose that the return factors for the n risky assets have 
mean vector m and non-singular variance-covariance matrix V. 
 
We can ask the following question: 

"What is the maximum expected return on a portfolio, if the standard 
deviation of the return does not exceed σ?" 

 
We will see that the answer takes the form: 
 

maximum expected return = r + Sσ 
 
where S is the Optimised Sharpe Ratio. We can regard S as a measure of market 
inefficiency, in the sense that if S is large, then investors can obtain a large expected 
profit from taking a small risk. For a one-year model, for example, we might expect a 
diversified equity portfolio to have a standard deviation around 16%, with a risk 
premium over bonds of perhaps 4%. If this is an optimal portfolio, then we would 
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have an optimised Sharpe ratio of S = 0.25. Expert opinions would vary on the size of 
this; we could argue for larger risk premiums or smaller vo latilities. More generous 
estimates of then optimised Sharpe ratio might reach S = 0.5. Experts would still 
regard this as an efficient market. 
 
If, however, we had a model that generated S = 5, we would all agree that was an 
inefficient market. It is hard to think of reasons why an efficient market should grant 
risk premiums as high as 5 standard deviations on a one-year horizon. So somewhere, 
perhaps around S = 1 lies the median expert consensus value of S which divides 
efficient and inefficient markets. 
 
 In our example, I claim S is given by the matrix formula: 

)()( 1 11 rmVrm T −−= −S  
where 1 is the unit vector of 1's. This enables us to compute whether or not a stated 
set of assumptions is consistent with market efficiency. 
 
To prove this, let us denote by X the random vector of returns on the risky assets. 
With an initial investment of 1, suppose we allocate a vector p to each of the risky 
assets. The remaining amount to invest, 1-p.1 should be allocated to cash. The return 
factor on this portfolio is then given by (1 – p.1)r + p.X. The mean is r+p.(m-r1) and 
the variance is σ2 = pTVp. Now, by the Schwartz inequality, we know that 

)()().( 1TT 111 rmVrmVpprmp −−≤− −  
and this is a best possible result. If follows that 

σS+=−−+≤−+ − rrmVrmVpprrmpr )()().( 1TT 111  
which was to be proved. 

 
Certainty Equivalent 
 
The mean-variance framework presents a number of shortcomings, not least of which 
is the symmetric nature of standard deviation as a measure of risk. This symmetry 
means that a remote chance of a beneficial outcome could increase overall risk as 
measured by standard deviation. Such a result is counterintuitive and undesirable. 
 
An alternative measure of efficiency, which circumvents such problems, starts by 
considering an increasing, convex utility function U. We can consider the problem of 
choosing p to maximise the expected utility. In other words, we seek p to solve 

].).1[(max XprpU +− 1E  
The optimised certainty equivalent is the constant return factor r that has the same 
expected utility as the optimised portfolio. Algebraically, r is the solution to the 
equation: 

[ ]XprpUU
p

.).1(sup)( +−= 1Er  

The main difficulty with certainty equivalents is their computation. Unless U and the 
distributions of X are exceptionally tractable, we can only rarely develop suitable 
closed forms for the certainty equivalent r. 
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3. Option Pricing Measures of Efficiency 
 
Use of Density Functions 
 
There is an alternative approach to measuring efficiency which does not rely on utility 
functions. Instead, it relies on measuring the difference between true statistical 
distributions and those implicit in market prices. 
 
As  before, let X denote the vector of stochastic returns. We suppose this has (true) 
probability density function f(x). 
 
Now let us consider the pricing of an arbitrary financial derivative, whose payoff is 
some function h(X). In the absence of arbitrage (and subject to some further technical 
conditions) the price will always be representable in the form: 

price = ∫
ℜn

xdxgxh
r

n)()(
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where g(x) is the risk neutral density. The same risk neutral density applies for all 
derivatives h. 
 
Constraints on Risk-Neutral Laws 
 
We cannot choose risk neutral laws arbitrarily. One constraint is that they must 
exactly price the original assets at 1. This implies in particular that 
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Measures of Efficiency Based on Risk Neutrality 
 
We can consider the efficiency of the market in terms of the differences between f and 
g. If g=f then all assets are priced at the risk free rate, and there is no reward for taking 
risks. If on the other hand, f is different from g then the expected return factor on a 
derivative h is given by 

expected return factor = r
xdxgxh

xdxfxh
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We could generate a high mean return by picking h to be large where f >> g, and 
small elsewhere. The extent of the risk premiums available will depend on how 
different are f and g. 
 
One possible measure of the difference between f and g is to use integrals of the form: 
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where the expectation is taken under the real world probability law f. If θ=0 or θ=1 
then this integrates to unity. If 0<θ<1 then the integral is equal to 1 at most, by 
Hölder's inequality. Equality only occurs when f=g. Likewise for θ<0 or θ>1, we 
obtain an integral greater than 1, and perhaps infinite. 
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This suggests we can define a positive function g(θ) by 
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For each value of θ, g(θ) provides a measure of market inefficiency based on the 
difference between f and g. We investigate values of these efficiency measures, 
seeking to establish whether any particular value of θ makes sense for particular 
applications. 
 
Entropy Concepts 
 
When  θ = 0 or  θ = 1 our definition of g(θ) reduces to 1=1. However, we can still 
define g(θ) by taking appropriate limits. 
 
Taking θ  close to zero, we have to first order: 
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Equating coefficients of θ, we find 
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Now if g were a uniform distribution, the integral would be what physicists call the 
entropy of f, that is, a measure of how irregular the true distribution is. More 
generally, we can think of this as a measure of the entropy of f relative to g. 
 
Taking θ  close to 1, we have a similar set of arguments, the final result of which is: 
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which is an entropy measure for g relative to f. 
 
Gaussian Example 
 
Let us now take an example where the underlying distribution of X is Gaussian, with 
mean m and variance-covariance matrix V. Under the risk neutral law, X must have 
mean r1, and for we assume that the same variance-covariance matrix V applies to 
both the real world and risk neutral laws. Using the formula provided in the appendix,  
it now follows that, for all θ, we have 

)()()( 1T mrVmr −−= − 11θg  
We notice that in this case, the efficiency measure turns out to be exactly equal to the 
optimised Sharpe ratio S. 
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4. Relationships between Utility and Option Pricing Efficiency Measures 
 
The really useful property of the risk-neutral efficiency measures is that, firstly we 
can compute them, and secondly they act as upper bounds for certainty equivalents. In 
this section, we establish these relationships. 
 
We use Y to denote the final payoff of a portfolio, that is,  

Y  =  (1 – p.1)r + p.X. 
Then Y is also a function of Z. It has the important property that its mean under the 
risk neutral law is the risk free rate, so that 

rxdxgxy
n

n =∫
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We now consider some common utility functions and create bounds on the certainty 
equivalent in terms of the inefficiency measure g(θ). 
 
Logarithmic Utility 
 
We consider first an investor who wants to maximise Elog(Y-c) over portfolios Y. 
This requires that Y always exceeds c, so this cannot be possible of c exceeds the risk 
free rate r. Thus, we may assume c<r. 
 
Now, by Jensen's inequality, and the concavity of the logarithm, we have 
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We can factorise the log on the left hand side, and cancel the f's on the right hand side, 
to give 

[ ] )log(log)0(
2
1 2 crcY −≤−+− Eg  

We can express this in terms of certainty equivalents. In particular, picking Y to 
optimise the left hand side, we find: 
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Exponential Utility 
 
Optimising an exponential utility means minimising E[exp(-αY)]. Here again, we use 
Jensen's inequality, to deduce: 
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On the left hand side, we have a combination of an exp and a log, which we can 
multiply out. We can develop the right hand side analytically. This gives: 

[ ]rY αα −−≥− 2
2
1 )1(exp]exp[ gE  

Once again, choosing the optimal Y on the left hand side we have 

α2

)1( 2g
r +≤ r  

We can see that larger α implies more risk aversion, and so a smaller certainty 
equivalent. 



 6

 
Sharpe Ratio 
 
We now determine an inequality relating Sharpe ratios to inefficiency measures. We 
denote the expected return by µ and its standard deviation by σ. 
 
As correlations can be at most 1, we know that 
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The integrals simplify; taking each in turn we have 

( ) ( ) ( )

[ ]
( ) 22

2

22

)()(

1)2(exp21

)(
)(

)(2)()(
)(
)(

1

)()()()()()(
)(
)(

1

σµ

µµµ

µµµ

=−

−+−=









+−=




 −

+−−=

−−−=−




 −

∫

∫∫

∫∫∫

ℜ

ℜℜ

ℜℜℜ

n

nn

nnn

xdxfxy

xd
xf
xg

xgxfxdxf
xf
xg

r

xdxgxyxdxfxyxdxfxy
xf
xg

n

nn

nnn

g

 

Now, substituting into the correlation inequality, we have 

[ ] 1)2(exp 2 −≤− gσµ r  

Taking the highest µ for a given σ, we deduce that the Sharpe ratio S satisfies 

[ ] 1)2(exp 2 −≤ gS  
We can verify this immediately in the case of multivariate normal distributions, where 
we saw that g=S. At least in this case, our inequality is fairly tight provided S is 
small. 
 
Power Law – Power between 0 and 1 
 
Let us now consider a power, β , between 0 and 1. Let us suppose that an investor 
wishes to maximise E(Y-c)β . As the utility function is only defined on Y≥c, this 
problem is only well posed when c<r. In this case, we know by Hölder's inequality 
that 
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We can now substitute for each term, and maximising the left hand side we have: 
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Thus, finally we have the bound on the certainty equivalent: 
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We can see that risk tolerance increases as β  tends up to 1. In this case, the certainty 
equivalent also increases without bound. As β  tends to zero, we obtain the logarithmic 
result. 
 
Power Law, with Negative Power 
 
The final case we consider is one where an investor sees to minimise an expectation 
of the form E(Y-c)-γ for some γ>0. Once again, Hölder's inequality implies that 

[ ] [ ]








+

ℜ









+

ℜ

−

ℜ









+








+











−










−≤ ∫∫∫

γ
γ

γ
γγ

γ
γ

11
1

11

1

)()()()()()(
nnn

xdxgcxyxdxfcxyxdxgxf nnn  

Once more, we can evaluate each term of the integral. On minimising the right hand 
side over choices of y(x), we have 
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Thus, rearranging, we finally have 
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Interestingly, this has the same form as our previous result, although the proof was 
different. 
 
Collation of Results 
 
We can now pull together the results we have had so far. We can see that many 
possible arguments θ in the function g(θ) give us bounds for utility functions. In 
particular, we note the following ranges: 
 
range for q utility function 
θ < 0 power law; power between 0 and 1 
θ = 0 logarithm 
0 < θ < 1 power law; negative power 
θ = 1 exponential 
θ = 2 Sharpe ratio 
 
The pattern we see is not surprising given what we know about the limiting 
definitions of transcendental functions. We know, for example, that logarithms can be 
approximated by powers close to zero, and that exponentials can be defined using 
limits of large negative powers. 
 
Using Derivatives in Investment Portfolios 
 
Derivatives are priced by the same risk neutral law as any other security. Indeed, it is 
only by examination of derivative prices that we can determine the risk neutral law. 
Our bounds on utility therefore apply equally to portfolios containing options. Indeed, 
when derivatives are included, our bounds are often attained. 
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5. Building Maximally Efficient Models 
 
It might be interesting to measure inefficiency for its own sake. The real benefit of 
these measures arises if we use them to build better models. There are a number of 
situations in which one does not want to introduce inefficiencies into a model, or 
where certain specific inefficiencies are to be incorporated without introducing others 
by accident. As we have already seen, in this context the efficiency measures such as 
g(θ) based on risk neutral ideas are more tractable than efficiency measures based on 
certainty equivalents such as r.  We now consider two applications of the concept of 
maximum efficiency. 
 
Choosing Assumptions for Multinational Models 
 
Choosing assumptions for multinational asset models is seldom easy. We may be able 
to model volatilities and correlations from historic data, but what is to be done about 
expected returns? 
 
Sometimes the modeller has views about returns on certain asset classes, but may 
have less of a view on other less well known classes. How is one to choose neutral 
assumptions for those classes for which scant information is available? 
 
One approach is to fix the volatilities and correlations empirically, assuming this are 
equal under the risk neutral and real world laws. The mean returns under the risk 
neutral laws must be equal to the risk free rate. The real returns under the real world 
law are unknown, or partially unknown. 
 
The natural approach here is to fix the expected returns where we have a strong view, 
and to set the other returns by minimising the overall inefficiency of the model.  
 
Completing Markets 
 
Another application of our techniques is to complete models, that is, to develop 
pricing models given only a true probability law. For example, given a statistical 
model of share prices, we might want to consider the pricing of derivatives. This 
problem has been considered, for example, by Kemp (2001). One natural way to carry 
out such a completion is to select the risk neutral law in such a way as to minimise the 
total inefficiency. This means that we continue with any inefficiencies originally in 
the model, but that we seek to avoid adding any further when creating the option 
pricing model. 
 
In the same vein, we may start with a statistical model of two points on the yield 
curve – for example, a short rate and a long bond yield. Often, it is necessary to 
interpolate such models in order to treat prices of other bonds. One way of doing this 
is to interpolate the given yield curve using some suitable functional form. Such 
approaches often introduce inefficiencies or even arbitrages into the model. The 
alternative is to construct a maximally efficient risk neutral law consistent with the 
observed price series. Given a risk neutral law, we then have a way of constructing 
the missing bond prices. 
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Appendix: Multivariate Normal Calculations  
 
Functional Normal Example 
 
We now consider an example where the return factor vector X is a function of some 
normally distributed vector Z .This would cover, for example the lognormal model 
underlying the formula of Black and Scholes. 
 
We assume that Z has the following means and variances under the probability laws: 
 
 real world risk neutral 
mean vector mf mg 

variance-covariance matrix Vf Vg 

 
The risk neutral law must still be contrived so that the mean of X is r1. 
 
We could write the efficiency measures in terms of integrals over X-space, but is 
simpler to transform the variables and work over Z-space instead. 
 
Our inefficiency definition now becomes: 

zd
mzVmz

mzVmz

VV

n

gg
T

g

ff
T

f

gf
n n

∫
ℜ −

−

−



















−−−

−−−−
=





 −−

)()(
2

)()(
2

1

exp
)2(

1

)(
2

)1(
exp

1

1

2/2/)1(2/

2

θ

θ

π

θθθ

θθ

g

 

 
After much manipulation, the inefficiency finally emerges as: 
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