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Overview

What is parameter uncertainty?

Why is it important?

How can it be quantified? 

What impact can it have on capital modelling?

Sources of Uncertainty

Model

Parameters

Process
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What is Parameter Uncertainty?

Having chosen a particular model, parameters 
are usually estimated from a sample of data

There is always uncertainty associated with any 
estimate

In many actuarial models, this parameter 
uncertainty is often ignored

Estimating Model Parameters

For example, maximum likelihood estimates 
are often used

These are the parameters that are statistically 
most likely given the observed data

However, we never have enough data to be 
sure that these are the true parameters. 
Other parameters are possible, just less likely. 

Historical
Data /

Judgement

Model including Parameter Uncertainty

Historical
Data / 

Judgement

Model excluding Parameter Uncertainty

Incorporating Parameter Uncertainty
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Why is Parameter Uncertainty Important?

Danger of underestimating variability of 
underlying ICA model variables (e.g. claims) 
where data is limited, leading to 
underestimation of capital, premiums etc. or 
other incorrect business decisions

FSA has indicated it is keen to see allowance 
where there is limited data to support 
parameters

Why is Parameter Uncertainty Important?

In an ICA context, parameter uncertainty can 
impact models for:

Claims

Premium rates

Credit risk

Dependencies

Economic scenarios

Data CDF (10 data points) Data CDF (50 data points)
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MLE Parameters (000s)
mu      =  183
sigma  = 84

MLE Parameters (000s)
mu      =  183
sigma  = 84

Fitted LogNormal (10 data points) Fitted LogNormal (50 data points)

Quantifying Parameter Uncertainty

Maximum likelihood parameters are the same for 
each data set

However, intuitively we are less certain about the 
parameters based on the first (smaller) data set
Just how uncertain are the parameters derived from 
the first data set?
Is parameter uncertainty important for the second 
data set?
How do I incorporate this uncertainty into my 
model?

Quantifying Parameter Uncertainty

Classical Statistics
Asymptotic distribution of ML estimates

Bootstrapping
Resample with replacement from the original sample
Re-fit model to each sample

Bayesian Statistics
Use Bayes Theorem to determine posterior 
distribution of the parameters, given the data and 
prior beliefs



11/2/2005

5

As n , Multivariate Normal distribution with

Mean 

Variance-Covariance matrix = 

1

2

2

Asymptotic MLE Distribution

Pros
Easy to simulate

Cons
Cannot always directly calculate the Var-CoVar
matrix

Can give invalid parameter values (e.g. ve
standard deviation)
Need large no. of data points before Normal 
approximation is appropriate

Asymptotic MLE Distribution

Bootstrapping

Re-sample same number of data points from 
original data (with replacement) many times

Fit model to each set of pseudo data

Gives (joint) distribution of the parameters

Widely used in reserving risk models
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Bootstrapping

Pros
Easily understandable approach
No hard maths

Cons
Requires parameters to be fitted for each bootstrap 
iteration - computationally intensive
Limited number of possible re-sampled data sets 
(can lead to problems with small data samples)

Bayesian Method

From Bayes Theorem, given the data y and a 
prior distribution of the parameters     , we 
produce a posterior distribution:

As                           is just the likelihood 
function, and            is a constant, we can write 
the posterior distribution as:

p|p
p

1
|p y

y
y

y1/p
)|()|( yLyp

)()|()|( pyLyp

PriorLikelihoodPosterior

Bayesian Simulation
Select a prior distribution

Initial view of uncertainty in parameters

Form posterior distribution by revising the prior in light 
of your data sample

Revised view of uncertainty in parameters taking into account 
the data

Simulate parameters from the posterior distribution
Gives (joint) distribution of parameters

For each simulation of the parameters, simulate 
process uncertainty

Generates predictive distribution
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Bayesian Method

Pros
Uses whole of the likelihood function, not just a single point
Robust framework for combining data with judgement

Cons
Need to specify a prior distribution for the parameters
Cannot always determine a standard posterior distribution for 
the parameters

Defining the Prior Distribution

Do you have a prior opinion?

Will others see it as valid?

Could use appropriate market data to set prior

Can use prior to avoid unreasonable / 
undesired parameter values

What if you have no prior opinion? 
Could use a non-informative prior

Non-Informative Prior (1)

If we do not have any prior information on the 
parameter we choose a prior known as a non-
informative prior 
The most common non-informative prior is 
simply a constant or uniform prior: 

We then have:
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Non-Informative Prior (2)

Hence, in the case of a uniform prior the 
posterior distribution is given simply by 
considering the likelihood function as a function 
of the parameters

Also known as the Normalised Likelihood 
approach

Density: Likelihood function
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Simulating from Posterior Distributions

Recognised Distribution
For certain models and priors the posterior distribution can be 
recognised as a standard distribution

Where it works the maths can be complex!

In many cases there will be no standard distribution

This makes it difficult to simulate from

Need to use sampling algorithms
E.g. Rejection sampling
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Examples with Uniform Priors

Poisson
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Rejection Sampling - Overview
Uses a uniform dominating function:

Simulation Approach

Generate a value on the green line from a Uniform distribution, call it x

Independently generate a value on the red line from a Uniform distribution, 
call it y

Reject the point (x,y) if y > f(x), else Accept

Repeat

N o n - S t a n d a r d D is t r ib u t io n K n o w n D is t r ib u t io n ( U n if o r m )

(x,y)

Rejection Sampling - Overview

The blue points show the ones which are accepted. The red points
are rejected.

Known Distribution (Uniform) Non-Standard Distribution
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Rejection Sampling - Overview

Many rejections made inefficient

Use piece-wise exponential dominating function 
instead of Uniform

Or, adapt the simulation criteria such that you 
reduce the number of rejections => Adaptive 
Rejection Sampling.

Adaptive Rejection Sampling (ARS)
Algorithm operates in log-space

Density function must be log-concave

Adaptive Rejection Sampling (ARS)

Dominating function adapts as points are rejected
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Adaptive Rejection Sampling (ARS)

Dominating function adapts as points are rejected

Adaptive Rejection Metropolis 
Sampling (ARMS)

ARS algorithm with an additional Metropolis
step

Copes with densities that are not log-concave

The samples are no longer independent (they 
may have serial correlation)

Needs more processing resources than ARS

Multiple Parameters: Gibbs Algorithm
Where we have multiple parameters in our posterior 
distribution, we need to use a method such as Gibbs 
sampling in conjunction with ARS/ARMS.

Gibbs sampling is the most popular Markov Chain 
Monte Carlo (MCMC) method

Consider a vector random variable                           with
joint distribution                      

The Gibbs algorithm allows us to simulate direct draws 
from this joint distribution given an arbitrary vector of 
starting values 
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Gibbs Algorithm

An iteration of the Gibbs sampler: 

This completes a single iteration of the algorithm and defines a transition 

from     to      . 
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Gibbs Algorithm

The resulting sequence of dependent draws  (after sufficiently large 
burn-in) will almost certainly satisfy:

tUfUU dt as),(~)(

Single line of business. Premium income £80m.
Consider underwriting risk to ultimate for a single 
future u/w year
10 years of historical data

Attritional loss ratios
Individual large claims above £2m
Assume adjusted to current u/w year terms

Assess capital required using fixed ML parameter 
estimates versus Bayesian distributions of 
parameters (with uniform priors)

Effect of Parameter Uncertainty -
Example
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Attritional Loss Ratio

U/w Year ULR
1995 74.8%
1996 76.9%
1997 85.5%
1998 69.2%
1999 65.8%
2000 79.4%
2001 74.7%
2002 78.2%
2003 62.9%
2004 76.2%

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004Premium = £80m

Maximum Likelihood Fit using LogNormal Distribution

Mean = 74.3%
Std Deviation = 6.5%

Density: Attl LR Mean
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Density: Attl LR Std Devn
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Claims xs £2m

Claim amounts in £000s
Assume no IBNR

U/w Year 1 2 3 4
1995 2,910 2,498
1996 2,114 2,403 5,852
1997 4,315 4,529 2,390 7,522
1998 2,074
1999 11,173 3,243 2,001
2000
2001 3,454 3,719 2,194
2002 3,107
2003 2,283
2004 2,737 2,610
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Density: Large Freq Mean
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Percentile
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Set Capital on
VaR basis at

99.5th Percentile

Summary

Parameter uncertainty often ignored

Statistical methods exist to quantify this uncertainty

Bayesian techniques offer a robust solution

Allow data to be complemented with judgement / 
business views

Sometimes need to use generic sampling algorithms 
(ARS, ARMS, Gibbs)

Impact on model results can be significant
Has largest effect with small data sets

especially in the tails of distributions

Parameter Uncertainty and Capital 
Modelling
20th October 2005
Richard Millns and Richard Weston


