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Summary 

The main objective of this paper is to study different levels of uncertainty that 
affect the premiums for high excess of loss layers when pricing risks using extreme 
value distributions. Using some statistical results and estimated distributions pre- 
sented in McNeil (1997) for a Danish fire insurance portfolio we give price indicators 
for excess of loss reinsurance layers. Furthermore, we carry out a statistical analy- 
sis in order to make inferences about the premiums calculated with the estimated 
distributions for the underlying data set. 

We incorporate different levels of uncertainty that affect the premiums calcu- 
lated using estimated distributions: model uncertainty, parameter uncertainty for 
the loss distribution and parameter uncertainty for the frequency distribution. For 
each level of uncertainty we simulate the distribution of the premiums for high ex- 
cess of loss layers and we compare the mean of this distribution with the premium 
calculated using the original data set,. 

The paper is organised as follows: in Section 2 we summarise the main theo- 
retical results of Extreme Value Theory when dealing with large losses above high 
thresholds. Section 3 summarises the main statistical results given in 
McNeil (1997) for the Danish portfolio, and in Section 3.3 we give price indica- 
tors for excess of loss reinsurance layers. Finally in Sections 4 and 5 we present 
the methodology we use to simulate the distribution of the price indicators de- 
scribed above. We make some comments and conclusions about how each layer of 
uncertainty affect the premiums given for excess of loss layers. 
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1 Introduction 

Extreme Value Theory studies probabilistic models for the occurrence of rare events 
in different areas. Recently the use of Extreme Value Theory has become of interest 
in a wide variety of fields such as modelling of insurance losses, modelling financial 
indicators and modelling of extreme climatological conditions, to mention but a few. 

The literature on Extreme Value Theory is extensive and growing rapidly. If 
we are interested in the statistical methods to identify extrema1 events in practice 
a recent reference is Beirlant et al (1996). In that book they present a step-by-step 
guide on how to use the statistical methods for extreme values in practice, through 
a detailed analysis of large insurance losses. Another reference which emphasises 
more the practical applications of extreme value statistics is Falk et al (1994), 
where they review many of the theoretical aspects of Extreme Value Theory and 
in each chapter they give direct applications of the concepts by means of statistical 
analysis using data sets in many fields. In the latter book they also introduce the 
statistical software for extreme value statistical analysis, xtremes, and they give 
a complete introduction to the use of this paclcage through a variety of examples. 

A solid theoretical understanding of Extreme Value Theory is provided by Em- 
brechts et al (1997). This book presents a detailed review of the mathematical and 
probabilistic foundations of Extreme Value Theory and its applications. Further- 
more, they provide some applications of Extreme Value Theory in insurance and 
finance with specific examples and a detailed guide on how to use statistical meth- 
ods that are supported by the probabilistic models developed in Extreme Value 
Theory. 

In a recent paper, McNeil (1997) uses one of the data sets presented in Em- 
brechts et al (1997) on large insurance losses for a Danish fire insurance portfolio 
to give price indicators when pricing high excess of loss layers in reinsurance. He 
uses extreme value statistical methods to estimate the loss distribution for this 
insurance portfolio, and then uses the expected value of a single claim to a layer 
as a price indicator for a reinsurance layer. 

In this paper we use the same data set and some of the extreme value distri- 
butions fitted by McNeil (1997) to give price indicators for two reinsursnce layers. 
However, unlike most of the references available in the field of statistical analysis 
for extreme value theory, our objective is not only to use estimated distributions 
to give price indicators but also to make inference in order to answer the question: 
“How uncertain are the premiums given for high layers based on the 
observed data?“. In order to give some answers to this question we have to 
make inferences about the parameters estimated for the extreme value distribution 
using the data. Our research has been carried out to incorporate different levels 
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of uncertainty that affect the price of excess of loss layers. We study the effect of 
parameter uncertainty for both the loss distribution and the frequency, and also 
model uncertainty by choosing two different models for the loss distribution. For 
each level, we simulate the distribution of the price indicators and make infer- 
ences about this distribution with respect to the price calculated with the original 
parameters estimated from the data. 

2 Extreme Value Theory 

When it comes to insurance and reinsurance pricing we are interested in having 
good probabilistic models for the distributions for the numbers and amounts of 
losses incurred in a contract year. Standard distributions such as the Pareto and 
the lognormal are commonly used to model insurance losses. In the last decade the 
reinsurance industry suffered large losses originated by catastrophic events whose 
magnitude was beyond any predicted loss given by the models available for these 
types of portfolios. Hence, a real understanding of statistical modelling for extremal 
events became of great interest among pricing staff and underwriters in many in- 
surance and reinsurance companies. Embrechts et al (1997) write: “Extreme value 
theory has an important role to play in the pricing of reinsurance contracts, espe- 
cially in the aren of contracts fur single events or few events,, involving high layers”. 

In the case of pricing high excess of loss layers, the reinsurer’s concern lies in 
those rare events that might cause very large losses to the primary insurer and 
that therefore are likely to affect the reinsurer. Also it is of interest to have good 
explanatory models for those large losses in order to calculate premiums that are 
neither too low nor too high. 

We are interested in layers of the type m xs l, where l is the deductible. Thus, 
a reinsurer trying to price this layer would be interested in all those losses above 
a certain threshold u, which satisfies If X1,Xs . . . , Xn are the variables 
representing the losses to the insurer’s portfolio, then the reinsurer would carry 
out the statistical modelling in order to find a good estimate of the tail from the 
threshold u of the original distribution given by 

for (1) 

where xF is called the right-end point. Note that xF might take the value infinity. 
Also the reinsurer might be interested in the conditional distribution of the excesses 
once they have surpassed the threshold u. The conditional distribution of the 
excesses is given by 

(2) 
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Another function that plays an important role in the pricing process of an excess of 
loss layer is the so called mean excess function which is the conditional expectation 
of the excees over a threshold u. The mean excess function is defined as 

(3) 

Given the mean excess function the distribution of the excesses can be immedi- 
ately identified since there is a one-to-one relation between the distribution function 
and its mean excess function. Embrechts et al (1997) give tables and graphs of sev- 
eral standard probability distributions and their mean excess functions. Thus, in a 
data analysis, the empirical mean excess function from a particular data set will be 
a very useful tool to identify which family of distributions would be a reasonable 
model for the observations. 

When we look at excesses over a threshold u, Extreme Value Theory points to 
the generalised Pareto distribution (GPD) which is characterised by the following 
definition. 

Definition 1 The standard generalised Pareto distribution (GPD) is given by the 
following distribution function 

(4) 

This distribution has support if and if 
The notation Gr,o,u, refers to the generalised Pareto distribution for a location-scale 
change in the argument of (4) i.e, we substitute the argument x for in 
formula (4), changing the support of the distribution accordingly. 

The following result summaries in a very simple form one of the main theoret- 
ical results in Extreme Value Theory for excesses above high thresholds. 

Result 1 (The Pickands-Balkema-de Haan Theorem). Under certain con- 
ditions, the generalised Pareto distribution (Gr,o,u) is the limiting distribution for 
the excesses over the threshold u, as the threshold tends to the right endpoint XF. 

For more details about the required conditions and the proof of this result see 
Embrechts et al (1997). Basically, this result states that the distribution function 
defined in (2) can be approximated by the generalised Pareto distribution for a 
large threshold. Hence, the GPD plays a very important role in the statistical 
methods used to estimate distributions for the largest observations. 
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Many of the statistical methods for extreme value analysis are based on theMany of the statistical methods for extreme value analysis are based on the 
properties of the generalisd Pareto distribution. Embrechts et al (1997) give a 
detailed summary and analytical proofs of all the properties of extreme value dis- 
tributions including the GPD. Some of the properties that will be useful in our 
analysis are: 

1. If X has a GPD with parameters and , ,the excess over the threshold 
has also a GPD and its mean excess function over this threshold is 

given by 

for <1. 

We notice that for the GPD the mean excess function is a linear function of 
the threshold . Hence, if the empirical mean excess of loss for a sample has 
a linear shape then a generalised Pareto might be a good statistical model 
for the overall distribution. However, if the mean excess plot does not have 
a linear shape for all the sample but is roughly linear from a certain point, 
then it suggests that a GPD might be used as a model for the excesses above 
the point where the plot becomes linear. 

2. The generalised Pareto is closed under change of threshold, in other words 
if X has a GPD , the probability that X exceeds u + v given that it 
has exceeded u is also a probability in the generalised Pareto family. This 
property is very useful in reinsurance particularly when the reinsurer has 
taken two layers of the same risk 

3. If the conditional distribution above the threshold u is a GPD , 
then we can estimate the distribution of the tail of the original distribution 
defined in (1) as follows 

where is the empirical cumulative distribution function evaluated at 
the threshold u. The tail of the original distribution also has a GPD with the 
same parameter ,but different scale-location parameters, see McNeil (1997). 

For the purpose of pricing reinsurance contracts per event or for few events we 
are also interested in the number of excesses above a threshold in a certain period 
of time, for example a year, loosely speaking, the following result provides the 
limiting distribution of the number of excesses above a high threshold. 
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Result 2 The number of excesses over a high threshold u follows a Poisson Pro- 
cess. 

A detailed proof of the result outlined above can be found in Embrechts et al 
(1997), Chapter 5, where they present an approach to extremes by means of a point 
process. 

3 The data: Danish fire data 

The data we use in this section represent large losses for a fire insurance portfolio 
in Denmark. There are 2157 losses over 1 million Danish Krone in the years 1980- 
1990. A detailed statistical analysis of this data has been provided by McNeil 
(1997) and also by Embrechts et al (1997, Chapter 6). This data is available in the 
Extreme Value Statistics library in Splus. 

3.1 The individual claim amounts distribution 

In this section we summarise some of the results of the statistical analysis for the 
Danish fire data studied by McNeil (1997). Basically, we review the possible prob. 
abilistic models that can be used as explanatory models for the loss distribution of 
the insurance claims based on the observed losses in the 11 years. 

Usually in reinsurance there would be a large number of small losses that do 
not result in liabilities for the reinsurer and therefore the ceding company does not 
report them. Nevertheless, there is a small number of large losses that are unlikely 
to occur, but once they occur they might cause large losses to the reinsurer. For 
the Danish data, all the losses are above 1 million Danish Krone (DKK), and they 
represent the individual losses to the insurance portfolio Y1, Y2, . . . . The losses are 
in units of 1 million DKK. 

In any statistical analysis of loss distributions there are several possibilities for 
probabilistic models for a particular data set. The first option would be to find a 
parametric model to estimate the overall distribution. In this case the resulting 
distribution would approximate the following distribution 

(5) 

where = 1 for the Danish data. In this case the standard graphical tools would 
provide good guidance to the shape of the distribution and then the parameters can 
be estimated by maximum likelihood methods. McNeil (1997) fitted some standard 
distributions to the overall data set typically used to model insurance losses, which 
are the lognormal and the Pareto, and he also included the generalised Pareto 
distribution. 
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Figure 1: Mean excess plot for Danish data 

In his discussion McNeil (1997) writes: 

“The lognormal is a reasonable fit, although its tail is just a little too thin to 
capture the behaviour- of the very highest observed losses. The Pareto, on the other 
hand, seems to overestimate the probabilities of large losses... The GPD is some- 
where between the lognormal and the Pareto in the tail area and actually seems to 
be quite a good explanatory model for the highest losses... " 

However, if a reinsurer is using historical information to find statistical models 
for pricing high excess of loss layers, then he would be more interested in good 
models for the largest losses. In fact, if the reinsurer wants to price a layer with 
deductible I he would be interested in all the losses above a certain threshold u, such 
that as we discussed in Section 2. In this case the statistical methods to 
find good models for the tail area are based on the Extreme Value Theory results 
summarised in Section 2, which state that for a reasonably high threshold the losses 
follow, in the limit, a generalised Pareto distribution. Figure 1 shows the empirical 
mean excess function for the Danish data. Based on the properties of the GPD 
described in Section 2, McNeil (1997) chooses two different thresholds u= 10 and 20 
million DKK, from which the mean excess function plot becomes roughly linear, see 
Figure 1. After choosing the threshold, McNeil estimates by maximum likelihood 
the parameters and for the generalised Pareto distribution given in (4), with 
location parameter u and scale parameter a. This estimation provides an estimate 
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of the conditional probability distribution function over the threshold u as defined 
in formula (2). Then using this conditional distribution we can approximate the 
tail of the original distribution as defined in formula (1) by 

(6) 
where is the empirical estimate of . 

In our case study we decided to chose two consecutive layers, 80 xs 20 and 
100 xs 100. Notice that the first deductible is 20 which coincides with one of the 
thresholds used to fit the generalised Pareto distribution. Since we are interested 
only in those claims that are above 20 million DKK we will use the conditional 
probability of a single claim being greater than 20 million DKK. 

For a threshold of 10 million DKK, there are only 109 data points above this 
threshold. In this case the maximum likelihood estimates for the parameters of the 
generalised Pareto distribution are = 0.497 and = 6.98, and (l0) = 0.95. 
Therefore the following estimate for the distribution can be used to approximate 
the distribution in (5) 

(7) 

Then we estimate the conditional distribution of being greater than 20 million 
DKK as follows 

(8) 

where is as defined in (7) 

For a threshold of 20 million DKK, the fitted generalised Pareto distribution 
gives the conditional distribution for all those losses that are greater than 20 mil- 
lion DKK. Therefore we use this distribution directly. In this case there are only 
36 data points and the maximum likelihood estimates for the generalised Pareto 
distribution are = 0.664 and = 9.63, which gives the following distribution 
function 

(9) 

We will use for our analysis both conditional distributions (8) and (9) to show 
how the results are model dependent and how they are sensitive to the choice of 
threshold, which has also been discussed in McNeil (1997). 
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3.2 The distribution of the number of claims 

As we discussed above, in the case of reinsurance contracts with limited number of 
losses or events we also need good estimates for the frequency distribution in order 
to estimate the total losses for the reinsurer. 

For the layers we have chosen we are looking at losses above 20 million DKK, 
hence we only require to fit a distribution for the number of claims in a year that 
lie above this amount. From the data we obtain 36 observations that are greater 
than 20 million DKK and the frequency is given in Table 1. 

Years (1980-1990) 80 81 82 83 84 85 86 87 88 89 90 
NO. Claims > 20 (Ni) 3 4 5 0 0 3 1 4 8 5 3 

Table 1: Frequency of claims above 20 million DKK 

If we denote N the total number of claims above 20 million DKK, from Table 
1 we calculate the sample mean and variance of N. it can be seen that 

and 

In Section 2, Result 2 states that for high thresholds the number of excesses 
follows a Poisson Process. Hence, we fit the Poisson distribution as the probabilistic 
model for the distribution of the number of losses above 20 million DKK. The 
probability function is given by 

and in this case the maximum likelihood estimate is . Table 2 gives the 
observed frequency, the estimate probabilities and the expected frequency under 
the model proposed. We would like to test whether the proposed model provides 
a good explanatory model for the observed data. 

If we use the Pearson x2 test with the results in Table 2 we must calculate the 
statistic given by 

(10) 

to test the null hypothesis that the observations follow a Poisson distribution 
In equation (10) k is the number of classes in which the observations have been 
grouped, and p is the number of parameters estimated from the sample. In this 
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N 0 1 2 3 4 > 5
obs. freq. 2 1 0 3 2 3
Prob (pi) 0.038 0.124 0.203 0.221 0.181 0.232
Exp. freq. (npi) 0.418 1.364 2.233 2.431 1.991 2.552

Table 2: Expected frequency for Poisson Distribution

case the statistic is X2 = 8.528 that we compare with x24,0.95 = 9.488. This result
indicates that for a 95% significance level we cannot reject the null hypothesis that
the observations follow a Poisson distribution.

However, the x2 test is applicable only under certain conditions: we require
at least 25 observations, in this case we only have 11 years of observations. Also,
this empirical test is supported by the Central Limit Theorem and its justification
is based on the assumption that the expected frequency for each class should be
greater than or equal to 5, which is not satisfied in our case. If we try to meet
this requirement we would have to regroup the observations, such that npi   5,
therefore we would have only two classes (0   N   2) and (N   3). This would
leave us with insuffcient degrees of freedom to estimate the parameters and apply
the test. Even though we have not rejected the null hypothesis the validity of the
test is not justified.

3 . 3  P r i c e  i n d i c a t o r s

In this section it is our objective to give price indicators when pricing excess of loss
reinsurance. We choose as price indicator for the reinsurance layers the expected
value of the aggregate claim amounts.

The layers we are going to price are 80 xs 20 and 100 xs 100. Since we use the
conditional probability distribution, we define the conditional excesses above the
deductible of 20 million DKK to be Y1(20), Y2(20) ,..., where
                                                                                                  Therefore the random variables representing the
individual claim amounts to the reinsurer for each layer are

The expected value of a single claim to the first layer can be calculated as
follows

162



Layer u= 10 u=20
80 xs 20 18.3634 17.8030
100 xs 100 2.6658 3.6030
180 xs 20 21.0292 21.4060

Table 3: Expected value of a single claim for each layer

where                  can be either the conditional distribution in (8) or (9). The same
type of integral can be used for the expected value of a single claim to the layer
100 zs 100. Table 3 shows the expected value of a single claim to each layer for
both choices of thresholds.

We notice from the results in Table 3 that the results are very variable with the
choice of threshold, particularly for higher layers. In the case of the first layer, for
a threshold of 10, the expected value is higher than for a threshold of 20, while for
the second layer we have the opposite result. We notice as well that the relative
difference is greater for the second layer than for the first. Even though in both
cases we are using conditional distributions, when we use the threshold of 10 we
have more data points to calculate the maximum likelihood estimates for the GPD
than for a threshold of 20. Moreover the variability for the second layer is higher
because the data in that interval is very scarce and the parameters are subject to
higher standard errors. When we consider the combined layer with the estimated
distributions the premium is equivalent to the sum of the premiums for both layers
separately. However, in Section 5 we will notice that the distribution of the premi-
ums for the combined layer follows the same pattern as the premiums for the first
layer.

We define N as the number of losses above 20 million DKK. Hence the aggregate
claim amounts at the end of the year ate

For each layer we give as price indicator the expected value of the aggregate
claim amounts, i.e. p1 = E[N]E[Zi1] and P2 = E[N]E[Zi2], and from Section 3.2
we have E[N] = 3.27. For each choice of threshold, u = 10 and u = 10, Table 4
shows the price indicator for each layer. Note that the results in Table 4 are the
same results as in Table 3 multiplied by 3.27, and therefore we observe the same
patterns as we discussed above.
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Layer u = 10 u = 20 
80 xs 20 60.0483 58.2158 
100ss xs 100 8.7172 11.7818 
180 xs 20 68.7655 70.0076 

Table 4: Expected value of aggregate claim amounts 

4 Parameter uncertainty for extreme value dis- 

tributions 

In previous sections we have discussed the possible distributions we can use to ap- 
proximate the loss distribution and the frequency for the Danish fire data. Since we 
are interested in having good estimates for the largest losses we decided to use the 
estimated distributions for the tail. Using these distributions we have calculated 
price indicators for excess of loss layers. 

Now we have reached the point where we have to ask 

How certain/uncertain are these premiums? 

Of course, when pricing insurance contracts uncertainty is always present since 
the insurer wants to be sure he charges adequate premiums for any line of business. 
However, when it comes to extremal events or observations, the insurer/reinsurer 
needs to make inferences about possible occurrences outside the observations where 
there is very little information, therefore the uncertainty of any estimator is even 
higher. 

In his analysis of price indicators for the Danish portfolio, McNeil (1997) writes: 

“We should be aware of various layers of uncertainty which are present in any 
data analysis, but which are perhaps magnified in an extreme value analysis. 

On one level, there is parameter uncertainty. Even when we have abundant, 
good-quality data to work with and a good model, our parameter estimates are 
subject to standard errors... 

Model uncertainty is also present . . . If we set the threshold too high we have 
few data and we introduce more parameter uncertainty. If we set the threshold too 
low we lose our theoretical justification for the model . .." 

Apart from these layers of uncertainty discussed in McNeil (1997), in our case 
we have an extra layer of uncertainty which is the fequency distribution. We have 
very few years of observation and therefore the x2 test does not provide a satis 
factory answer to which probabilistic model will be an appropriate choice for the 
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frequency of the losses.

It is our objective in the following section to calculate distributions and stan-
dard errors of the price indicators given in Section 3.3. We study the variability of
these price indicators at various levels:

1. Fix the parameter for the frequency distribution and vary the parameters for
the loss distribution. For each combination calculate the premiums with the
corresponding aggregate distribution.

2. Vary the parameters for both the loss and the frequency distribution and for
each combination calculate the corresponding premium.

In each of these steps we are taking into account the two choices of threshold
we discussed in Section 3.3, and in each case we calculate the expected value of
the aggregate claim amount. In the following sections we give the methodology we
have used.

4 .1  Uncer ta in ty  in  the  loss  d is t r ibut ion

The loss distribution we are using is the GPD as defined in formula (4), with
location-scale parameters; thus we substitute x by (x - u)/o in the distribution
function. As we have discussed in the previous sections, the threshold u is chosen
using the mean excess function graph, and after the threshold is fixed the parame-
ters      and o are estimated by maximum likelihood. Even though for both choices
of thresholds we used the conditional probability of the excesses being greater than
20 million DKK as defined in formulae (8) and (9), in each case the parameters
have been estimated with different numbers of sample observations.

If we were interested in making inferences about the estimated parameters, the
theory of maximum likelihood states that under certain conditions of regularity the
maximum likelihood estimates follow asymptotically a multivariate normal distri-
bution. In the case of Extreme Value Theory, the parameter     determines whether
the distribution is heavy tailed or not. McNeil (1997) indicates that for    > -0.5
the generalised Pareto distribution satisfies the regularity conditions of maximum
likelihood estimation. Therefore, the maximum likelihood estimates for   and  
from a sample of n excesses follow in the limit a bivariate normal distribution, as
specified in the following relation:
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In our case we are not interested in making inferences about the parameters,
but about the price indicators calculated in Section 3.3. However, the premiums
were calculated using the estimated parameters. Hence at first, the asymptotic
normality seems to be the answer to our problem. We could simulate M pairs of
parameters (   ) from the bivariate normal distribution, with mean vector and
covariance matrix calculated using the maximum likelihood estimates. Then for
each pair (     ) and each threshold we can use the GPD (              ) for the
loss distribution, and finally with this loss distribution we can calculate the corre-
sponding premium. This method would produce M values of the price indicators
that will give us a clear idea of the distribution of the premiums.

The problem with this approach is that when we simulate pairs (       ) from the
bivariate normal we obtained positive and negative values for both parameters  
and  . For   negative, we have to truncate the GPD at the right-end point -   
as defined in Section 2 in the definition of the generalised Pareto distribution. If
the right-end point is smaller than the deductible for the corresponding layer, then
the corresponding premium associated with the GPD for this pair of parameters
is set as zero. In the case of negative values for the parameter    the GPD is not
defined. Thus there is no interpretation of the corresponding premium for a pair
of parameters where    < 0. Hence, the asymptotic normality does not provide a
good method to simulate the distribution of our price indicators.

Therefore we decided to use the bootstrap method to calculate standard er-
rors for any statistic estimated from an observed sample. We give step by step
the methodology we used to simulate parameters with the bootstrap method. For
more information about this method, see, for example, Efron and Tibshirani (1993).

4.X.1 The bootstrap method

We call x = (x1, . . , xn) the observed sample from which the parameters     and   
and the premium indicator P(        ) have been estimated. For threshold u = 10,
n = 109 and for u = 20, n = 36.

We used the bootstrap method to simulate pairs (      ) for i = 1,. . . , B for
each chosen threshold as follows

1. Assign the same probability to each observation of the original sample x. In
other words, we generate an empirical uniform distribution for the observa-
tions, with p(xi) = l/n.

2. Generate the bootstrap sample: We produce a random sample
x* = (x1*, . . , xn*) by sampling with replacement from the empirical distri-
bution defined in step 1. Notice that the bootstrap sample is of the same
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length of the original vector, but some observations might be repeated and 
some might not appear. We repeat this procedure to produce B bootstrap 
samples. 

3. For each sample we estimate by maximum likelihood the parameters for the 
generalised Pareto using the Extreme Value library available in Splus. Thus 
we have B. 

4. For each pair we use the corresponding to calculate the 
conditional distributions defined in formulae (8) and (9). Then for each pair of 
parameters and each combination of compound distribution we calculate the 
corresponding premium with the methodology given in Section 3.3. Therefore 
we have B. 

5. The bootstrap standard error for any estimated statistic, in particular for the 
premiums, is given by 

In Section 5 we show our numerical results for the standard errors and the pre- 
mium distributions for each layer. 

4.2 Uncertainty in the frequency distribution 

Apart from the uncertainty generated by the parameters of the loss distributions 
we also have uncertainty in the frequency. First we have model uncertainty. Since 
there are few years of observation, the x2 test does not provide a valid method 
to test any of the models proposed. We estimated from the data the parameters 
for the Poisson distribution, therefore when we combine this distribution with the 
loss distribution, the distribution of the total aggregate claim amount is subject to 
higher uncertainty. 

We study the effect of the uncertainty in the frequency distribution and in this 
case we applied the following methodology: 

1. Generate B sets of 11 random numbers from a Poisson distribution with 
parameter . 

2. For each set we calculate the sample mean. 
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3. We use the same set of simulated parameters for the loss distribution as in 
Section 4.1 and for each set of parameters we associate a Poisson distribution 
with parameter calculated in step 2. 

4. For each threshold we have three parameters associated with the compound 
Poisson distribution, For each vector of parameters we have a 
premium associated for each layer, that is . 

5. Then we calculate the standard errors of these premiums as defined in step 
5 of the bootstrap method in the previous section. 

We compare the standard errors for the premiums produced with this extra 
level of uncertainty with the standard errors obtained when we fixed the Poisson 
parameter. 

5 Premium distributions 

In this section we present the numerical results of our research using the method- 
ology described in Section 4. With the bootstrap method to calculate the standard 
error, usually between 50-200 bootstrap samples x* are sufficient, see Efron and 
Tibshirani (1993). For our calculations we used 500 bootstrap samples to produce 
more accurate calculations since we are using extreme value distributions. When 
we simulated 500 pairs of parameters for the GPD the bootstrap standard error 
for the parameters were for u=20 
These are the same as the standard errors given in McNeil (1997) for the shape 
parameter . 

First we consider the aggregate claim amount with fixed parameter for the fre- 
quency distribution. The numerical results we show in our tables are the sample 
mean from the 500 simulated premiums and the number in brackets represents its 
standard error. TabIe 5 shows the mean of the distribution of the expected value 
of the aggregate claim amount with fixed parameter for the Poisson distribution 
and its standard error. 

We notice from the results in Table.5 that for the first layer and the combined 
layer the mean of the expected value of the aggregate claim amount is lower than 
the expected value calculated with the original data set, see Table 4. For the 
second layer, for both choices of thresholds, there is very little difference between 
the mean of the expected value of the aggregate claim amount and the expected 
value calculated in Table 4. However, we notice that the standard errors are always 
higher for the threshold u = 20, particularly for the second layer where the increase 
of the standard error is around 20%. For the first layer and the combined layer 
the standard error increases around 12% for u = 20. We discussed in Section 3 
that the number of observations above 20 million DKK is only 36, therefore the 
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maximum likelihood estimates are subject to higher standard errors, and so are 
the premiums calculated with these parameters. Moreover, for the second layer 
the variability is even higher since only 3 observations fall in this layer. Thus, for 
high layers the extreme value models try to capture the behaviour of the tail with 
very little information, which means more uncertainty. 

Layer u = 10 u = 20 
80 IS 20 58.6695 57.8581 

(10.5087) (11.7270) 
100 IS 100 8.8857 11.6753 

(5.8613) (7.1542) 
180 IS 20 67.5551 69.5334 

(16.2073) (18.0166) 

Table 5: Mean and standard error for the price indicators, fixed = 3.27 

Figure 2 shows the distribution of the price indicators given in Section 3.3 for 
each layer and each threshold. We notice that thedistribution of the expected value 
of the aggregate claim amount for the first layer and the combined are symmetric 
around their own mean, while for the second layer the distribution is skewed to the 
right and there is more variability. The second layer is subject to very low premi- 
ums since there is a very small probability of a claim being greater than 100, but on 
the other hand there is a high uncertainty in this layer due to the few observation; 
therefore there are a few large values of the premiums that make the overall distri- 
bution skewed. The distribution of the mean amounts are not very different when 
we change threshold; in all the cases the scale for the premiums is wider for u = 20. 

After studying the effect of the uncertainty in the loss distribution on the price 
indicators we incorporate the uncertainty in the frequency distribution. Using 
the methodology described in Section 4.2 we simulate different parameters for the 
Poisson distribution. Table 6 shows the mean of the distribution of the expected 
value of the aggregate claim amounts varying both the parameters for the loss dis- 
tribution and for the frequency distribution, and the corresponding standard errors. 

When we compare the results in Table 6 with the results in Table 5 we notice 
that in general the means of the premiums when we vary the Poisson parameter 
are lower than the means with a fixed Poisson parameter, and also lower than the 
premiums calculated with the original data, see Table 4. However, the standard 
errors in Table 6 are higher than the standard errors in Table 5, particularly for 
the first and combined layer. 

The standard error for the first layer increases around 36% for u = 10 and 27% 
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Figure 2: Distribution of premiums for aggregate claim amounts, fixed = 3.27 

for u = 20. The increments for the combined layer are around 22% for u = 10 
and 18% for u = 20. The increments in the standard errors for the second layer, 
however, are around 5% for both thresholds. As we discussed above, there will be 
more claims for the first layer and therefore for the combined layer than for the 
second. Hence, the effect of the change in the expected number of claims will be 
higher for the first layer and the combined. The probability of a claim being greater 
than 100 million DKK is less than 10-3 for a high proportion of the simulated pa- 
rameters, therefore the variation of expected value of the number of claims for this 
layer is not very significant when we compare it with the original Poisson parameter. 

Figure 3 shows the distribution of the premiums for simulated values of . 
Comparing Figures 2 and 3 we do not observe major differences in the shape 
of the distribution of the premiums by including an extra layer of uncertainty. 
Nevertheless, we observe that in all the cases the scale is wider when we vary the 
Poisson parameters. In other words, we observe more values in both extremes of 
the histograms, particularly for the first layer and the combined layer. 

170 



Layer u = 10 u = 20 
80 IS 20 58.2018 57.4069 

(14.3462) (14.9155) 
100 IS 100 8.7979 11.5552 

(6.1195) (7.4599) 
180 IS 20 66.9997 69.0621 

(19.8031) (21.1883) 

Table 6: Mean and standard error for the price indicators, simulated 

Figure 3: Distribution of premiums for aggregate claim amounts, simulated 
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6 Conclusions 

When using historical data to fit loss distributions uncertainty is always present. In 
insurance and reinsnrance it is not rare to have insufficient data to make inferences 
about the loss distribution. In the case of fitting the tail of the loss distribution 
the uncertainty is even higher since there would be very few observations that fall 
in the tail of the distribution. When we use the ,generalised Pareto distribution to 
fit the tail of the loss distribution above high thresholds the parameters are esti- 
mated with very few data points and therefore any statistic estimated using these 
parameters would be subject to high standard errors, in particular the premiums. 

With the results shown in this paper it was our objective to provide some in- 
sight on how the premiums for high excess of loss layers are affected by different 
layers of uncertainty when using extreme value distributions. From the numerical 
results we observed that for high layers where there are very few data points the 
premiums are very variable and they are very sensitive to the choice of threshold. 
We noticed that for higher thresholds the premiums are subject to higher standard 
errors, particularly for layers with high deductible. The uncertainty added by the 
frequency distribution affects more lower layers than higher layers, this is due to 
the fact that there would be more claims affecting lower layers. 

In the data set we are considering it seems reasonable to use extreme value sta- 
tistical methods as has been discussed in McNeil (1997), but for any other data set 
other distributions might provide a better model depending on the line of business 
and the type of claims. 

By incorporating different levels of uncertainty that might affect the premiums 
for a certain risk the pricing actuary is given tools to make decision about what 
premium should be reasonable that is neither too low nor too high. Other external 
sources of information should also be taken into account when princing excess of 
loss reinsurance such as the market competition and insurance cycles. 
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