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PRACTICAL "MODERN" BAYESIAN STATISTICS IN ACTUARIAL SCIENCE

ABSTRACT

The aim of this paper is to convince actuaries that Bayesian statistics could be useful
for solving practical problems. This affirmation is due to two main characteristics of
Bayesian modelling not yet fully explored by practitioner actuaries: first, the
possibility of absorbing subjective information and second, the wider range of models
available in the Bayesian framework.

In order to help in this "convincing" process this paper includes an overview of
Bayesian statistics in actuarial science and cites many published papers based on this
theory with insurance applications. An approach with as few formulae as possible will
be used to make it easier to follow for all actuaries, independently of their
involvement in statistics.
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1 INTRODUCTION

"(...) within the realm of actuarial science there are a number of
problems that are particularly suited for Bayesian analysis."

Klugman(1992)

Bayesian theory is a powerful branch of statistics not yet fully explored by
practitioner actuaries. One of its main benefits, which is the core of its philosophy, is
the ability of including subjective information in a formal framework. Apart from this,
the wide range of models presented by this branch of statistics is also one of the main
reasons why it has been so much studied recently. Artificial intelligence and neural
networks are examples of new disciplines that are heavily based on Bayesian theory.

Bayesian theory has been one of the most discussed and developed branches
of statistics over the last decade. There have been an enormous number of papers
published by a large number of statistical researchers and practitioners. The recent
developments are mainly due to, firstly, the recent computer developments that have
made it easier to performs calculation by simulations and, secondly, to the failure of
classical statistic methods to give solutions to many problems.

But, although so many developments have been occurring in Bayesian
statistics very few actuaries are aware of them and even fewer make use of them.
Throughout the works reviewed in this paper it is possible to observe that the authors
believe that Bayesian statistics can add great value to the role of a practitioner actuary
and, in a way, this paper forms a kind of manifesto.

Since the advent of credibility theory, which has at its core Bayesian statistics,
this statistical philosophy has not been greatly exploited by practitioner actuaries. It
was in 1914 that the first paper on credibility theory was published. This theory made
actuaries one of the first practitioners to use the Bayesian philosophy. Since then
many developments in credibility theory have occurred, but it is probably the only
tool based on Bayesian theory used in an office environment, and even this is rare.
However, judgement is used in an everyday basis and it is often argued that in this
way an informal Bayesian approach is used.

This paper expounds the development of Bayesian models in actuarial science
in academia, but of which, it is believed, very few practitioners are aware. In this way
the paper aims to build a bridge between modern Bayesian statistics and practical
problems. In the following sections around 20 models described in published papers
in actuarial journals will be rewritten in a more informal way, avoiding the extensive
calculations normally needed in a Bayesian application. On one hand it means that
actuaries that do not have a deep involvement in statistics can understand the ideas
behind the models. On the other hand it will not be possible to fully explain all the
calculations behind the models. So it should be stressed that the more interested
reader is encouraged to refer to the original papers in order to get a deeper explanation
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of the respective models.

The outline of the paper is as follows. In section 2, an introduction to Bayesian
theory is presented. Section 3 explains Bayesian approaches to traditional methods
such as credibility theory, claims reserving and graduation. These models are
discussed again in section 4 after an introduction to simulation has been given. In
section 5 models entirely built in a Bayesian framework are presented. Section 6
contains the conclusions.

2 INTRODUCTION TO BAYESIAN THEORY

"(...) all values are still selected on the basis of judgement, and the only demonstration
they (actuaries) can make is that, in actual practice, it works. (...) It does work!"

Bailey (1950)

As is well known, probability theory is the foundation for statistics. The
differences in the interpretation of the term probability define also the respective
differences in statistical theories. As examples, there are probability theories based on
frequency, classical, logic and subjective philosophies. The last one is the core of
Bayesian statistics.

Figure I

The subjective interpretation states that the probability that an analyst assigns
to a possible outcome of a certain experiment represents his own judgement of the
likelihood that a specific outcome will be obtained. This judgement will be based on
the analyst's beliefs and information about the experiment. As a contrast, frequency
statistics, for example, do not include formally this judgement but only the
information received from the observation set itself.

Bringing those interpretations to the inference problem of estimating a specific
parameter, Bayesian statistics differs clearly from the others. In classical and
frequency statistics the analyst is searching for a best estimator of a parameter that has
a true value, but which is unknown by him. In the Bayesian statistics the analyst does
not believe in this true value, but in a range represented by the previous information
that he has.

The recognition of the subjective interpretation of probability has the salutary
effect of emphasising some of the subjective aspects of science. It also defines a
formal way of including judgement about the process to the chosen model. This
subjective information is included in the model by defining a prior distribution for the
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unknown parameters.

Bayes theorem is the formal mechanism of incorporating prior information
into the modelling. This theorem mixes the prior subjective information with that
observed in the experiment, producing a posterior distribution. This distribution is
considered as an update of the previous judgement (prior) through the data observed
(likelihood).

More formally Bayes theorem is defined as follows. Consider a process in
which observations (X is the vector of observations1) are to be taken from a
distribution for which the probability density function is p(X |θ), where θ is a set of
unknown parameters. Before any observation is made, the analyst would include all
his previous information and judgements of θ in a prior distribution ρ(θ), that would
be combined with the observations to give a posterior distribution p(θ|X) in the
following way:

It is only after the posterior distribution is fully defined, that the estimation is
performed. It means that only after having all information at hand that the analyst will
define which estimation will be used. This definition step is called "decision theory".
So, if the analyst searches for a specific value, called "point estimate", he can
consider the mean, mode or any other statistics as the estimator (which depends on the
chosen toss function). A range, like a confidence interval, can also be calculated. Λ
further explanation of Bayesian theory can be found in any of the references on this
theory listed at the end of the paper.

In order to illustrate Bayesian statistics and show the difference of approaches
among statistical theories, a numerical problem is presented. This is a very simple
example and it was chosen in order to show step by step the concept behind Bayesian
analysis.

Consider a policyholder whose claim values (which are independent and

identical distributed) come from a specific distribution ρ(x|θ). Suppose we have

observed annual claims for 5 years with the following results:

124.93 110.67 106.93 104.05 101.60

Using the well known linear model, it would state that such values are from a
normal distribution with unknown mean θ and known variance σ2 (xi - normal (θ,σ2)
i = 1,...,5). In this model the maximum likelihood estimator (MLE) of θ is equal to the
sample mean:

' In this paper upper caps stand for vector and matrix, and small caps for single values
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In the Bayesian solution the approach would be different. Now the unknown
parameter θ is also considered as a random variable and this interpretation is
formalised by the inclusion of a prior distribution. The choice of this distribution is
completely the analyst's subjective decision. In the example described here we could,
for instance, look for another policyholder with similar characteristics or even some
other previous experience.

Suppose that this investigation suggested the value of 100 for Θ. In this case
the following prior distribution is chosen2:

θ ~ normal (100 ,σ2prior)

with σ2prior known, as suitable. Now, using Bayes theorem, the Bayesian minimum

least square estimator of θ is given by the formula3:

with 5 as the sample size.

It is straightforward to observe that the formula (4) is more complicated than
the one derived in (2). Formula (4) also includes the variances in order to calculate the
mean estimator, where the Bayesian estimator is a weighted mixture of the prior and
sample information. This mixture is clearer when the formula (4) is rewritten as
follows:

(4)

(5)

Now it is possible to see that if instead of 5 an infinitely large size for the
sample were given, all of the weight would go to the sample mean (z =1), giving the
solution in formula (2). On the other hand, if the value for σ2 were infinitely large, the
weight would go to the prior distribution mean (z =0).

Proceeding with the analysis of the Bayesian model, it would be interesting to
consider the mixture that is taking place. In order to do this, the full posterior
distribution ρ ( θ | x ) will be defined. This distribution is, again, a normal distribution
with mean given by (4) and variance:

(6)

2 Normal distribution was conveniently chosen by conjugacy. See references for further explanation.
3 This calculation is found in any reference of Bayesian theory at the end of the paper.
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Now it is necessary to fix the variance parameters. Taking a subjective

approach, define σ2 to be 100 and σ2priorto be 200. This gives a posterior mean and

variance of 108.76 and 18.18 respectively. The likelihood (when ρ(Χ|θ) is seen as a

function of θ) will also be normally distributed with mean 109.64 from the data, and

variance 20 ((σ2/sample size)). The plot of the prior and posterior distributions with

the likelihood is in figure 2.

This shows the way in which Bayes theorem allows the mixture of
information. Observe that the posterior distribution is close to the likelihood but still
keeping some influence from the prior.

It is argued that Bayesian theory gives a better description of what is going on,
since it does not give just a point estimate, but also a distribution related to the
parameter. But to apply it, many more calculations are needed to achieve this
estimation, even in this simple example. When σ2 is unknown, for instance, it is
necessary also to define a prior distribution for this parameter and the calculations
become even more complicated.

When a subjective approach is taken a prior distribution can be hard to define
and even harder to justify. In fact, it is one of the most controversial elements in
Bayesian statistics. If an analyst does not want to include prior information, but does
want to use a Bayesian approach, a non-informative prior may be included. In figure 2
it would mean that the shape of the prior distribution would be completely flat and the
posterior distribution would be the same as the likelihood (z =1).

There are many ways of defining a non-informative prior. The main objective
is to give as little subjective information as possible. So, usually a prior distribution
with a large value for the variance is used. Another way of including the minimal
prior information is to find estimates of the parameters of the prior distribution, using
the data. This last approach is called empirical Bayes, but often there is a relationship
between those two approaches - non-informative and empirical Bayes - that will not
be developed further here4.

Theoretically, a prior distribution could be included for all the parameters that

* For further details see any of the references of Bayesian theory at the end of the paper.
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are unknown in a model, so that any model could be represented in a Bayesian way.
However, this often leads to intractable problems (mainly integrals without solution}.
So the main limitation of Bayesian theory is the difficulty, and in many cases the
impossibility, of analytically solving the required equations.

In the last decade many simulation techniques have been developed in order to
solve this problem and to obtain estimates of the posterior distribution. These
techniques were turning points for the Bayesian theory, making it possible to apply
many of its models. On one hand, the use of a final and closed formula for a solution
is, generally speaking, more satisfactory than the use of an approximation through
simulation. On the other hand, simulation gives a larger range of models for which
solutions (or at least good approximations) can be obtained.

Now some more elaborate examples will be explored. In the next section
models with analytical solutions will be presented, and in the section 4 the same
problems will be reanalysed using a simulation approach. The models used in section
3 and 4 are listed in the following table, split by subject, type of solution and data set
used:

Paper

Bllhlmann and Straub (1970)
Klugman (1992)
Verrall (1990)
Klugman (1992)
Kimeldorf and Jones (1967)
Pereira (1998)
Charissi (1997)
Ntzoufras and Dellaportas (1997)
Kouyoumoutzis (1998)
Carlin (1992)

Subject5

(section)
CT(3.1)

CT(3.1)CL(4.2)
GR(3.3)
GR (3.3)
CT(4.1)
CL(4.2)
CL(4.2)
GR(4.3)
GR(4.3)

Type6

ANA
APP
ANA
APP
ANA
SIM
SIM
SIM
SIM
SIM

Data

Klugman (1992)
Klugman(1992)
Taylor and Ashe (1983)
Klugman (1992)
London(1985)
Klugman (1992)
Taylor and Ashe (1983)
Ntzoufras and Dellaportas (1997)
Kouyoumoutzis (1998)
Carlin (1992)

3 TRADITIONAL METHODS

"Statistical methods with a Bayesian flavour (...) have
long been used in the insurance industry (...)."

Smith et all (1996)

This section looks at some traditional areas of actuary theory: credibility
theory, the chain ladder model and graduation. Apart from one example cited in the
credibility theory subsection, all the models used in the following subsections have an
analytical solution. They are then used as illustrations of where modern Bayesian
theory can be applied without any approximation.

5CT= Credibility Theory; CL=Chain Ladder; GR = Graduation.
6 ANA = Analytical; APP=Approximation, but not simulation; SIM = Simulation.
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The section is divided as follows. Subsection 3.1 is about credibility theory
and two approaches will be described: one which was originally used when credibility
theory was introduced, and a purely Bayesian approach. The chain ladder technique
and graduation are also reviewed in a Bayesian framework in subsections 3.2 and 3.3.

3.1 CREDIBILITY THEORY

Credibility theory was first introduced in 1914 by a group of American
actuaries almost at the same time as the Casualty Actuarial Society was created. At
that time those actuaries had to define a premium for a new insurance product -
"workmen's" compensation - so they based the tariff on a previous kind of insurance
which was substituted by this one.

As new experience arrived, a way of including this information was
formalised, mixing the new and the old experiences. This mixture is the basis of
credibility theory, which searches for an credibility estimator that balances the new
but volatile data, and the old but with a historical support. Most of the research until
1967 went in this direction, creating the branch of credibility theory called limited
fluctuation.

The turning point in this theory, and the reason why it is used nowadays,
happened when actuaries realised that they could bring such a mixture idea inside a
portfolio. This new branch searches for an individual estimator (or a class estimator),
but still using the experience for the whole portfolio. Such an estimator would
consider the "own" experience on one side, but giving more confidence to it by also
including a more "general" one on the other side. In a way, it formalises the mutuality
behind insurance, without the loss of the individual experience.

There are many papers discussing this theory, but the one by Bühlmann (1967)
is generally seen as a landmark. In this paper credibility theory was completely
formalised, giving a basic formula and philosophy. Since then, many models have
been developed. Given that credibility theory is completely based on Bayesian
statistics, a bibliographical review is presented at the end of this paper.

In order to illustrate credibility theory the Bühlmann and Straub (1970) model
is used, which is a step forward from Buhlmann (1967)7. The data set is taken from
Klugman (1992), which is the first book on Bayesian statistics in actuarial science.
The observations are the number of claims (yij) for 133 occupations (i=l,...,133) in
workers' compensation insurance with 7 years experience (j=1,...,7). The respective
amount of the payroll (wij) is also known and is used as a weight for each
occupational class. In order to explain the data the history for class 11 is given in the
following table:

7 All formulae for both models are given in appendix A.
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Class
U
11
11
11
11
11
11

Year
1
2
3
4
5
6
?

Payroll
149.683
157.947
174.549
181.317
202.066
187.564
229.830

yij

6
6
5
10
13
7
8

Modelling the frequency ratio xij (yij/Wij) by the Bühlmann and Straub model
gives the following distributions:

(7)

For all i and j, and σ2, μ and ґ2 known. Now, with xi as the observed mean and

zi as the credibility factor for class i, the credibility estimator for the class ratio θi is:

The solution proposed by Bühlmann and Straub is to calculate the values of
σ2, μ and Ґ2 from the observations, substituting these values and coming out with the
solution for the formula above. Proceeding with their calculation changes formula (8)
to:

(8)

(9)

where is the estimated value of zi, after including the values for the variances and

is the overall observed mean.

It may not be clear where the prior information has been inserted into this
model. The reason for this is that the formula (9) was developed in order to balance

the information of the class own observed experience, with the observed overall

one, In this model the distribution p(θ) is not playing a rote of a real Bayesian

prior, but its parameters are substituted by the values calculated on the data set.

This type of solution is called empirical Bayes approach. In order to have a
fully subjective Bayesian solution another level of distribution would have to be
included. This would contain information about the parameters σ2, μ and ґ2, which are
considered unknown. In this way the model in (7) would include three levels and be
changed to :

(10)
(for all i and j)

8 Observe that once σ2, μ and ґ rare considered unknown ρ(θi) ρ(θj| μ ґ) for instance.
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In this new model p(xij |θi σ) stands for each class experience, p(θi | μ,ґ) for the

overall portfolio information and ρ(σ,μ,τ) brings the prior distribution for the

unknown parameters in the previous distributions. Now, p(θi | μ,ґ) informs only that

each class mean comes from the same distribution. Unfortunately unless very strong

assumptions for ρ(σ,μ,ґ) are included, it is not possible to derive the posterior

distributions for θ.

In order to use a pure Bayesian approach, Klugman (1992) included priors for
σ2, μ and ґ2, but in a "non-informative" way. No analytical solution is available and
an approximation technique (Gaussian quadrature) was used. Both solutions9 are
shown for some classes in the following table:

However, it is sometimes desirable to include more information in ρ(σ,μ,τ),
which would also mean more difficulty in calculating the solution. In order to
overcome such problems powerful simulation techniques have been developed in
recent years and subsection 4.1 shows how to apply them.

3.2 CLAIMS RESERVING

Claims reserving is one of the most important branches in the general
insurance area of actuarial science. Usually a macro model, where data are
accumulated by underwriting year and development year, is used, and the data are
given in a triangular format. One of the features of those models is the small amount
of data available for the later development years, and this gives a large degree of
instability to any estimate. Actuaries overcome this problem through professional
judgement when they choose factors or consider benchmarks.

9 Although data were observed for 7 years the two solutions only use 6 years to do the calculations.
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Forecast error10

Solution Forecasting

Class
Buhlmann

Klubman
and straub

4 0.037 0.0 0.03949 0.04045 — 0 — —
11 1,053.126 0.04446 0.04345 0.04422 229.83 8 9.99 10.16
112 93,383.54 0.00188 0.00201 0.00193 18,809.7 45 37.81 36.30
70 287.911 0.0 0.02059 0.01142 54.81 0 1.13 0.63
20 11,075.31 0.03142 0.03164 0.03151 1,3115.37 22 41.62 41.45

89 620.968 0,42997 0.29896 0.36969 79.63 40 23.81 29.44

Forecast error10 15.55 13.20

Buhlmann
and straub

Klubman



Here another way of including this subjective information will be given, which
is more formal, statistically speaking, since it uses a prior distribution. The approach
used here is the chain ladder technique, which is one of the most popular macro
methods to predict claims reserves. But in the following examples no inclusion of the
tail factor will be considered.

The data comes from Taylor and Ashe (1983), and the exposure factor per
underwriting years and the data are given below, where the influence of the exposure
has to be taken out from the claim amount before any analysis.

Exposure: 610 721 697 621 600 552 543 503 525 420

Development year
357848

352118

290507

310608

443160

396132

440832

359480

376686

344014

766940

384021

1001799

1108250

693190

937085

847651

1061648

986608

610542

933894

926219

776189

991983

847498

1131398

1443370

482940

1183289

1016654

1562400

769488

805037

1063269

527326

445745

750816

272482

504851

705960

574398

320996

146923

322053

470639

146342

527804

495992

206286

139950

266172

280405

2272»

425046

67948

In Kremer (1982), which is a paper on credibility theory, the chain ladder is
proved to be similar to the two way analysis of variance linear model expressed by:

With xij independent normal(θij, σ2), where θij = μ + αi + ßj and yij as the
incremental value of the claims for row (underwriting year) i and column
(development year) j .

The solution of Kremer (1982) is to calculate the MLE of the unknown
parameters together with the estimate of σ2. In Verrall (1990), which is the paper
reviewed here, the same model is used but a Bayesian solution is applied. In fact three
Bayesian solutions are presented: "pure Bayes without prior information", "pure
Bayes with prior information" and "empirical Bayes". The formulae of those models
are given in full in appendix B, but here the main ideas behind each model are given.
It is interesting to notice that in order to have an analytical solution, none of these
models includes a prior distribution for the variance parameters.

Proceeding the explanation, a prior distribution is attached to the model in (11)
that is rewritten in a matrix notation:

 (12)
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where

The "pure Bayes without prior information" uses a non-informative prior
approach. In this way, σμ-2,σα-2 and σβ-2 go to zero and the model solution gives
exactly the same results as the classical and usual MLE used in Kremer (1982).

But more information could be inserted straight into this second level
distribution, instead of using the non-informative one for all parameters. This is the
"pure Bayes with prior information" approach and will be applied by changing θ1 and
Σ in order to keep the non-informative approach for parameters (μ,β2,....βn,) but not
for the row parameters. Proper prior distributions for (α2,...,αn) are defined, but they
are hard to define, since there is no intuitive explanation related to them. In this
example the following set of prior distribution (based on the result obtained at the
MLE model) was chosen:11

 (13)
for all i = 2,...,n.

The third approach, "empirical Bayes" is based on the credibility theory
assumption, that there is some dependency among the parameters related to the row
and they are not really independent as before. So, in formula (12) the non-informative
approach is kept for (μ,β2, ..., βn), (σμ-2 and σβ-2 = 0 ), but a different one is imposed
for the row parameters.

Now, instead of defining a distribution like (13), the general distribution (12)

is kept and another level of prior distribution is added to (a2*, ...,an*), with a non-

informative approach. In this way no prior value is given, but only a dependency

among the row parameters is imposed.

All three models were applied to this data set. "Pure Bayes without prior
information", which is the equivalent to the MLB solution by Kremer (1982), had the
worse performance when compared to the other two in all analysis done by Verrall
(1990). "Pure Bayes with prior information" and "empirical Bayes" also had a better
smoothness to the row parameters as can be seen in figure 3:

" which is the same as ai* = 0.3 for i=2,..,n and σa2=0.05.

174

K is the design matrix in order to produce the model in (11)
I as the respective identity matrix,

are knownvariances,
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All these models have analytical solutions, but a prior distribution for the
variance parameters was not used. The way in which this can be done will be
explained in subsection 4.2.

3.3 GRADUATION

Graduation is an important part of the job of a life actuary and many methods
have been developed in order to carry it out. Using the definition from Haberman
(1996) "graduation may be regarded as the principles and methods by which a set of
observed probabilities are adjusted in order to provide a suitable basis for inference to
be drawn and further practical computations to be made".

The usual data set where graduation is applied includes the number of
policyholders in the beginning of the observation period (usually one year) and at its
end the number of occurred deaths is accounted. In order to illustrate it, the following
sample was taken from London (1985):

Age
(i)
63
64
65
66
67

Frequency

rate(xi)
0.00928
0.01226
0.01100
0.01120
0.01481

Number of:
Policyholders (ni)

9,487
10,770
24,267
26,791
29,174

Deaths (di)
88
132
267
300
432

Whittaker graduation is one of the most well known methods among actuaries.
This can be considered as the first Bayesian approach to graduation, since it can be
derived using Bayes theorem. But no real prior subjective information was formally
used in the first development of this model, in contrast to the approach given by
Klugman (1992) to the same model.

A model that could be seen as a step before the Whittaker one is the Kimeldorf
and Jones (1967) model explained in London (1985). This model is written fully in
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appendix C, and it states that the observed frequency of death will be modelled as:

 (14)

where X=(x1,...,  xn),
è =(è1...,  èn),

μ = (μ1,...,μη),
η is the number of ages and A and Β are known covariance matrices.

μ is taken from another life table and Β is fixed and fully explained in the
appendix C. The covariance matrix A is defined by the analyst and it is the one
controlling the amount of smoothness. This is also presented in the appendix, but
some other possible formats are discussed in London (1985). The graduated values
are obtained as the posterior mean of θ and the graph of the estimates in the example
analysed in London (1985) is shown on a log scale in figure 4.

The two Bayes results show how to control the model, with higher and lower
level of smoothness, depending on the chosen value of A. Bayes-low is also so close
to the observed data that it is even hard to distinguish them.

A different approach is presented in Klugman (1992), bringing a different
approach to the Whittaker model. Instead of using prior information from another
table, as in London (1985), a relationship is imposed among the parameters in ft In
order to do this, a design matrix is included transforming the model into:

 (15)
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Where K is the matrix that produces the zth differences of a sequence of
numbers. Choosing properly the values for A and S and letting z = 3 gives the
posterior mean as the same solution as the one proposed by the Whittaker model. But
in the new Whittaker approach not only the estimator of θ was found, but also its
covariance matrix. In this way a confidence region could be easily found.

In fact, one of the first applications of the model expressed in formula (15)
was the calculation of a reserve, where a confidence interval was also presented. The
case when a prior distribution is given for A and Β is also analysed in Klugman
(1992).

Section 3 has given an outline of models with a Bayesian flavour. Models
taking previous data information through p(θ) are shown, like Kimeldorf and Jones
(1967) and the "pure Bayes with prior information" from Verrall (1990). Also models
where ρ(θ) was presented to impose a dependency among θ was used, like the
"empirical Bayes" from Verrall(1990) and Whittaker graduation from Klugman
(1992). All the models have analytical solutions, and most of them are fully explained
in the appendix.

Now, in the following section, an introduction to simulation will be given,
which is the basis for the more elaborate models using Bayesian theory. Some models
where the variance parameter also has a prior distribution will also be considered.

4 SIMULATION IN BAYESIAN STATISTICS

"The difficulty in carrying out the integration necessary to compute the posterior distribution
has prevent such approaches from being seriously contemplated until recently (...)."

Carlin (1992)

As stated before, many models in Bayesian theory cannot be solved
analytically. In order to apply them an approximation would be required and
simulation is often used in implementing those models. This is not the only possible
kind of approximation and the Gaussian quadrature used in Klugman (1992) could be
cited as a different example. But since the advent of Gibbs sampling, simulation has
superseded all other types of approximation.

In order to illustrate the simulation philosophy, suppose that the posterior of a
specific parameter θ is needed. If an analytical solution were available, a formula
would be derived, where the observed data and known parameters would be included,
defining a final result. But, depending on the model, this solution will not be possible.
In such cases an approximation for the posterior distribution of θ is needed. One way
of finding this approximation is by simulation, that substitutes the posterior
distribution by a large sample of θ based on the characteristics of the model. With this
large sample of θ many summary statistics could be calculated, like the mean,
variance or histogram, extracting from this sample of the posterior distribution all the
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information needed.

There are a number of ways of simulating and in all of them some checking
should be carried out to guarantee that the simulation set is really representative of the
required distribution. For instance, it must be checked whether the simulation is
mixing well or, in other words, if the simulation procedure is visiting all the possible
values for θ. It should be also considered how large the sample should be, and
whether the initial point where the simulation starts does not play a big role. Among
many other issues, the moment when convergence to the true distribution of θ is
achieved should also be monitored.

All these features can make the technique difficult to apply, and, even worse,
perhaps dangerous to use. This happens because once all the needed procedures to
start the simulation are ready, a sample of θ could always been obtained. This,
however, does not mean that it is really representative of the posterior distribution.
The only way the analyst could assure that the sample does not have any deviation
from the posterior distribution is through the tests listed above.

The most popular type of simulation in Bayesian theory are the Markov chain
Monte Carlo (MCMC) methods. This class of simulation has been used in a large
number and wide range of applications, and has been found to be very powerful. The
essence of the MCMC method is that by sampling from specific simple distributions
(derived from the combination of the likelihood and prior distributions), a sample
from the posterior distribution will be obtained in an asymptotic way. Among the
techniques that use MCMC, one of the most popular is Gibbs sampling. WinBUGS or
a specifically developed program could implement this method.

WinBUGS is the newest version of BUGS (Bayesian inference Using Gibbs
Sampling) which was first made available in 1992. This software works under
Microsoft Windows® and this makes it easier to manipulate. Many useful tools for
analysis are already included, and this helps to check if the simulation follows the
rules cited here before. There is also software called CODA that produces some tests
to check whether the simulation can be regarded as representative of the posterior
distribution. It also includes a manual and a set of examples, and the more interested
reader should visit www.mrc-bsu.cam.ac.uk/bugs in order to get this free software.
Although it has a very specific notation and use, someone interested in redoing the
following examples should be able to do it, and get a feeling of what can be done
under WinBUGS.

One way of representing the model which is the basis of WinBUGS is the
graphical model. Such a scheme is often used in Bayesian analysis to give a better
understanding of the models, particularly when the dependencies between the data
and the parameters are complex. Figure 5 shows the graphical representation for the
Bühlmann and Straub model described in subsection 3.1.
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Where circles stand for random variables (Χij,θi,σ2,μ,ґ2), rectangles for
constants (wij) and the big rectangles for the index (i and j). This graphical model
shows that once the parameters θi are given, the data xij do not depend on μ or ґ2 any
more. It also shows that once θi are given, they contain all the model information
needed to update μ for instance. This feature is the basis of Gibbs sampling, since
through this conditional independence it is possible to derive simple distributions,
which will be used to update the parameters values. In the next sections most of the
model will have a graphical model to guide the reader on applying the model in
WinBUGS.

Simulation deals with missing values in a very straightforward way. Those
values are treated as variables, in the same way as the parameters. So, in each
iteration, a value for the missing value is also calculated and inference is carried out
as usual. In WinBUGS, for instance, the missing value is stated as a "NA" (Not
Available) in the data set itself.

In order to illustrate these techniques, the traditional models reviewed in
section 3 will be reconsidered in this section. In all of them, simulation will be used.
The order in which they are presented is also the same as in the previous section and
some of the examples have their code in WinBUGS written in appendix D.

4.1 CREDIBILITY THEORY

Returning to the credibility model in subsection 3.1, two new models will be
used here to apply WinBUGS. The first one only aims to show how to use WinBUGS
and is defined by the simply addition of prior distributions for the unknown
parameters in the Bühlmann and Straub model. The second one changes the core
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assumptions of the Bühlmann and Straub model and shows how this is easily
implemented in a simulation environment.

The data are the same as the one in subsection 3.1 and were also analysed by
Scollnik (1996) and Smith (1996). The approach used here is the one adopted in
Pereira (1998).

Recalling the model from Bühlmann and Straub, p(xij|θi,σ) is normal(θi ,σ2/wij)
and ρ(θi|μ,ґ) is a normal(μ,ґ2), with unknown σ2 , μ and τ2. In the solution proposed
by Klugman (1992) a set of non-informative prior distributions were used and the
solution, which did not have a analytical solution, was found by a non-simulation
technique. In that solution a program had to be specifically written in order to carry
out the model implementation and, depending on the approximation technique chosen,
the calculations could take 2 hours.

The first example in this subsection reanalyses those data, but using
WinBUGS. The model is written in a WinBUGS terminology in figure 6 with the
following set of prior distributions, which has a non-informative objective;

 (16)

Figure 6

1 2 In WinBUGS instead of the variance, the precision (1/variance) is used for the normal distribution
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The implementation of this model took 5 minutes on a fairly old computer,
with a total of 2500 simulations, where the first 500 were discarded to eliminate the
effects of the initial conditions. Before showing the results the second model will be
described. Since the observations are numbers of claims it is more suitable to model
the data using, for instance, a Poisson distribution rather than normal distributions. In
WinBUGS this is a direct generalisation of the previous model and it is only
necessary to change the model, using non-informative prior distributions (also
represented as graphical model in figure 7), to:

a~ uniform (0.01, 50) and β~ uniform (0.01, 50)

Figure 71 3

This model did not take much longer than the previous one to be implemented
with the same amount of data. Since one of the main quantities of interest is the
forecast of the number of claims for the 7t h year, this is done in WinBUGS without
calculating θi but rather by sampling the value of y17 directly. This is possible since
the values for the 7th year can be treated as missing values. The table below gives the
results, where the value of the deviance is related directly to the forecasted value of
y17.

1 3 WinBUGS code in appendix D.
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Observed data

Class

4
11

112
70
20
89

-
229.83

18,809.67

54.81

1,315.37

79.63

Forecast error

Normal

γ17

0
8

45
0

22
40

Forecast

-
10.15

38.24

0.60

41.24

29.56

Deviance

7.28

66.06

3.47

16.84

4.11

13.22

Poisson

Forecast

-
10.21

35.64

0.254

41.48
32.82

Deviance

-
3.57

6.63
0.57

6.55
6.17

12.44

Comparing these values to the ones found in subsection 3.1, it is observed that
the Normal solution is almost the same as the previous ones. The benefit for using the
Poisson distribution can be seen in the smaller forecast error found in this case. And it
is also observed that in many classes the deviance was smaller when the Poisson
distribution was assumed.

4.2 CLAIMS RESERVING

The flexibility in the solution by simulation gives an enormous number of
models that can be applied to better understand processes in insurance. In the previous
subsection the use of a Poisson distribution was a fairly easy and straightforward one.

The use of WinBUGS in order to implement the Gibbs sampling technique is a
very convenient one. This is mainly because of the development of a specific program
is not needed and the number of techniques to control the simulation which are
already built in.

Not much research has been done in order to implement chain ladder based
models using WinBUGS, This mainly due to the amount of missing values which
there are in claims reserving (the outstanding claims are treated as missing values in
WinBUGS). So in order to use such triangular data, the model was implemented
either using specifically written programs, or by imposing very strong assumptions.
Other researchers have used new models, which would not use the data in the
triangular format, but the individual claim amounts. An overview of what has already
been done in this direction will be given in subsection 5.3.

Two works using triangular data will be cited here. The first one is Charissi
(1997) where the "pure Bayes without prior information" model in Verrall (1990) is
reanalysed using BUGS (the previous version of WinBUGS). But now there is a
proper prior distribution for each of the parameters. These are included in the second
level, and independently of the chosen distribution, each one had to be centred on the
values observed in the data, with quite a low variance. The graphical model would be
as in figure 8:
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The data from Taylor and Ashe (1983) were reanalysed and the results of the
posterior mean for the row parameter is plotted in the figure 9 together with the values
found before in Verrall (1990). On one hand, it is easy to see that the set of chosen
prior was not able to influence much the mean of the row parameters (or even the
other ones), keeping the same result as the one found in "pure Bayes with no prior".
But, on the other hand, in this new analysis the influence of the prior was enough to
decrease the standard error of the parameters by an average of 30% compared to the
previous approach.

Figure 9
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The second paper is Ntzoufras and Dellaportas (1997), Gibbs sampling is
again used as simulation technique, but although this paper was prepared after the
development of BUGS, a specific implementation program was used instead. Five
models were presented in the paper and all of them were applied to the same data set.
This set includes the inflation rate for the observed calendar years and two
incremental development triangles: amount and number of claims. With all of this
information in hand they proposed new models that would take into consideration the
number of claims in order to predict the claim amounts, which would be deinflated
before any analysis. Only one model among all five will be fully explained here. The
more interested reader should report to the original paper in order to see all
explanations and formulae for the other models.

"Log-normal & Poisson model" is a direct generalisation of Kremer (1982).
Now, instead of using only the information from the amount of claims, the history of
number of claim (nij) reported in row i and column j is also taken into consideration.
Now the model in (11) wilt be changed to:

(18)

with constraints and prior distributions for
paper.

fully described in the

An analysis was performed with all models, and it was shown that for the
specific data used the models that included also the number of claims, like the one
explained above, had a better prediction than the ones that did not use such
information. This was mainly due to the long tail characteristic of the data set, where
claims were still being reported after 7 years of occurrence.

This subsection has shown that the flexibility of the simulation approach was
able to allow also the inclusion of the development of number of claims in the chain
ladder model. In the next subsection some applications of simulation will be used for
graduation as well.

4.3 GRADUATION

The paper from Carlin (1992) uses Gibbs sampling technique to graduate not
only mortality table but also the aging factor cost related to health insurance. In both
of these applications some restrictions were imposed in the model structure, like for
instance, the growth on mortality expected in adulthood. Here only the mortality
example will be explained.
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The paper was developed before BUGS was implemented, so a specially
written program carried out all calculations. In the graduation problem the data set has
ages from 35 to 64, so 30 ages were observed. The model states that the number of
deaths y i in age i+34 for i=l,...,30 is Poisson distributed with intensity given by θi x wi

where wi, is the number of policyholder in i. The model is written as:

(19)

Where θ1 >0, θ30 < B , 0 < θ 2 - θ1 < ... < θ30- θ29, Band α fixed, supposing a

prior distribution for β Now a graphical model is drawn for this model. It is shown in

figure 10, where the imposed order among the parameters θ is also represented.

Some constraints were also imposed on the model and the more interested
reader should refer to the original paper in order to see these in full. The results ate
also compared with the ones obtained by the Whittaker model and the author
comments that "The Whittaker results are fairly similar to the Bayes results, though
the Whittaker rates tend to be influenced more by the unusually low rate at age 63.". It
means that the model was able to keep the growth among the parameters θ, although
this was not observed for all ages in the data set.

An application of BUGS to graduation can be found in Kouyoumoutzis
(1998). In this work a number of models were investigated and the one explained here
is based on a third degree polynomial regression analysis and expressed by:
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The time needed to run the simulation was again very small and the smoothed
values fitted well the data. The graphical model is show below in figure 11.

In this section a review of traditional models revised in a Gibbs sampling
approach has been given. Different, new models were incorporated by the inclusion of
simulation into the modelling process. It is expected that the more actuaries are able
to use WinBUGS, and more generally Gibbs sampling, the more revisions of
traditional models will emerge.

In the next section completely new ideas will be presented. The assumptions
used in macro models are completely dropped and models with approaches closer to
the process itself will be used.

5 NEW AREAS, NEW POSSIBILITIES

" (...) the potential for these methods in insurance application is great."
Boskov and Verrall (1994)

Up to this point we have discussed well known models which were rewritten
in order to give a Bayesian approach. This opens a broad area of research to Bayesian
theory, since most of the well established models in actuarial science can be reviewed
in a Bayesian way. And with the advent of simulation, solutions can be found for
most of them.

But one of most appealing features of a Bayesian analysis is the broader set of
models that can be built, models which do not have a classical equivalent approach.
This feature is mainly due to the simulation advanced on the last few years, when
some new models were developed. In this section some of those new models are
described, including some practical appealing ideas which are easily embraced by a

14 WinBUGS code in appendix D.
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Bayesian model.

It may turn out (and this is something that remains to be seen) the most
important of these new ideas is the ability to model at the individual policy level. Now
an "engineering approach", when assumptions are made straight in the process itself
rather than on the aggregated data, fits fairly easily within a Bayesian model.

In order to show how it is done, three examples are presented in the next
subsections. The first is the use of spatial models in the rating by area problem, not
using individual data but only the loss ratio and exposure by area. The individual data
will be considered in the second model, which is an aggregation of continuous
variables in the problem of transforming ages into factors in the rating process. And
the last example is an application to claims reserving, but now considering the
individual data, instead of the usual triangular format.

All three models use the simulation approach, but none could use WinBUGS
and a specific implementation program had to be written. Their formulae will not be
described in detail, but their assumptions are fully explained. It is hoped that the
reader could get a feeling of those models here, and should refer to the original papers
for a full formulation.

5.1 RATING BY POSTCODE AREA

There are many factors that could influence the frequency or cost of a claim
and that should be taken into consideration when defining the value of the premium.
One of these is the area where, for example, a car is used or parked most often and
this characteristic is usually taken into account through the neighbourhood where the
policyholder lives.

Neighbourhood could have many interpretations, but here postcode is used. In
an office environment it is common to aggregate postcodes with similar experiences
in the same class. At the end of this procedure a small number of classes will be
derived, but the vicinity information is not formally taken into account by the model

Taylor (1989) published the first paper with some statistical basis, which
addressed how to carry out this aggregation using the vicinity information. He
adapted a two-dimension splines model to the postcode problem, with a totally non-
Bayesian approach.

In this paper a review of Boskov and Verrall (1994) will be presented. They
use a Bayesian approach, applying spatial models mainly used in epidemiology and
satellite image restoration among other fields. The basis for such models is that areas
that are close together are more likely to be similar in risk than areas that are far apart.

The aim of the model is to find a value for risk parameter (θi), that will be
smoothed oven the whole area (that contains η postcodes) but considering only
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information from its neighbours. The data contain the observed loss ratio (xi) for each
postcode area i, and they are assumed to have a normal distribution as follows:

(21)

Where wi, is the exposure for postcode area i. Instead of using the variance as a

variable like is some models seen before is this paper, σ will be a constant chosen by

the analyst fixing the required level of smoothness. The bigger σ, the smoother is the

result for the posterior mean of θi.

The most important idea of the model comes in the definition of the second

level of distributions, when a relationship among the risk parameters θi is defined. For

each postcode risk θi an adjacency set is defined as in figure 12, where the darker

areas are included in the neighbourhood of the risk.

So the risk parameter of each postcode is defined to be normally distributed,
centred on the average of all risk parameters in the adjacency set. All risk parameters
are defined at the same time, influencing their neighbours as well.

This model does not have a possible analytical solution, and a simulation
approach was used in order to find the posterior of θ1. A MCMC method was used and
the full model explanation can be found in the original paper. In there an analysis of
the results are shown for different levels of smoothness, and it is really interesting to
observe that the model did work. The risk parameters really took some information
from the neighbours.

In the following subsections, models considering individual data will be
presented. Their solutions are derived through simulation, and one of their common
feature is the long time needed to perform the implementation. This could be a barrier
to a practical use, but their benefits could easily justify the time spent on them.
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5.2 GROUPING AGES

In Pereira and Verrall (1999) a method of transforming a continuous variable
into fewer factors is presented. The paper works in the particular example of
policyholder age, but the model could be applied in any other kind of continuous
variable.

The main objective of transforming age into a factor is to summarise
information. Actuaries usually do this when, for instance, age is used as a covariate in
ratemaking. Usually age is considered as an integer number (which is already a year
aggregation) and the transformation to groups is a further process. The first step,
considering age in years, is done without a proper analysis and could bring distortions
to the group definition. In this new approach the pure data are used, dropping the first
step used before, and transforming the real age into a factor with only a few classes.

Informally, the model is specified in the following way. Suppose that age is
limited to some interval [a,b]. The procedure would find at the same time how many
intervals (k) there should be in [a,b], where they would be best located (S =(s1,...,sk-1))
and what risk intensity (L= (l0,..., lk-1)) are appropriate for each of them. This
approach is based on the premium philosophy that once we know the groups, the
premium level will be the same for any policyholder included in a particular group.
The graphical model is presented in figure 13.

Finding k, S and L at the same time, would mean that the size of s and L
changes according to the value of k. This makes the model fairly difficult to be
applied and a generalisation of the MCMC techniques is used. It is called Reversible
Jump Markov chain Monte Carlo (RJMCMC) and in this procedure the size of k can
be changed in each iteration.
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Pereira and Verrall (1999) uses as a case study data from a bodily injury motor
insurance. The data consist of the number of claims on an individual basis, their date
of occurrence and the age (in days) of the policyholder, which was some number in
the interval (in years) [19.39, 93.89]. The solution for the model was found through
the calculation of the posterior distribution based on the sample obtained. The plot of
the posterior distributions for k, L and S are presented in figure 14.

With these posterior distributions at hand, the analyst should choose the values
for the parameters. For the number of jumps, k=2 is the mode of the posterior
distribution and can be seen as a proper solution. Since the other distributions have
more than one mode (as expected), such an approach is not as clear as in the
definition of k and many analyses could be used. In the original paper the posterior
mode was calculated.

In this example the step of defining an estimator after finding the posterior
distribution has been considered. This could be good or bad. On one hand, the analyst
does not have a closed and final solution, and he is able to draw conclusions based on
a distribution, which gives an enormous amount of information. But on the other
hand, different analysts could chose different values, based on the same result.

Now an example with more specific answers will be presented. This will be
the last model explained in this section, giving an interesting approach to how include
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individual information in the claims reserving procedure.

5.3 CLAIMS RESERVING

The majority of methods for estimating claims reserves are based on macro
models, where the data are aggregated in a triangular format like the chain ladder
model. Micro models, where the individual policyholder characteristics are
statistically taken into consideration are not usual. The only office based procedure
that takes into consideration some individual information is the case reserve
definition, when the claim characteristic is used, but this does not have any statistical
basis.

One of reasons why this individual characteristic is not used in statistical
models could be the difficulties that surround any calculation on an individual claim
basis. The fluctuation related to any individual estimate, could be also a good
justification for the lack of use of such models. The key question would be to use such
information, but in a more robust way.

Before analysing the model, it would be helpful to think of the claim process.
Consider now the analysis done by Norberg (1993) and represented in figure 15. Such
a scheme shows how each claim could be different from another. Most claims can not
be completely settled at the moment the claims reserve is calculated (Reported Bat
Not Settled - RBNS) and after a claim is incurred but not reported (IBNR). It also
highlights the partial payment process, which for most type of insurance is more usual
than a simple payment.

Using this approach Haastrup and Arjas (1996) proposed a new method, using
a Bayesian analysis to define claims reserve for the whole portfolio, but considering
individual information. The IBNR and RBNS claims reserves are calculated
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separately. In this model no information from the claim itself was taken into
consideration, but it is possible to do so in such a framework.

In their model the claims frequency and severity are modelled separately. In
the first model age, sex, report delay and calendar time of occurrence are included,
and in the second model the analysis uses partial payments. MCMC simulation is used
in order to obtain the estimated posterior distributions.

The way of handling missing values in a Bayesian framework is also explored
and the IBNR claims are considered as missing. Since simulation is used, it is possible
to sample at each step the number of claims that had already occurred and that are
missing (IBNR) and their correspondent amounts. At the end of the simulation a
sample of IBNR numbers and values is available and its posterior distribution can be
approximated. The amount of RBNS claims is calculated in the same way.

The result of this model is given in figure 16, where the graphs are produced
for the number and amount of IBNR, amount of RBNS and both liabilities together.
Values are shown in Danish currency.

This model suggests many ideas for further development. If individual
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information could be taken into account in a statistical model, it means that
characteristics of the claim itself could also be formally considered.

And since their approach also considers the calendar time in order to define
the reserves, it is possible to obtain the amount of the reserve at a specific moment in
time. The vertical line included in the graph shows this feature, giving the
correspondent values expected in a specific evaluation moment.

6 CONCLUSIONS

" (...)actuaries having spent the past half-century seeking linear solutions (...) logical
solution is to drop the linear approximation and seek the true Bayesian solution."

Klugman (1992)

As it was shown throughout this paper, many models have been developed in a
Bayesian framework. Some of them were only an extension of well known models,
but others included new ideas to the actuarial analysis. And we have given only a
sample of a large variety of papers. It is hoped that this paper has excited the curiosity
of actuaries and that Bayesian theory will be also applied in practice.

Bayesian models bring to the practitioner actuary two attractive possibilities:
formal inclusion of judgement and wider number of models. In many cases, these
characteristics are very interesting for any actuary. But how can they be made really
practical? In order to apply them the following steps should be done. Firstly, it is
important to make sure that Bayesian theory is fully understood. Secondly, simulation
by MCMC should also be covered.

After these two main areas are covered anyone could easily apply the models
explained in section 3 and 4 of the present paper. The reader is also encouraged to
experiment with WinBUGS, which is a powerful tool in Bayesian analysis.
WinBUOS could solve even methods with analytical solution, since it is fast and
accurate.

The range of applications in actuarial science where Bayesian theory could be
used is enormous. For instance, a prior distribution for the interest rate could be
included in a pension fund analysis, extreme value theory15 could be used to price a
catastrophe bond and information on the claim itself could be included in the model
described in subsection 5.3 for reserving. An application that seems straightforward is
the inclusion of benchmarks in the chain ladder model described in subsection 3.2 and
4.2.

15 Definition is to the reference list cm Bayesian Theory at the end of this paper.
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Appendix A
General model expression
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Usual estimators for variances used in the classical approach:

respective priors

BOHLMANN (1967) BOHLMANN & STRAUB(1976)

is the weight

F
B

A

G

1k k1



Appendix B

Chain Ladder models (subsection 3.2)
General formula for the models presented at Verrall (1990):

with
Χ, θ, Κ, I,Σ and σ2 as described in equation (12) and

Appendix C

Kimeldorf and Jones (1967) model (formulae taken from London(1985))

posterior distribution:

where ni is the number of policyholders in age i.

A has elements (with r and ρ defined by the analyst)

Pure Bayes without prior
information

Pure Bayes with prior information

Assumption

Posterior

Formulae

and in model 1
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Appendix D
WinBUGS code for figure 7
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WinBUGS code for figure 11


