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Reasons for Modelling Dependences

• Pricing
• Solvency Assessment
• Capital Structure
• Portfolio Structure



How Do Dependences Arise?

• Factors affecting more than one variable
– E.g. insurance cycle, economic factors

• Other Random Factors



Examples

• World Trade Centre causing losses to 
Property, Life, Workers Compensation, 
Aviation insurers

• ENRON causing losses to the stock market 
and to Surety Bonds, E&O and D&O insurers

• Dot.Com market collapse causing the stock 
market to fall and losses to insurers of 
financial institutions and D&O writers



Examples (continued)

• WTC / Enron / stock market losses causing 
impairment to reinsurers solvency, so 
increasing credit risk on RI recoveries

• Asbestos affecting many past liability years at 
once

• WTC and other R/I losses led to reduced 
capacity causing severe lack of R/I capacity 
in space market



Modelling Dependences

• Model factors causing dependences and its 
relation to other variables
– Natural Hazards Models
– Insurance Cycle
– Economic Cycle and its effect on Property and 

Credit insurance
• After removing specific dependences use 

statistical methods
• Use Disaster Scenarios to examine the 

financial effect of extreme events



Purpose of Modelling

• Consider the effect of dependence
• Consider the whole dependence structure
• Examples

– Solvency: need to look at tail dependence
– Multi-Class Stop Loss pricing:

• Attachment close to expected L/R: dependence may 
not be crucial

• Attachment higher than expected L/R: dependence more 
important



Measures of Correlation

• Linear correlation 

– is not invariant under non-linear strictly increasing transformations

• Spearman’s Rank correlation 

– is the linear correlation of the ranks
– it is invariant under non-linear strictly increasing transformations

• Kendall’s tau

– Where Xj,Yj is an independent copy of Xi, Yi
– looks at the number of sign reversals
– it is invariant under non-linear strictly increasing transformations
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Same Correlation Different Dependence Structures
• Average does not tell the whole story
• Correlation does not tell the whole story

• In all graphs correlation is equal to 85%, but the dependence structure 
very different
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Copula Definition
For m-variate distribution F with j th univariant margin Fj
the copula associated with F is a distribution function
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Estimation of Dependences

• Historical Data
– Objective
– Dependences change over time
– Not enough data

• Educated Guesses
– Incorporate qualitative information
– Subjective
– Not always easy to capture dependence structure

• Theorems about limiting cases



Historical Data Example: 
London Market Loss Ratios

Loss Ratios for the 15 total classes from u/w yr 1982-1997
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Ranked Loss Ratios
Ranks of Loss Ratios
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•Average Rank Correlation is about 50%
•Average Rank Correlation is around 0% after “removing” premium cycle
•Proportional/Non Proportional
•Marine/All Other Classes
•Error in estimation is significant



Distribution of Rank Correlation Estimators

• Distribution of the estimator has been 
Simulated

• Based on 500 simulations

• Dependence Structure as for Bivariate
Normal



Distribution of Rank Correlation Estimators

Distribution of the Rank Correlation Estimator 
True Correlation is 0%
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Distribution of Rank Correlation Estimators

Distribution of the Rank Correlation Estimator 
True Correlation is 50%
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Distribution of Rank Correlation Estimators

Distribution of the Rank Correlation Estimator 
True Correlation is 90%
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Simulated Proportional – Non Proportional Amounts

• Pearson Correlation = 92%
• Dependence Structure not very clear
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Simulated Proportional – Non Proportional Ranks

• Asymmetric Tail
• Rank Correlation = 60%
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Effect of Inflation
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Educated Guesses
Quiz: Aviation Hull and Liability Size of Loss

• Highly positively related

• Positively related

• Unrelated

• Negatively Related

• Highly Negatively Related



Empirical Dependence Structure Aviation Losses
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Aviation Losses > 50m
Effect of threshold
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Judge Dependence

Disease Present Disease not Present
Symptoms A 180 45
Lack of Symptoms of A 36 9



Limiting Theorems

• Sparse data is often an issue in determining 
tail dependence

• In the univariate case
– We use the Normal distribution because of the 

Central Limit Theorem
– We use Extreme Value distributions because of 

Extreme Value Theorem
• Copulas ?



Definitions: Conditional Copula

• Copula is the dependence function of (X,Y)

• Copula is the joint distribution of U=F(X), V=F(Y)

• Conditional copula of U and V given U>u and V>v



Definition: Archimedian Copulas

• An Archimedian copula is defined by

• is a convex decreasing function in [0,1], with
• is called the generator of the Archimedian copula
• Examples are Gumbel, Clayton,  
• Archimedian copulas have some nice properties
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Example of Archimedian Copula: 
Gumbel

• Gumbel Copula (one of them)

– The generator function is 

– It is just the copula of the bivariate distribution
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Example of Archimedian Copula 
Gumbel
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Example of Archimedian Copula: 
Clayton

• Clayton Copula

– The generator function is: 

• Clayton has heavy lower tail. The survival Clayton copula has 
heavy upper tail

• Both Gumbel and Clayton copulas allow only positive dependence
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Example of Archimedian Copula 
Clayton
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Limiting Theorems - Current Research
• Research on limiting theorems by Charpentier, Juri and 

Wuthrich
• The conditional Copula of an Archimedian copula is 

also an Archimedian copula, but with a different 
generator

• Clayton is an invariant copula: The conditional copula 
of a Clayton Copula is also a Clayton copula. Only 
Clayton copula has this property.

• As u and v tend to 0 the conditional copula of 
an Archimedian copula tends to a Clayton 
copula!

• Similar result holds as u and v tend to 1, but for 
u=v.



Simulation of a copula
General Method

• simulate a value u1 from U (0,1)

• simulate a value u2 from C2 (u2 |u1)

• simulate a value un from Cn (un |u1…. un-1)

where Ci = C(u1,….,ui,1,….,1) for i=2,….,n



Example Simulation: Empirical Copula
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Example Simulation: Customised 
Density Copula
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Example Simulation: Cumulative Copula
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Example Simulation: Conditional Copula 
(partial derivative for continuous case)
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Comments on General Method for 
Simulating Copulas

• If you have many dependent variables the 
computer time may be prohibitive

• Other methods exist
– Simulation of univariate distributions can be done 

in other ways than inverting the cumulative 
distribution



Spherical / Elliptical Distributions
• Multivariate extensions of the univariate spherical and elliptical 

distributions
• Spherical Distributions: Density has the form:

• If       has a spherical distribution, then     can be written as

• where     is a uniform distribution on the hypersphere and R a 
positive random variable independent of 

• Examples of Elliptical Distributions:
– For n-variate Normal  
– For n-variate t 
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Comments on Elliptical Copulas

• Easy to simulate large number of variables
• Can be simulated by transforming simulated 

Multivariate Normal data
• Independent variables are multiplied by an 

appropriate matrix
• Different dependences between any pairs of 

variables possible
• Overall correlation determined by one 

parameter (matrix).



Simulating Multivariate Normal Copula

• Step 1
• perform Cholesky decomposition of nxn correlation matrix ρ

• Step 2
• generate n series of random normal distributions and put into a 

matrix

• Step 3
• apply Cholesky decomposition to matrix

• Step 4
• generate n independent series of the appropriate marginal 

distributions and put into a matrix

• Step 5
• re order simulations in step 4 to have the same ranks as in step 3



Simulating Multivariate Normal Copula
Simulated Independent Normal
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Comments on Normal Copula

• Dependence structure may not be 
appropriate

• The tails are asymptotically independent
• For any correlation -1<r<1 if you move far 

enough at the tails the variables behave as 
independent

• Is this a problem?
– It depends on the problem



Student T-Copula

• The tails are asymptotically dependent

• Easy to simulate: Simulate Multivariate Normal 
with Correlation table        and then multiply each 
normal variable by  a simulated               , where     
is the degrees of freedom
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Simulating Student t-copula

Normal Copula

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

2
νχ

ν

Student t Copula

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



Student T-Copula
• Student T-copula has two parameters. One (   ) 

determines the overall correlation and the other  (   ) 
determines the dependence at the tail.

• Kendall’s tau and linear correlation rho are related by the 
following:

• The smaller the value of     , the higher the tail 
dependence

• The relation                  holds for all elliptical distributions 
and can be used for robust estimation of the parameters
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Student T-Copula

• t-copula is used extensively to model 
dependences in financial data

• There is evidence that the Clayton copula fits well 
financial data at the extremes

• Lots of financial data available



Medical Insurance: Hospital v Non Hospital Charges
US 1991 experience Group 2: Losses in excess of $25K

• Pearson Correlation = 16%
• What dependence structure can you see?
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Medical Insurance: Hospital v Non Hospital Charges
US 1991 experience Group 2: Losses in excess of $25K

• Effect of threshold
• Rank Correlation = -20%
• Tail Dependence
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Medical Insurance: Hospital v Non Hospital Charges
Losses in excess of $25K AND Hospital in excess of 25K

• Rank Correlation =30%
• Tail Dependence
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Fitting Copula

• Maximum Likelihood Estimates
• Minimising Distance
• Conditional Correlation
• Other Methods Specific to Classes of 

Copulas, e.g. Archimedian, elliptical



MLE
• Random Vector Y (m dimension) has cdf

• a’s are the marginal distributions parameters,     
are the dependence structure parameters

• and pdf

• maximize Log Likelihood for sample size n
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MLE

• In practice it may be easier to fit the marginal 
distributions first.

• Then given the parameters for the marginal 
distributions maximise the dependence structure part 
of the likelihood:

• Answers are not generally the same as for MLE, but 
they are usually close to those of MLE.
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Fitting

• Four Copulas were tested
• By Comparing AIC

1. Clayton
2. Student t
3. Gumbel
4. Bivariate Normal



Data Conditional Correlation
Conditional Correlation
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Conditional Correlation

• Student t can have heavy tails even 
when overall correlation is 0!

• Clayton conditional correlation remains 
constant

• Gumbel not as heavy as the two above
• Multivariate Normal tail dependence 

tends to 0.



Conclusion
• Correlation may not be a sufficient measure of 

dependence. We may need to consider the whole 
dependence structure

• The method of modelling the dependence structure 
depends on the purpose of the analysis

• There are many methods of selecting an appropriate 
dependence structure
– Historical Data: Lack of data, consider error in estimations
– Educated Guesses: People are not very good at guessing 

dependences
– Limiting Theorems: Clayton as a limiting Archimedian

Copula. Research in progress



Conclusion (continued)

• Usual mathematical methods for fitting and 
testing the fit apply, as well as other methods 
more specific to certain classes of copulas

• Simulation of copulas can be computationally 
intense. Elliptical copulas are easier to 
simulate and have other desirable properties 
as well
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