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1. Executive Summary

The purpose of this paper is to describe some of the practical steps that are involved
in various ways of measuring reserve variability. It is aimed at those who have been
tempted by the theory but have been put off by the lack of explicit details of what on
earth you do in practice!

The three methods described are Bootstrapping, Operational Time and Thomas
Mack's Distribution-free approach. The first two of these methods were described in
a 1993 Working Party paper on Variance in Claim Reserving. Following that Paper,
various people expressed an interest in trying out some of the techniques, but
stumbled at translating theory into practice. This stumbling was the prompt for this
paper to be written.

It is not the intention to go into the theoretical considerations of the various methods
in any great detail. For further information regarding Bootstrapping and Operational
Time, the reader is referred to the 1993 Working Party Paper on “Variance in Claim
Reserving”. Thomas Mack’s Distribution-free approach is described in his prize-
winning CAS paper “Measuring The Variability Of Chain Ladder Reserve Estimates”,
Details of all three methods may be obtained from the various sources listed in the
Bibliography

The 1993 Working Party Paper compared the results from a variety of stochastic
reserving methods as applied to three sets of real data. This work has been extended
in this paper to include Thomas Mack’s Distribution-free approach. The results of
various different measures of variability are then compared (Bootstrapping,
Operational Time, Distribution-free approach and Log-Linear Regression), to see
how consistent they are in producing variability measures
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2. Bootstrapping 

In order to put section 2.2 into context, section 2.1 is to a large extent a re-hash of 
the introductory section on Bootstrapping from the 1993 Working Party Paper. 

2.1 So What’s It All About” 

The essence of Bootstrapping is to take a sample of data 4 from an unknown 
distribution B. and then obtain information about a random variable C(A,B) by re- 
sampling the observed data A in an appropriate way. In a reserving context, a triangle 
of paid claims is the data sample “A”. The unknown claims distribution is “B”. The 
future claim payments, or Reserve, is the random variable “C(A,B)“. 

In a reserving context then, Bootstrappin g lets us produce information about the 
Reserve, C(A,B), such as an estimate of its variance. A basic reserving method, such 
as a chain-ladder. only gives us a point estimate of the Reserve. Bootstrapping gives, 
in addition, an indication of the extent to which we expect the Reserve to vary either 
side of this expected value. 

Bootstrapping can also shed light on more sophisticated reserving models, Take for 
example the Regression model based on Log-Incremental payments from the IOA 
claims reserving manual. The model of the claim process is described as: 

Log(Pij) = a(i)+b(j)+Eij 

where Pij are the claim payments in Accident Year i at development period j, a(i) and 
b(j) are the parameters fitted by the model and Eij is an Error term. 

The method produces Maximum Likelihood Estimates for the future claims 
payments, MLE(Pij). However, the MLEs are biased, that is: 

E( MLE(Pij) ) > E(Pij) 

The MLEs are asymptotically unbiased, that is. as the sample size gets larger, 
E(MLE(Pij)) gets nearer to E(Pij). However, for “small” sample sizes, as is usually 
the case with reserving data, E(MLE(Pij)) may be considerably different from E(Pij). 
Bootstrapping enables this bias to be estimated and may provide a better estimate 
than traditional asymptotics with only a small sample size. The examination of bias 
was the original impetus for looking at Bootstrapping (or more generally, the 
Jackknife). 
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Some more sophisticated reserving models produce estimates of the variance of the 
projected reserve. Bootstrapping can give the modeller an indication of the extent to 
which the model variance is a result of the underlying “noise” in the data (statistical 
error) or due to uncertainty in the modelling process itself - such as mis-specifying 
the model. or the fact that the estimates of the parameters of a model are themselves 
random variables and contribute a degree of uncertainty to the predicted reserve. 

The main steps in Bootstrapping reserve estimates are illustrated below. 

The basic data triangle ((1) in the diagram above) is taken and a reserving model 
fitted to it. In the case of the chain-ladder, this may assume, for example, that each 
accident year has its own “level” (of ultimate claims) and that there is then a 
development pattern that is constant across all accident years. This model not only 
projects future payments, and hence allows one to make reserve estimates, it also 
produces a fitted model for the past data too ((2) in the diagram above), as will be 
spelt out in a bit more detail in section 2.2. 

The difference between (1), the actual data, and (2). the fitted data, gives one a set of 
Residuals (shown as (3) in the diagram above). This is taken to be a typical 
representation of the extent to which the real data and the model may differ. In other 
words, if the data is just a realization of some random process, another realization of 
the process could lead to another set of data that differs at any point from the model 
by any one of the set of Residuals. 
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Boots trapping Example 
Original Data Triangle 

Actual Cumulative Paid Claims 
Accident Years of Development 
Year 0 1 2 3 4 5 6 

1987 39,110 65,176 69,047 70,899 71,303 71,814 71,963 
1988 35,877 58,094 61,884 63,330 63,980 64,254 
1989 39,907 66,009 72,310 74,273 76,390 
1990 51,296 89,666 95,878 98,097 
1991 64,109 107,279 118,753 
1992 73,944 122,541 
1993 76,050 

The trick is then to produce lots of these other possible realizations of the data by re-
sampling the Residuals and adding them to the fitted model to produce lots of sets of
possible data triangles, known as Pseudo-Data. For each triangle so produced, the
reserving method is run, so that a series of Reserve estimates is produced - Pseudo-
Reserves. If this is done many times, one will have a large collection of Pseudo-
Reserves, which will have a certain distribution - that is, they will have an expected
size, and will vary around that expected size by a certain amount which can be
measured. It is the variation of these Pseudo-Reserves which gives us a measure of
variability of the reserve estimate. These steps are described in a bit more detail in the
following section.

2.2 The Steps In Practice

The following goes through the steps in arriving at the Residuals, one set of Pseudo-
Data, and one Pseudo-Reserve, for a sample triangle of data. To produce an estimate
of the reserve variability, many sets of Pseudo-Data and hence Pseudo-Reserves
would be produced, and the distribution of those Pseudo-Reserves examined.

First of all, consider a triangle of data.
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0 1 2 3 4 5 6 

37,924 63,418 68,614 70,330 71,400 71,814 71,963 
33,931 56,741 61,391 62,926 63,883 64,254 
40,574 67,850 73,410 75,245 76,390 
52,897 88,456 95,704 98,097 
65,636 309,760 118,753 
73,280 122,541 
76,050 

From this triangle we can calculate the Cumulative Paid Development factors
necessary to perform a chain-ladder projection, as shown below:

Bootstrapping Example
Original Data Triangle

Cumulative Paid Loss Development Factors
Accident Years of Development

Year 1/0 2/1 3 /2 4/3 5/4 6/5
1987 1.666 1.059 1.027 1.006 1.007 1.002
1988 1.023 1.010 1.004
1989

1.619 1.065
1.654 1.095 1.027 1.029

1990 1.748 1.069 1.023
1991 1.673 1.107
1992 1.657
1993

Vol Wtd Avg: 1.672 1.082 1.025 1.015 1.006 1.002

The development factors are just the ratios of cumulative paid claims from one period
to the next, calculated in the usual fashion.

The chosen average factors can then be used to project the cumulative paid claims to
ultimate. This does a model for the claims process, namely a level for each accident
year (the ultimate amount of claims), and a payment pattern by which that ultimate is
reached (constant for all accident years). This model can then be used to fill in the
rectangle - both for the future claims payments, and the past claims triangle, showing
what the model would have predicted the historic payments to be. The fitted past
cumulative payments are shown below.
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Accident 
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1988 
1989 
1990 
1991 
1992 
1993 

Years of Development

Fitted Data Triangle

Fitted Past Cumulative Years



Each accident year follows the pattern chosen, so the ratio of cumulative claims in 
development year 1 to those in development year 0 should be 1.672 for each accident 
year and so on. The last diagonal matches our actual data, and will be projected to 
the same ultimate as our original data triangle What we are interested in is the 
incremental version of the fitted data. We are going to Bootstrap based on the 
Residuals between the incremental fitted payments and the incremental actual 
payments, We could Bootstrap based on the difference between the cumulative actual 
and fitted data, but to justify inferring results from the Bootstrapped reserves, we 
need to assume that all the Residuals are independent: this is unlikely to be the case 
for cumulative data. The incremental version of the cumulative fitted data, ((2) in the 
diagram in section 2.1). is shown below: 

Bootstrapping Example 
Fitted Data Triangle 

Accident 
Fitted Past Incremental Values (2) 
Years of Development 

Year 0 1 2 3 4 5 6 
1987 37,924 25,494 5,196 1,716 1,070 414 149 
1988 33,931 22,810 4,649 1,535 957 371 
1989 40,574 27,276 5,560 1,836 1,145 
1990 52,897 35,559 7,248 2,393 
1991 65,636 44,123 8,994 
1992 73,280 49,261 
1993 76,050 

From the fitted incremental claims we need to deduct the actual incremental paid 
claims. which are shown below 

Bootstrapping Example 
Original Data Triangle 

Actual Incremental Paid Claims(1) 
Accident Years of Development 
Year 0 1 2 3 4 5 6 

1987 39,110 26,066 3,871 1,852 405 511 149 
1988 35,877 22,217 3,790 1.446 650 274 
1989 39,907 26,103 6,301 1.963 2,117 
1990 51,296 38,370 6,212 2,219 
1991 64,109 43,171 11,474 
1992 73,944 48,597 
1993 76,050 

This is triangle (1) in the diagram explaining the Bootstrapping process in section 2.1. 
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When we deduct (1) from (2) we get a triangle of Residuals, also shown below: 

Bootstrapping Example 
Calculated set of Residuals (3) 

Fitted Incremental (2) - Actual Incremental Values (1) 
Accident Years of Development 

Year 0 1 2 3 4 5 6 
1987 (1,186) (572) 1,326 (136) 665 (97) 0 
1988 (1,946) 593 860 89 307 97 
1989 668 1,173 (741) (128) (972) 
1990 1,601 (2,810) 1,036 174 
1991 1,528 952 (2,480) 

1992 (664) 664 
1993 0 

We could equally well deduct the Fitted Incremental Values from the Actual 
Incremental Values. The expected value of the re-sampled Residuals is, in this case, 
zero. so it makes no difference whether we subsequently add or subtract them to our 
Fitted data when producing the Pseudo-Data. 

We can now produce as many sets of Pseudo-data as we want. We just need to pick 
a triangle from any of the points in the triangle of Residuals, each time picking the 
Residuals at random, so we can use a given Residual more than once each time we 
produce a set of Pseudo-Data. A typical re-sampled set of Residuals is shown below: 

Bootstrapping Example 
Re-sampled Residuals (4) 

Simulated Residuals picked from whole triangle of Residuals 
Accident Years of Development 
Year 0 1 2 3 4 5 6 

1987 593 0 (97) (572) (1,946) 307 89 
1988 (1,186) 0 97 1,036 1,036 1,326 
1989 1,173 668 (664) 952 (572) 

1990 (1,946) (97) 668 668 
1991 (1,186) 1,601 1,601 
1992 665 1,173 

1993 1,036 
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To the set of re-sampled Residuals (4), we add the original fitted data. This produces 
a set of Pseudo-Data. This is one of the triangles that we think could equally likely 
have been produced from the claims process that produced the original set of claims. 
An example using the re-sampled Residuals is shown below: 

Bootstrapping Example 
Pseudo-data triangle 

Fitted Incremental Past Data(2) + Re-sampled Residuals (4) 
Accident Years of Development 
Year 0 1 2 3 4 5 6 

1987 38,517 25,494 5,100 1,144 (876) 721 239 
1988 32,745 22,810 4,746 2,571 1,993 1,696 
1989 41,747 27,943 4,896 2,788 572 
1990 50,951 35,463 7,916 3,061 
1991 64,450 45,724 10,594 
1992 73,945 50,434 

1993 77,086 

We can now take this triangle of Pseudo-Data and perform our reserving method on 
it. To do this we need to go back to the cumulative version of the Pseudo-Data, 
calculate the development factors in the usual fashion, and then calculate the reserve 
estimates in the usual fashion These three stages are shown below: 

Bootstrapping Example 
Pseudo-data triangle 

Cumulative version of Fitted Data (2) + re-sampled Residuals 
Accident Years of Development 
Year 0 1 2 3 4 5 6 

1987 38,517 64,011 69,111 70,254 69,378 70,100 70,338 
1988 32,745 55,555 60,301 62,872 64,865 66,561 
1989 41,747 69,691 74,587 77,375 77,947 
1990 50,951 86,413 94,329 97,390 
1991 64,450 110,174 120,768 
1992 73,945 124,380 
1993 77,086 

166 



Bootstrapping Example 
Pseudo-data triangle 

Cumulative Development Factors Accident Years of Development 
Year 1/0 2/1 3/2 4/3 5/4 6/5 

1987 1.662 1.080 1.017 0.988 1.010 1.003 
1988 1.697 1.085 1.043 1.032 1.026 
1989 1.669 1.070 1.037 1.007 
1990 1.696 1.092 1.032 
1991 1.709 1.096 
1992 1.682 
1993 

Vol WtdAvg: 1.687 1.086 1.032 1.008 1.018 1.003 

Bootstrapping Example 
Pseudo-data triangle 

Predicted future Cumulative claims Predicted 
Accident Years of Development Ultimate Pseudo 

Year 1 2 3 4 5 6 Claims Reserve 
1987 
1988 66,788 66,788 2,534 

1989 79,351 79,621 79,621 3,231 
1990 98,172 99,940 100,280 100,280 2,183 
1991 124,640 125,640 127,903 128,338 128,338 9,585 
1992 135,098 139,429 140,549 143,080 143,567 143,597 21,025 
1993 130,082 141,293 145,822 146,993 149,640 150,149 150,149 74,099 
Total 668,744 112,658 

Notice that the development factors are different from those chosen when using the 
original model 

167 



To produce an estimate of the variability of the Pseudo-Reserves, we simply need to 
resample the Residuals many times, each time producing a different set of Pseudo- 
Data and a different Pseudo-Reserve. We will then have a whole series of Pseudo- 
Reserves, for example, looking at the total reserve, we may have a collection of 
estimates: 

112,500; 110,500, 113,750; 112,000; 116,250; 107,500; ..... and so on 

We can then look at the shape of these reserves. For example, one might find that 
30% were lower than 110,000, 20% were in the range 110,000 to 114,000 and the 
remaining 50% were above 115,000. If we have thousands of Pseudo-Reserves to 
observe, we will get a very smooth shape for this distribution. In fact, here’s an 
example: 

The actual numbers in the graph above are taken from a different simulation and are 
just to illustrate the type of shape one might expect. 
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2.3 Some Details Of The Steps Taken So Far 

There have been a couple of areas so far where there have been leaps in going from 
one stage to the next, without spelling out some of the alternative ways of 
proceeding. One such stage is when one chooses Residuals to re-sample when 
producing the Pseudo-Data. In the example in section 2.2, a new triangle of 
Residuals was picked from anywhere in the actual triangle of Residuals. This worked 
fairly well, since there were not drastic differences in the size of the Residuals across 
the triangle. If one is looking at triangles where this is not the case, for example 
because the total payments in the initial years are very much larger than later 
payments, one may try and refine the model by partitioning the Residuals into two or 
three sets, so that the re-sampled Residuals in the first couple of development periods 
are only chosen from the first couple of periods of the original Residuals triangle and 
so on. This will lead to the relative variation in the size of claim remaining more 
nearly constant across the triangle: large total payments initially varying by 25%, say, 
and smaller total payments later on varying by a similar percentage. 

If one lets the re-sampled Residuals in later development periods be chosen from 
earlier Residuals. one may find that the variation in the later payments is that much 
higher, fitted payments of a few hundred having re-sampled Residuals of a few 
thousand added to them and so on. One could argue that this is not entirely 
unrealistic, however, as in the tail, although one will get lower total payments, one 
often expects a small number of very large claims which may vary greatly in size. In 
any event, the impact at this far end of the triangle is not great on the total, and we 
are usually more concerned with the reserves for the more recent accident years. 
Bootstrapping is generally far too crude to infer anything reliable for older accident 
years, after five or more years development say. In the comparison of the methods in 
section 5, the re-sampled Residuals have been chosen from the entire triangle, and 
where the results are sensible, they correspond fairly well to those from other 
methods. 

169 



The other step implicitly taken in the example is that when calculating the Pseudo- 
Reserve. the actual cumulative payments to date were deducted from the Ultimate 
claims, as calculated from the Pseudo-Data The alternative would be to deduct the 
cumulative claims taken from the Pseudo-Data triangle. Deducting the Pseudo-Data 
cumulative claims leads to a very low degree of variability: whenever one has a low 
set of Pseudo-Data one has a low Pseudo-Ultimate and vice versa. The variability of 
the Pseudo-Reserve is therefore greatly reduced. One could argue that we are 
interested in the difference between the Pseudo-Ultimate and the actual cumulative 
paid claims to date. We are saying that the actual data is just one realization of some 
random process and all the other re-sampled sets are just as Likely, so we could just 
as easily have ended up with all the other Pseudo-Reserve estimates as our actual 
reserve estimate. Certainly comparing the Bootstrapping SE’s with other methods, 
the results look far too low if one deducts the Pseudo-Data cumulative payments, and 
broadly similar if one deducts the actual Cumulative payments to date, all of which 
tends to suggest sticking to Pseudo-Ultimate less Actual for the Pseudo-Reserve. 

Finally, there is the mechanism by which information on the Bootstrapped reserves is 
collated. For the sample data looked at in section 5, the Add-In package @Risk was 
used. This can be added on to Lotus, Symphony or Excel spreadsheets, amongst 
others. It basically just re-calculates the spreadsheet many times, letting certain cells 
in the spreadsheet be realizations of a random variable. and collates the results in a 
friendly Fashion. There is no reason why this cannot be done in a normal spreadsheet 
without the Add-in. however, and this has been easily done in practice. A simple 
macro re-calculates the spreadsheet, each time picking a new set of re-sampled 
Residuals, and storing the results of each simulation in a separate area of the 
spreadsheet. The re-sampling can be achieved by, for example, placing all the 
Residuals in a numbered table. and using the spreadsheet’s random number generator 
to pick out a new set of Residuals. The results can then be analysed and measures of 
variability such as standard errors and so on calculated. 
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3. Operational Time 

3.1 Recap Of The Model 

The Operational Time model is described in Tom Wright’s CAS paper “Stochastic 
Claims Reserving When Fast Claim Numbers Are Known”. The Operational Time 
model attempts to represent the underlying claims settlement process. The starting 
premise is that the cost of settling claims and the order in which they are settled are 
related - that is, typically, the longer the period to settlement, the greater the final 
settlement cost is likely to be The method therefore develops a model of the claim 
settlement cost as a function of the relative proportion of claims settled (this time- 
frame is known as Operational Time). In fitting this model, data is required for the 
amount and number of claims settled. as is an estimate of the ultimate number of 
claims. 

3.2 When Is It Likely To Be Useful? 

The method is likely to be of most use where the greatest cause of uncertainty in 
predicting ultimate claims is due to individual claim costs - for example, Motor 
Bodily Injury (BI) and other BI classes It should also be of particular use when it is 
believed that settlement rates are changing, as the model may be able to capture these 
changes more effectively than traditional link-ratio approaches. Because it is a 
statistical model, standard errors of the reserve estimates can also be calculated to 
enable a view on the variability of reserves to be taken. It is also then possible to 
identify the components of this error. 

3.3 Some Limitations 

The Operational Time model does not utilise the case reserves and relies purely on 
the amounts of paid claims and numbers of claims paid and reported. Clearly 
information on case reserves is often a significant element of the reserving process. 
The model is sensitive to the estimated future number of settled claims, and these 
estimates need careful scrutiny. Inflation is a parameter that may be modelled and this 
is also an area where close scrutiny is required. 
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3.4 Outline Of The Main Steps 

Operational Time (τ) is the number of claims closed to date expressed as a 
proportion of the ultimate number of claims. Thus, for a given accident year, it starts 
at zero and increases to 1. Transforming into Operational Time eliminates the need to 
model settlement rates (although assumptions about settlement rates are made at 
various stages in the process). The transformation also makes estimating the standard 
errors of claims more straightforward: larger claims tend to take longer to settle and 
have different claim size distributions than claims settled earlier; when modelling in 
development time, the time of settlement of a given claim will also be uncertain, so 
the appropriate claim size distribution is uncertain too - modelling in Operational 
Time avoids this difficulty 

Broadly the steps involved in the Operational Time model are: 

1. Estimate the Ultimate number of claims for a given accident year. This can 
be done by traditional methods. This leads to... 

2. Calculate τ (i,d) for each accident year (i) and each development period (d) to 
date. This is done simply by dividing the number of claims settled to date by the 
estimated Ultimate number of claims (this is the definition of Operational 
Time). τ (i,d) may be different at a given point of development time far two 
given accident years if the settlement rates have changed. For the claims settled 
in a given period, say a quarter, the Operational Time is taken to be the average 
Operational Time during that quarter. 

3 Calculate the average payment. A(i,d). for each accident year and 
development period to date. 
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4. We can now express all the average payments A(i,d) as Α(τ), since, for a 
given (i,d) we know the corresponding t . So, if we have a data triangle with 
“n” data points, we now have “n” mean payments A1,A2,...An corresponding to 
“n” Operational Times τ 1 , τ 2,.. .t n. At this stage we can fit a model to the mean 
claim size as a function of τ, m (τ), based on the “n” sample values 
A( τ 1),. .,A( τ n). This is done using the Generalized Linear Modelling package 
GLIM. This enables us to fit a model to the mean claim size data with explicit 
assumptions about, for example, the error structure used in the fitting process, 
and calculate not only the parameters of the model, but also the standard errors 
of the parameters of the model. With some manipulation, estimates of the 
standard errors of future payments can then be made as well. The GLIM stage 
of the process is the only stage which needs anything other than 
straightforward manipulation in a spreadsheet. It is described further in section 
3.5. 

5. Estimate the run-off of the future numbers of settled claims for each accident 
year from the current date to Ultimate. This just involves producing a pattern 
for the settlement of the claims which we have estimated are still to be settled. 
In turn we can then... 

6. Calculate the Operational Time, τ, for these future periods between the 
current date and Ultimate. This is obtained just by dividing the number of 
claims settled at a given point in time by the estimated Ultimate number of 
claims. in the same fashion as that done in stage 2. 

7. Finally, we can now combine our estimates of the run-off (in Operational 
Time) of future numbers of settled claims from 6, with our model of the mean 
claim size as a function of τ from 4., to arrive at a stream of future payments 
and hence a reserve estimate (and by some manipulation, standard errors of the 
reserve estimate). 
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3.5 Using GLIM To Fit The Model 

GLIM usually assumes that models have one of a certain number of standard error 
structures, such as a Normal or Gamma error structure. The Operational Time model 
has a non-standard error distribution, however, and so the model has to be set up 
using the user-defined facilities of GLIM. GLIM allows the systematic part of the 
model to include a variety of different terms Typically these are of the form: 

In the nomenclature of GLIM, ∑β ιτι is the Linear Predictor, and log is the function 
(the Link function) that links the mean to the linear predictor (log(m( τ )) = ). 
Other terms such as log(~) can be used in conjunction with the various polynomial 
terms. In practice. polynomials up to. say, degree eight seem to enable a curve for 
m(s) to be Wed satisfactorily in most cases. .A printout of a GLIM (version 3.77) 
command file necessary to tit an Operational Time modei is given in Appendix I. 

The command tile is fairly heavily annotated to describe what each line does. The first 
few lines read in the data. The items required are the arerage costs (c), the 
Operational Times (t), the origin years (y). the development periods (d) and the 
numbers of claims (n) These fi\,e items of data are assumed, in this instance, to be in 
a single file (which GLIhf prompts the user to name) in five consecutive columns, in 
a file not more than IO0 characters wide. 

Two macros are tlehed. SITS and dres. to produce output necessary to look at the 
standardised residuals and the deviance residuals The particular GLIM command file 
shown does not go on to use these macros If the user did want to do so, the 
following line $1 ould ha1.e to be added. 

‘iuse si-es’iuse dres 

The deviance residuals are the signed square root of the contribution that each 
observation makes to the deviance, where the sign depends on the difference between 
the actual and fitted data They may be a better guide than standardised residuals for 
models which are non-Normal, for which standardised residuals may be markedly 
skew. 
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The tricky bit of the command file is in defining the non-standard error distribution 
GLIM uses a technique called Fisher’s scoring method to iteratively estimate the 
parameters in a model. This requires four pieces of information: 

(i) the relationship between the fitted values and the linear predictor, 

(ii) the derivative of the linear predictor with respect to the fitted values, 

(iii) the variance function, 

(iv) the contribution each observation makes to the deviance 

Normally when using GLIM, the user does not have to fret about what these 
functions are One would normally choose from standard combinations of error/link 
functions, for which the above four pieces of information are pre-defined. In this 
case, (i) and (ii) are simple enough, as we know that we have a Log Link function 
connecting the linear predictor (lp) and the fitted values (fv). We can therefore see 
that the fv = exp(lp)- and that d(lp)/d(fv) = I/fv. The other two items are defined by 
the error structure assumed. Fortunately, Tom Wright sets out precisely how to 
calculate these last two pieces of information in the paper referred to previously. The 
four pieces of information are defined in the command file as the four macros m1, 
m2, m3 and m4, which are printed in bold in Appendix I, to show how important they 
are, and are reproduced below. 

\mac m1 \cal%fv=%exp(%lp) \endmac 
\mac m2 \cal %di= l/%fv \endmac 
\mac m3 \cal %va=(%fv**2)/n \endmac 
\mac m4 \cal %di=wt*2*n*(-%log(%yv%fv)+(%yv-%fv)/%fv) \endmac 

wt is the weight given to each point: in the command file, negatives are weighted out. 
n is the number of claims read in previously, %fv are the fitted values, %yv are the 
values we are modelling. 

The final section of the command file then uses the \fit command to fit any 
combination of terms the user requires In the example given, the model fitted is an 
accident year level (YR) for each accident year, a constant force of inflation (I), and a 
series of polynomial terms of τ (T1, T2, T3 and so on). The user can specify how 
much information about the fit of the model he wishes to see using the \disp 
command. In the example, \disp l e shows the components of the linear predictor (l) 
and the parameter errors and their standard errors (e) 
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If the user wishes to use the output from the GLIM model in other programs, he can 
add a line to extract some of the results of the model to a file. For example, the 
following line extracts the parameter estimates and the variance-covariance matrix as 
vectors to a file: 

\ext %pe %vc 

Alternatively (and this is the way the author has done it), the user can output all the 
results to a GLIM log file, which can then be imported into, say, a spreadsheet, and 
manipulated as required. 

Once one has obtained the parameters of the model, you then have a model of 
average claim size, m( τ ) as a function of Operational Time. As we can calculate 
Operational Time for all future periods of time (stage 6 in section 3.4), we therefore 
have a set of average claim sizes at all future development times. Combining this with 
our projection of the future numbers of claims, gives us figures for all future 
payments. In practice, this has been done at quarterly intervals, although one could 
do this stage more precisely - as set out in Tom Wright’s paper. There seems to be 
very little difference in the results, however one makes the link between payments in 
Operational Time and payments in real time. 

The 1993 Working Party Paper esplained that in using Operational Time models, one 
makes various initial assumptions which can then be examined and possibly relaxed. 
One such assumption is that the coefficient of variation of individual claim amounts is 
the same for all Operational Times Generally the assumption of constant variation is 
not unreasonable. One can review the constant variation assumption and, if desired, 
adjust the model, so that bigger claims have more or less variation than smaller 
claims. One does this by replacing the macros m3 and m4 above with the macros m5 
and m6 below Rather than have %va=%fv **2/n in the m3 macro, which implies a 
constant coefficient of variation, one can have the variance function being a different 
scalar power of %fv. This allows the coefficient of variation of individual claims to 
depend on the mean claim size. The GLIM code to achieve this is illustrated below: 

\mac m5 \cal %va=(%fv* *%a)/n \endmac 
\mac m6 
\cal pt1=(%yv**(l-%a)-%fv**(1-%/a)/(1-%a) \ 
\cal pt2=(%yv* *(2-%a)-%fv**(2-%a))/(2-%a) \ 
\cal %di=wt*2*n*(%yv*pt1-pt2) \ 
\endmac 
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One can then define different values of %a within the command file by, for example, 
adding a line before the “fit” directive. 

\cal %a=1.6\ 

If the Residual plots against Operational Time tend to show a decreasing variance, 
this suggests trying a smaller value of %a and vice versa. 

So, we can now fit a variety of models for m( τ ). The question arises as to how to 
home in on a “good” model. If we consider fitting polynomials up to degree eight, 
there are 255 possible polynomials. The author took the approach that, with the 
speed of modern PC’s, it was feasible to look at all possible polynomial models in an 
automated fashion, rather than examine a series of models on an ad hoc basis. The 
approach taken was to fit all possible g-degree polynomials in one big GLIM 
command tile, and home in on a “good” model by looking at a combination of 
statistics and diagnostics, including the overall deviance of each model (a measure of 
how closely it fits the data), the significance of the model (as measured by a simple T- 
test on the parameter estimates and their standard errors as calculated by GLIM) and 
the number of terms used in the model 

This was done by using a Lotus macro to create a series of GLIM command files. 
The Lotus spreadsheet initially prints a .PRN tile, containing a series of GLIM 
commands, which GLIM can then use as a series of instructions to look at the fit of 
all possible 8-degree polynomial models. A summary of the diagnostics of this initial 
run, just giving information on the goodness of fit of the model. is then read back into 
Lotus. This is done by importing the GLIM log file - to which the output of the 
GLIM fitting is directed. The Lotus macro then dissects this information and uses it 
to print a new .PRN file, this time instructin g GLIM to output a greater range of 
diagnostics just for the best hundred models. The output of this second run is then 
used to choose a final selection of ten models, and this time a GLIM command file is 
printed, as a PRN file again, to produce a complete set of diagnostics. This final 
stage runs to several hundred lines of output, so it would not be practical to perform 
this level of analysis for all 255 models at the initial stage. Although all the above may 
sound a bit cumbersome. it only takes about five minutes on a 66Mhz 486 machine. 

This sifting process was used to examine how sensitive the final result is to the actual 
model chosen After all that effort, the answer is not very!! This is not that surprising 
when you think about it. The model is fitting an n degree polynomial (with n less than 
nine) to a set of points in the range (0,1). Apart from some ridiculous models, like a 
straight line or a quadratic, any model with a reasonable number of parameters will fit 
a fairly coherently grouped set of data pretty well. 
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To illustrate the sensitivity, or otherwise, of the results to the model chosen, 
Appendix II gives a summary of the reserve estimates produced by the “top 50” 
polynomial models for one of the 1993 Working Party sets of data. For those of you 
who are interested, this is Class 3 from the 1993 Working Party Paper. For this set of 
data, all the reserves from the “top 100” were within ±2% of one another and the 
“top 10” were within ±½%. The original model chosen for the Working Party came 
36th according to the grading system adopted, but the implied reserve was within 
½% of all the more highly graded models. 

The upshot of the lack of sensitivity of the results to the chosen model is, in the 
author’s opinion, that the user of such a model need not be too worried about going 
wrong at the GLIM fitting stage of the exercise (assuming one can get GLIM to 
work in the first place!) Where the results seem to be more sensitive, is in arriving at 
the ultimate number of claims and the settlement pattern of those claims. For most 
classes. ultimate claim numbers are relatively easy to model, and basic chain-ladder 
techniques should yield fairly consistent answers for the numbers of ultimate claims 
and their development 

36 Calculating The Standard Errors 

So far we’ve concentrated on the reserve estimates only. Having fitted the models 
using GLIM, it is possible to produce estimates of the standard errors, and break 
down the reserve variability into components from different sources. This can be 
done in a spreadsheet by manipulating the GLIM output. This involves a series of 
matrix manipulations. which are set out in Tom Wright’s original paper. Some of the 
algebra looks daunting, but basically you just have to follow your nose. 

Because one is making explicit assumptions about various elements of the claims 
process. and using a statistical model to fit the parameters, it is possible to produce 
variability estimates for various different components of reserve uncertainty. Tom 
Wright identifies four sources of variability due to uncertainties in: 

(i) severity (of claim payments), 
(ii) parameter uncertainty, 
(iii) future inflation, 
(iv) frequency (of claim payment) 
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The first component is relatively easy to estimate. The variance of individual claim 
payments is given by; 

Var(P(w,d)) = N(w,d) x φ ² x m( τ )² 

Where P(w.d) and N(w,d) are the amounts and numbers of payments respectively for 
origin year w in development period d, φ is the coefficient of variation referred to 
earlier, and is estimated as part of the fitting process as the deviance (as produced 
from the GLIM fitting stage) divided by the degrees of freedom of the fitted model. 
The sum of these variances give the variance for the reserve as a whole. 

The second component is probably the trickiest - see Appendix D of Tom Wright’s 
paper. From this. we know that 

Variance due to parameter uncertainty = δ T x V x δ 

Where V is the variance-covariance matrix of the parameter estimates and δ is a 
(column) vector of first derivatives of the outstanding claim amounts. 

For a model of the form m(?)= the derivatives are relatively 
easy to calculate. 

The dm/dß3 components of §, for example. will be a triangle of terms consisting of 
the incremental paid claims in each period, multiplied by the Operational Time cubed. 
Each column vector element of § will be the sum of the rows of this dm/dß3 triangle. 
A separate triangle is needed for each parameter. Although the whole triangle is 
calculated, it is only the row totals we are after- which form the elements of δ. 

If we model inflation, i, as an additional term in the model, exp(it), then similarly: 

dm/di = t x m(?) 

The variance-covariance matrix can be output directly from GLIM (using the \ext 
command mentioned previously). and armed with the above expressions for the 
derivatives of the outstanding claim amounts, we can arrive at the parameter 
uncertainty by some simple matrix manipulation to obtain δΤ x V x δ. The square 
roots of the leading diagonal of this matrix gives the parameter uncertainty estimates. 
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Appendix F of Tom Wright’s paper explains how to arrive at the variability due to 
claims inflation. In fact a slightly different route, cutting a few corners, was used by 
the author. An overall parameter variability measure was calculated, as described 
above, including the inflation parameter. The process was repeated, but excluding the 
inflation parameter. We thus arrive at two components of “parameter uncertainty 
excluding the inflation parameter” and “parameter uncertainty including the inflation 
parameter”. The inflation uncertainty is approximately the square root of the 
difference of the squares of the two items above. 

Finally, Tom Wright also sets out how the uncertainty due to claim frequency can be 
calculated, namely: 

Frequency variation = (?? x m(?0 + µ/M) x u 

Where ? is the latest Operational Time reached for a given accident year (so we 
have already calculated this); m(?)) is the average claim cost associated with that 
time, which we can calculate from our model; µ is the estimated outstanding claim 
amounts for that accident year; M is the estimated ultimate number of claims for that 
accident year; ? is the standard error of M. All the above components, bar ?, are 
already known ? can be calculated using standard log-linear regression techniques, 
for example, 

Assuming the four components of variability are mutually independent, we can obtain 
a measure of the total variability by taking the square root of the sum of the squares. 
The 1993 Working Party gave some examples of such components of variability. 
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4. Distribution-Free Approach 

4. 1 Introduction 

Thomas Mack has written a series of papers on the subject of the variability of chain- 
ladder estimates, most notably the CAS prize-winning paper “Measuring The 
Variability Of Chain Ladder Reserve Estimates”. In the CAS paper, he derives a 
formula for the standard error of chain-ladder reserve estimates without assuming any 
specific claim amount distribution function. For ease of reference, the techniques 
used by Thomas Mack are described as the Distribution-free approach. 

This section gives a brief summary of the paper, sets out how the detailed formulae in 
Thomas Mack’s paper(s) can easily be broken down into a series of simple 
calculations in a spreadsheet, and briefly describes some of the diagnostic checks that 
can be carried out to test the assumptions that form part of the model. 

4.2 The Assumptions 

The foundation of the Distribution-free approach is the observation of three main 
assumptions which are shown to underlie traditional chain-ladder techniques, These 
are: 

(i) E(Ci,k.+1/Cil,....Cik)=Cikfk, 1<i<I, 1<k<I-1, 

(ii) {Cil ,,.,, Cil}, {Cjl ,,.,. Cjl}, i ≠ j, are independent, 

(iii) Var(Cik+?/Cil....,Cik)= Cik σ k², 1<i<1, 1<k<I-1. 

Where Cik denotes the accumulated total claims amount of accident year i up to 
development year k, fk is the development factor from k to k+1, and σ k are 
parameters. The first two assumptions seem intuitively sensible, although these can 
be demonstrated to be the implicit assumptions of the chain-ladder more formally. 
The third assumption is induced from the fact that the estimator of fk. is the Cik- 
weighted mean of the individual development factors. 

Thomas Mack goes on to show that a corollary of assumption (iii) is that the 
development factors are not correlated. That is, if we have a particularly high 
development factor in one period, there is no tendency for the subsequent factor to 
be particularly low (or high). 
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4.3 The Main Results 

The estimate of the standard error of the reserve estimate for accident year i, Ri, is: 

The estimate of the standard error of the reserve estimate for all accident years 
combined, R, is: 

Cik. fk and σ k are just as before; a hat indicates an estimator of the particular figure. 
The estimators are as follows: 

This is the traditional volume-weighted chain-ladder estimate of the development 
factors. Different estimators for fk can be used. in which case the algebra is altered 
slightly. 

This is just the traditional chain-ladder method of calculating the ultimate claim 
amounts by multiplying the latest diagonal by all future development factors. 
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This is shown to be an unbiased estimator of σ k2. An estimate is needed for 0I-1; this 
can be obtained in several ways. One way is to extrapolate as follows: 

Although the previous formulae look quite daunting, they consist of nothing more 
than basic arithmetic - addition, multiplication and so on. With a clear head, they can 
easily be programmed into a spreadsheet. There are no matrices to manipulate, no 
regression to perform, no GLIM models to be fitted and no simulations to be 
collated. Once the formulae have been set up, a new set of data can be imported into 
a spreadsheet, say, and a simple “calc” of the spreadsheet will yield the estimates of 
the standard errors of the reserves for each accident year, and the reserve as a whole, 
for the flew set of data 

The author replicated the results in Thomas Mack’s 1993 ASTIN paper, 
“Distribution-Free Calculation Of The Standard Error Of Chain-Ladder Reserve 
Estimates”, by breaking down the formulae above into a series of shorter, less 
daunting, functions. The intermediate steps in this process are shown in Appendix III. 
III.1 shows the original cumulative data triangle, projected to ultimate, and the 
estimated development factors. III.2 shows the calculation of the first two 
intermediate functions, Dik and Ek These are defined to be 

In the Appendix, the subscripts are shown in brackets and ok is shown as s(k) - 
formatting in Lotus not being quite as friendly as in other packages! The Dik are then 
summed and scaled to give the ok estimates, according to the formula at the top of 
the page. 
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III.3 defines one other function, Fik, which is all that is needed to calculate the 

variance of the reserve estimates for individual accident years, SE(Ri)²-, as follows: 

This last expression is the estimate of the variance of the individual accident year 
reserve estimàtes - quite painlessly achieved 

To obtain the expression for the overall reserve variance, a few more Functions are 
defined, 

K, = SE(R)²+C,,G,J, 

The estimate of the overall reserve variance is then, finally: 

This is the result shown on III.4 of the Appendix. The figures correspond to the 
illustration in Thomas Mack's ASTIN paper. 



4.4 Some Diagnostic Checks Of The Assumptions 

The assumptions set out in section 4.2 can be validated. or otherwise, by some simple 
diagnostic checks 

Assumption (i) is checked by plotting Ci,k+1 or Ri,k+1 against Cik. This should 
show a random spread about the diagonal. If this is not the case, it is possible to 
make an alternative assumption (i)‘: 

(i)’ E(Ci.k+1?Ci1,...,Cik) = Cik fk+gk. 1 ≤ ≤ i ≤ ≤ 1-1, 1 ≤ k ≤ 1-1 

Assumption (ii) can be checked by plotting e against i+k (that is, calendar year), 

again looking for a random spread. 

Assumption (iii) can be adjusted by inspection of the model. For example, typically 
the ? will show some sort of decreasing progression from one year to the next, and 
it is possible to assume that ?: ≈ : e(?) , which leads to a revised (iii): 

(iii)’ Var (Ci.k,+1?Ci1,...Cik) = Cik σ k²c-ck, 1≤ ι ≤ 1 , 1≤ k ≤1−1 

This leads to a more stable set of reserve variance figures. Under the original 
assumption (iii). the variance figures tend to jump up and down from one year to the 
next. 

It is also possible to test various other aspects of the model, or look for distorting 
effects, such as a calendar year effect. Tests for correlations between development 
factors and calendar year effects arc set out in Appendices G and H of Thomas 
Mack’s CAS paper 

Some examples of the various diagnostic checks that can be performed will be shown 
at the Workshop session. 
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5. Comparison Of Methods 

186 

5.1 Introduction 

The purpose of comparing the measures of variability of the different methods is to 
some extent by way of validation Firstly, it is reassuring if there is a broad consensus 
as to the extent to which reserves can be expected to vary. Secondly, such a 
consensus would mean that the potential user could be just as happy with the broad 
indication of variability given by the simpler methods as opposed to the more 
complicated methods. Measures of relative variability may, for example, be required 
when considering the dynamics of capital requirements or performance measurement, 
so they are of interest for non-reserving applications too. 

The simpler methods, Bootstrapping and the Distribution-free approach, need only a 
spreadsheet and a very basic level of programming to implement and so are not 
beyond anyone who can use a spreadsheet. The more complicated methods do, 
however, tend to offer- more by way of diagnostics and further information about the 
model being fitted. 

5.2 Comparison Of Results 

The results for the three sets of data looked at by the 1993 Variance in Claim 
Reserving Working Party are summarized in the tables that follow: 



Comparison of Standard Errors 
Class 1 

Reserving Method 
Accident Operational Distribution 

Year Log-Lin Bootstrap Time -free 
1922 11% 29% 
1923 9% 22% 1% 
1924 8% 60% 22% 2% 

1925 7% 27% 21% 5% 
1926 6% 17% 20% 7% 
1927 6% 17% 22% 8% 
1928 5% 16% 19% 9% 
1929 5% 12% 16% 8% 
1930 6% 7% 12% 7% 
1931 6% 6% 10% 6% 

Total 3% 6% 7% 3% 

Reserve Reserve Reserve Reserve 
to year 13 to year 9 to Ultimate to year 10 

Comparison of Standard Errors 
Class 3 

Reserving Method 
Accident Operational Distribution 

Year Log-Lin Bootstrap Time -free 
1922 11% 101% 

1923 10% 84% 47% 
1924 10% 61% 27% 
1925 9% 43% 12% 
1926 9% 32% 8% 
1927 8% 61% 26% 10% 
1928 8% 31% 19% 6% 
1929 8% 15% 13% 6% 
1930 9% 8% 9% 6% 

1931 8% 4% 7% 4% 

Reserve Reserve Reserve Reserve 
to year 13 to year 9 to Ultimate toyear 10 
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The results are not immediately comparable as some of the methods project the 
reserve to different periods of time. nine, ten, thirteen years and to Ultimate. To all 
intents and purposes however, there is going to be very little difference in the 
reserves for all except the oldest years (which were disguised as being from the 
1920’s to help preserve their anonymity!), We are. in this instance, most concerned 
with the variability of the reserves as a whole, which will be very little affected by the 
slight differences in the period to which the reserves are projected. 

Comparison of Standard Errors 
Class 5 

Reserving Method 
Accident Operational Distribution 
Year Log-Lin Bootstrap Time -free 

1922 22% 68% 
1923 19% 49% 21% 
1924 17% 38% 16% 
1925 15% 31% 27% 13% 
1926 13% 17% 23% 14% 
1927 12% 16% 19% 14% 
1928 11% 18% 21% 14% 
1929 11% 16% 18% 14% 
1930 11% 15% 16% 15% 
1931 12% 18% 15% 19% 

Total 6% 9% 9% 8% 

Reserve Reserve Reserve Reserve 
to year 13 to year 9 to Ultimate to year 10 

To remind the reader, the standard error (SE) is the standard deviation of an estimate 
of a variable, allowing for the uncertainty inherent in making that estimate. It thus 
gives an indication of the extent to which one may expect reserves to vary from the 
expected value according to the model we are looking at. If the variability about the 
mean is broadly symmetric, we can say roughly that in two cases out of three, the 
reserve should fall within one standard error of the mean, and in nineteen cases out of 
twenty it should fall within two standard errors of the mean, 

The results indicated in the previous tables for older accident years do not generally 
mean very much. The reserves for the older years will tend to be very small relative 
to the reserves as a whole, so even if they are very variable, this will not affect the 
variability of the total greatly. 
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Class 1 could be described as Employer’s Liability type business; it probably has an 
element of latent type claims which distorts the picture. Class 3 is relatively shorter 
tail but contains an element of Bodily Injury type claims. Class 5 is longer-tail and has 
quite a high Bodily Injury content. 

Comparing the four methods, looking principally at the total reserve figures, we can 
say that they produce broadly similar results. On the whole, the Bootstrapping 
numbers tend to be higher than the measures indicated by other methods. Of the four 
methods, Bootstrapping is the least “scientific” in terms of the credibility I would give 
to the numbers, but if one wanted a ball-park number for overall reserve variability, 
then it seems to provide a comparable number. The overall figure for the 
Distribution-free method is reassuringly similar to that produced by the other two 
“complicated ” methods. The Distribution-free method tends to produce SE’s that are 
less stable from one year to the next; this is because the Distribution-free approach 
uses nine variance parameters as opposed to the other methods’ one. Even for 
individual accident years however. the Distribution-free SE’s look to be of the same 
order of magnitude. 

In summary then. all four methods seem to show a good consensus of results. Either 
of the very simple variability measures, Bootstrapping and the Distribution-free 
approach producing comparable overall numbers, in terms of the measures of 
variability. to more complicated methods. 
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Sample GLIM command file used to fit Operational Time model  Appendix I

\tra o\  !limits info sent to GLIM.LOG
\units 364\  number of values in each data vector
\data c t n y d\  !label for average cost data
\print ::'Enter filename for data':\ (prompt user for file
\dinput 10 100\  !assign a channel number for data, with max width
\warn\
\mac sres ! start macro for standardised residuals

\cal r = (%yv-%fv)/%sqrt(%va)\ !calculate standardised residuals
\print ::'Histogram of Standardised Residuals':\ ! create plots
\hist(s=1)r '*'\
\print ::'Standardised Residuals against Linear Predictor':\
\plot(s = l) r %1p ' + '\
\print ::'Standardised Residuals against Fined Values':\
\plot(s = 1)r %fv ' + '\
\print ::'Standardised Residuals against Accident Year':\
\plot (s = 1) r y ' + '\
\print "'Standardised Residuals against Development Period (years)1 :\
\plot(s = 1) r d ' + '\

\endmac\ lend macro
\mac drcs !start macro for deviance residuals

\cal sn = %if(%yv-%fv)<0,-1.1)\  !calculate sign of residual
\cal r = sn*%sqrt(%di)\  !calculate deviance residual
\print ::'Histogram of Deviance Residuals':\ !create plots
\hist(s = 1)r '* '\
\print ::'Deviance Residuals against Linear Predictor' :\
\plot (s = 1) r % 1p ' + ' \
\print ::'Deviance Residuals against Fined Values':''.
\plot (s = 1) r %fv ' + ' \
\print ::'Deviance Residuals against Accident Year':\
\plot (s = 1) r y ' + '\
\print ::'Deviance Residuals against Development Period (years)':\
\plot (s = 1) r d " + '\

\endmac\  !end macro
\cal t1=t : t2=t**2 : t3=t**3 \  !calculate extra variables
\cal t4=t**4 : t5=t**5 : t6=t**6 \
\cal t7=t**7: t8 = t**8 \
\cal i=y-l932+d\  !calculate lime index for inflation
\cal yr=%if(y> =1931, 10, y-l921)\  !calculate year groupings
\fac yr 10\  !declare yr as a factor with 10 levels
\cal wt=%if(c<0,0,l)\ !weight out negative amounts
\cal c = %if(c<0,0.001,c)\  !assign negatives (the value 0.001
\cal wt = %if(n< =0,0,wt)\  !weigh t ou t negative numbers
\cal n = %if(n<=0,0.001,n)\  !assign negatives the value 0.001
\mac ml \cal %fv=%exp(%1p) \endmac !set up macros for user defined models
\mac m2 \cal %dr = 1/%fv \endmac
\mac m3 \cal %va = (%fv**2)/n \endmac
\mac m4 \cal %di=wt*2*n*(-%log(%yv/%fv) + (%yv-%f\)/%fv) \endmac
\yvar c\own m1 m2 m3 m4 \  !define model as above
\weight wt\ !declare weights
\cyc 30 %prt l.e-6 1.e-8\  !specify sellings for iter_n control
\acc l0\ !set max accuracy for output
\cal %1 p=%log(%if(%yv<0,0.5,%yv+0.5))\ !initialise linear predictor
\fit I + YR + T1 + T2 + T4 + T5 + T6 + T7 + T8-1\disp 1 e\print ::\
\fit I + YR + T1 + T2 + T3 + T5 + T6 + T7 + T8-1\<disp 1 e\print ::\
\fit I + YR + T1 + T2 + T5 + T6 + T7 + T8-1\disp 1 e\print ::\

\stop\  !end batch mode and exit GLIM

!

. .. . ..

. .. . ..
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operational Time Reserving Summary of models 
Group 3 

Ordered by Number of Percentage 
Dev.& Original polynomial of terms Total 

Sig Dev Index Dev. Model terms Sig. Reserve 
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29 
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35 
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15 
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41 
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49 
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179 13.320 I + YR + T1 + T3 + T4 + T7 + T8 
211 13,323 I + YR + T1 + T2 + T4 + T7 + T8 
173 13,324 I+ YR + T1 + T3 + T5 + T6 + T8 
157 13.327 I + YR + T1 + T4 + T5 + T6 + T8 
117 13,329 I+ YR + T2 + T3 + T4 + T6 + T8 
205 13.330 I + YR + T1 + T2 + T5 + T6 + T8 
115 13,334 I + YR + T2 + T3 + T4 + T7 + T8 
109 13,335 I + YR + T2 + T3 + T5 + T6 + T8 
158 13,335 I + YR + T1 + T4 + T5 + T6 + T7 
I10 13,337 I + YR + T2 + T.3 + T5 + T6 + T7 
94 13,139 I + YR + T2 + T4 + T5 + T6 + T7 
181 11,339 I + YR + T1 + T3 + T4 + T6 + T8 
121 13,354 I + YR + T2 + T3 + T4 + T5 + T8 
174 13,357 I + YR + T1 + T3 + T5 + T6 + T7 
93 13,359 I + YR + T2 + T4 + T5 + T6 + T8 

213 13,365 I + YR + T1 + T2 + T4 + T6 + T8 
118 13,367 I + YR + T2 + T3 + T4 + T6 + T7 
62 13.373 I + YR + T3 + T4 + T5 + T6 + T7 
185 ,13,390 I + YR + T1 + T3 + T4 + T8 + T8 
206 13,391 I + YR + T1 + T2 + T5 + T6 + T7 
61 13,409 I + YR + T3 + T4 + T5 + T6 + T8 
182 ,13,412 + YR + T1 + T3 + T4 + T6 + T7 
229 I3.419 I + YR + T1 + T2 + T3 + T6 + T8 
135 13,416 I + YR + T1 + T6 + T7 + T8 
217 13,443 I + YR + T1 + T2 + T4 + T5 + T8 
122 13,446 I + YR + T2 + T3 + T4 + T5 + T7 
214 13,473 I + YR + T1 + T2 + T4 + T6 + T7 
186 13,522 I + YR + T1 + T3 + T4 + T5 + T7 
233 13,535 I + YR + T1 + T2 + T3 + T5 + T8 

100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
83% 
80% 
80% 
80% 
80% 
75% 
75% 
75% 
75% 
75% 
75% 
75% 
75% 
60% 
60% 

230 13,576 I + YR + T1 + T2 + T3 + T6 + T7 
124 13,601 I + YR + T2 + T3 + T4 + T5 + T6 
218 l3,617 I + YR + T1 + T2 + T4 + T5 + T7 
11 13,626 I + YR + T5 + T7 + T8 

241 13,684 I + YR + T1 + T2 + T3 + T4 + T8 
7 13,702 I + YR + T6 + T7 + T8 

252 13,411 I + YR + T1 + T2 + T3 + T4 + T5 
203 13,320 I + YR + T1 + T2 + T5 + T7 + T8 
171 13,328 I + YR + T1 +T3 + T5 +T7 +T8 
155 13,343 I + YR + T1 + T4 + T5 + T7 + T8 
107 13,359 I + YR + T2 + T3 + T5 + T7 + T8 
71 13,523 I + YR + T2 + T6 + T7 + T8 
139 13,534 I + YR + T1 + T5 + T7 + T8 
39 13,576 I + YR + T3 + T6 + T7 + T8 
75 13,592. I + YR + T2_ + T5 + T7 + T8 
43 l3,616 I + YR + T3 + T5 + T7 + T8 
51 13,676 I + YR + T3 + T4 + T7 + T8 
29 13.678 I + YR + T4 + T5 + T6 + T8 
4.5 13,700 I + YR + T3 + T5 + T6 + T8 
199 L3,334 I + YR + T1 + T2 + T6 + T7 + T8 
167 13,348 1 + YR + T1 + T1 + T6 + T7 + T8 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
4 
5 
5 
5 
5 
5 
5 
5 
5 
3 
5 
3 
6 
5 
5 
5 
5 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5 

921,752 
919,305 
920.813 
923.107 
920,529 
918.258 
924.464 
923,777 
918,863 
919,272 
922,538 
917.097 
915,810 
915,409 
925,693 
913,864 
914,719 
925,083 
911,951 
911,949 
926,924 
910,599 
909,475 
918,498 
908,137 
908,773 
906,608 
904,401 
903,206 
901,507 
901,224 
899,954 
917,646 
897,125 
927,.372 
915,447 
922,770 
924,400 
925,610 
926,494 
918,012 
912,722 
918,017 
913,781 
915,112 
911,777 
912,822 
910,516 
925,737 
926,421 
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