1999 General
Insurance Convention

Practical “Modemn” Bayesian Statistics in Actuarial
Science

Femanda Pereira

159



PRACTICAL “MODERN" BAYESIAN STATISTICS IN ACTUARIAL SCIENCE

ABSTRACT

The aim of this paper is to convince actuaries that Bayesian statistics could be useful
for solving practical problems. This affirmation is due to two main characteristics of
Bayesian modefling not yet fully explored by practitioner actusries: first, the
possibility of absorbing subjective information and second, the wider range of models
available in the Bayesian framework.

In order to help in this “convincing” process this paper includes an overview of
Bayesian statistics in actuarial science and cites many published papers based or: this
theory with insurance applications. An approach with as few formulae as possible will
be used to make it easier to follow for all actuaries, independently of their
involvement in statistics.
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t INTRODUCTION

*{...) withiz the rezlm of ectuarial science there are & number of
problems that are particularly suited for Bayesian anslysis.”
Klugman (1992)

Bayesian theory is a powerful branch of statistics not yet fully explored by
practitioner actuaries. One of its main benefits, which is the core of its philosophy, is
the ability of including subjective information in a formal framework, Apart from this,
the wide range of models presented by this branch of statistics is also one of the main
reasons why it has been so owmeh studied recently. Astificial intelligence ard neural
networks are examples of new disciplines that are heavily based on Bayesian theory.

Bayesian theory has been one of the most discussed and developed branches
of statistics over the last decade. There have been an enormous number of papers
published by a large number of statistical researchers and practitioners. The recent
developments ars mainly due to, firstly, the recent computer developiments that have
made it easier 1o performs calculation by simulations and, secondly, to the failure of
classical statistic methods to give solutious to many problems.

Bui, although so nmny developments have beea cccumring in Bayesian
statistics very few actuaries are aware of them and even fewer make use of them.
Throughout the works reviewed in this paper it is possible to ¢bserve that the authors
believe that Bayesian statistics can add great value to the role of a practitioner actuary
argl, in a way, this paper forms a kind of manifesto.

Since the advent of credibility theory, which has at its core Bayestan statistics,
this statistical philosaphy has not been greatly exploited by practitioner actuaries, [t
was in 1914 that the first paper on credibility theory was published. This theory mads
actiaries one of the first pructitioners to use the Bayesian philosophy. Since then
many developments in credibility theory have ocourred, but i is probably the only
tool based on Bayesian theory used in an office environment, and even this is rare.
However, judpement is used in an everyday basis and it is ofien argued that in this
way an informal Bayesian approach is used.

This paper expounds the development of Bayesian models in aceaarial science
in academnia, but of which, it is belisved, very few practitioners are aware. In this way
the paper aims to build a bridge between modern Bayesian statistics and practical
problems. In the following sections around 20 models described in published papers
in actuarial journals will be rewritten in a more informal way, avoiding the extensive
calealations normally needed in a Bayesian application. On one hand it means that
actuaries that do not have & deep involvernent in statistics can understand the ideas
behind the models. On the other hend it will not be possible to fully explain ajl the
calculations behind the models. So it should be stressed that the more interested
reader is encouraged to refer to the original pagers in ordsr to get a deeper explanation
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of the respective models.

The outline of the paper is as follows. In section 2, an iniroduction to Bayesian
theory is preseated. Section 3 explains Bayesian approaches to traditional methods
such as credibility theory, claims reserving and graduation. These models are
discussed again in section 4 after an introduction to simulation has besn given. In
section 5 models entirely built in 2 Bayesian framework are presented. Section &
contains the conclusions.

2 INTRODUCTION TO BAYESIAN THEOR Y

*{...) all values are still selecied on the basis of judgement, and the only demonstraticn
they {actuaries) can make is that, in actual practice, it works. {...) It does work!”
Bailey (1950}

As is well known, probability theory is the foundstion for staristics. The
differences in the interpretation of the term probability defire also the respective
differences in staristical theories. As examples, there are probability theories based on
frequency, classical, logic and subjective philosophies. The last one is the core of
Bayesian statistics.

Figure 1
i i 1 { 1
classic I subjective
[ trequency | ogic joctive,

The subjective interpretation states that the probability that an analyst assigns
to a possible outcome of & certain eaperiment represents his own judgemear of the
likelihood that a specific outcome wili be obtained. This judgement will be based on
the analyst’s beliefs and information about the experiment. As a contrast, frequeocy
statistics, for exampie, do not include formally this judgement but only the
informaticn received from the observation set itself.

Bringing thoss intsrpretations to the inference problem of estimating a specific
parameter, Bayesian statistics differs clearly from the others. In classical and
frequency statistics the analyst Is searching for a best estimator of a parameter that has
a yue value, but which is unknown by him. In the Bayesian statistics the analyst dosg
not believe in this true value, but in 2 range represented by the previous information
that he has,

The recogaition of the subjective interpretation of probability has the saintary
effect of emphasising some of the subjective aspects of science. It also defines a
formal way of inciuding judgement about the process in the chosen model. This
subjective information is included in the model by defining a prior distribution for the
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unknown parameters.

Bayes theoremn js the formal mechanism of incorporating prior information
ito the modefing. This theorem mixes the prior subjective information with that
observed in the expetiment, producing a posterior distribution, This distribution is
congidered as an update of {he previous judgement (prior) through the data observed
{likelibood).

More formally Bayes theorem is defined as follows. Consider a process in
which observations (X is the vector of observations’) are to be taken from a
distribution for which the probability density function is p(X |&), where 8is a set of
unknown parameters. Before any observation is made, the analyst would inciude ail
his previous information and judgements of &in a prior distribution p(#8), that wouid
be combined with the cbservations to give a posterior distribution p(HX} in the
following way:

p(6]X) o p(X|6)p(0) (1)

It is only after the posterior distribution is fully defined, that the estimation is
performed. It means that only after having all information at hand that the analyst will
define which estimation will be used. This definition step is called “decision theory™.
So, if the analyst searches for a specific value, called “point estimate”, he can
consider the mean, mode or any other statistics as the estimator {(which depends on the
chogen loss funciion). A range, like a confidence interval, can also be calcolated. A
further explanation of Bayesian theory can be found in any of the references oa this
theory listed at the end of the paper.

In order to iflustrate Bayesian statistics and show the difference of approaches
among statistical theories, a mutnerical problem is presented. This is a very simple
example and it was chosen in order to show step by step the concept behind Bayesian
analysis.

Consider a policyholder whose claim values (which are independent and
identical distributed) come from a specific distribution p(x{@). Suppose we have
observed annual claims for 5 years with the following resuits:

124.93 110.567 106,93 104,05 101.60

Using the weil known linear model, it would state that such vaues are from a
notmal distribution with unknown mean &ard known varlance o (x, ~ normal (8,09
i=1,...,5). In this model the maximum likelihood estimator (MLE) of #is equal o the
sample mear;:

= 109.64 (2)

! In this peper uppes caps stand for vectar and matrix, and small caps for single values
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In the Bayesian solution the approach woulkd be different. Now the unknown
parameter & is also considered as a random variable and this interpretation is
formalised by the inclusion of a prior distribution. The choice of this distribution is
completely the analyst’s sabjective decision, In the example described here we could,
for instance, ook for another policyholder with similar characteristics or even some
other previons experience.

Suppose that this investigation suggested the value of 100 for & In this case
the following prior distribution is chosen®:

@~ normal {100 , P prior) 3)

with ozp.im known, as suitable. Now, using Bayes theorem, the Bayesian minimum
least square estimator of s given by the formuta®:

5A0%, e +10007
i vo @

prior
with 5 as the sample size.

It is straightforward to observe that the formula (4) is more complicated than
the one derived in (2). Formula (4) also includes the variances in order to calculate the
mean estimator, where the Bayesian esttmator is a weighted mixture of the prior and
sample information. This mixture is clearer when the formula (4) is rewritten as
follows:

x*z+100%(1-2) (5)

i
5 gier

with 2= —5———
Se,,, +o’

Now it is possible to see that if instead of 5 an infinitely large size for the
sample were given, all of the weight would go to the sample mean (z =1}, giving the
solution in forraula (2). On the other hand, if the value for & were infinitely large, the
weight wauld go to the prior distribution mean {z =41,

Proceeding with the analysis of the Bayesian model, it would be interesting ic
consider the mixture that is taking place. In order to do this, the full posterior
distribution p{@X} will be defined. This distribution is, again, a normal distribation
with mean given by (4} and variance:

o o
prior

)

2 1
50 + O

* Normal distribution was conveniently chosen by conjugacy. See references for further explanstion.
3 This calculation is found in any reference of Bayesian theory at the end of the peper.
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Now it is necessary to fix the variance parameters. Taking a subjective
approach, define & to be 100 and i 10 be 200, This gives a posterior mean and
vatiance of 108.76 and 18,18 respectively, The likelihood (when p(X{ is seen as a
function of & will also be noreally distributed with mean 109.64 from the data, and
variance 20 (0*/(sample size)). The plot of the prior and posterior distributions with
the likelihood is in figure 2.

Figure 2

posteror Ykelinoo

pror

This shows the way in which Bayes theorem aliows the mixture of
information. Observe that the posterior distsibution is close to the likelihood but stili
keeping some influence from the prior.

It is argued that Bayesian theory gives a hetter description of what is going on,
since it does not give just a point estimate, but also a distribution related to the
parameter. But to apply it, many more calculations are needed to achieve this
estimation, even in this sieple example, When o is unknown, for instance, it is
necessary 2lso 1o define 2 prior distribution for this parameter and the calcufations
becorme even more complicated.

When a subjective approach is taken a priot distribution can be hard to define
and even harder to justify. In fact, it is one of the most controversial elements in
Bayesian statistics. If an analyst does not want to include prior information, but does
want to use a Bayesian approach, a non-informative prior may be included. In figure 2
it wouki mean that the shepe of the prior distribution would be completely fist and the
posterior distribution would be the same as the likelihood (z =1).

There are many ways of defining 2 non-informative prior, The main objective
is to give as little subjective information as possible. So, usually a prior distribution
with a jarge value for the variance is used. Another way of including the minimal
prior infermation is to find estimates of the pacameters of the prior distribution, using
the date. This last approach: is called empirical Bayes, but often there is a relationship
between those two approaches — ron-informative and empirical Bayes — that will not
be developed further here®.

Thearetically, a prior distribution could be included for all the parameters that

* For funiber details sse any of the references of Bayesian theary at the end of the paper.
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are ucknown in 2 model, so that any modet could be represented in a Bayesian way.
However, this often leads to intractable problems {mainly integrals without sahition}.
So the main limitation of Bayesian theory is the difficulty, and in many cases the
impossibility, of analytically solving the required equations.

In the tast decade many simutation techniques have been developed in order to
solve this problem and to obtain estimates of the posterior distribution. These
techniques were turning points for the Bayesian theory, making it possible to apply
many of its models. On one hand, the use of a final and closed formule for a solution
is, generally speaking, more satisfactory than the use of an approximation through
simulation. On the other hand, simulation gives a larger vange of models for which
selutions (or ai teast good approximations) can be obtained.

Now some more elaborate examples will be explored. In the next section
models with analytical solutions will be presented, and io the section 4 the same
problems will be reanalysed using a simulfation approach. The models used in section
3 and 4 are listed in the following table, split by subject, type of solution and data set
used:

Paper Subject” | Type® Data
(section}

Bihlgwane and Swaub (1970} G (1) | ANA | Kivgman (1992)
[Kiugosen (1992) Cr.0) |_APP | Kiugmen (1992)

Verrall (1990} CE3.2) ANA | Taylor and Ashe {1983)
| Klugrman (1992 GR3Y APP | Xlugman (1992)

Kimeldorf and Jones (1967) GR {33 ANA | Londan [1985)
Peceira (1998) Cra.1) 1 SIM | Klugman (1992)

Charissi { {967} _ CL (4.2) SIM__ | Taylor and Ashe (1983)

Nizoufras and Dellagorias (19977 | CL.(42) | _SIM__| Nezoufres and Dellaportas (19973

Kouyoumoutzis (F998) CR (43) | SB[ Kouyoumoutzis (1998)

Cariin (1992 GR(43) | SIM I Carkn (1992)

3 TRADITIONAL METHODS

“Statistical methods with a Bayesian flavour (...} have
long been used in the insurance industry (...)."
Smith et all {1996)

This section looks at some traditional areas of actuary theory: cradibility
theory, the chain ladder modet and graduation. Apart from one exampie cited in the
credibility theory subsection, all the models used in the following subsections have an
analytical solution. They are then used as illustrations of where modern Bayesiae
theory can be applied without any approximation.

% T = Credibility Theory; CL = Chain Ladder; GR = Gradustion.
¥ ANA = Analytical; APP = Approximation, but not simulation; SIM = Simuiation,
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The section is divided as follows. Subsection 3.1 is about credibifity theory
and two approaches will be described: one which was originally used when credibility
theory was introduced, and a purely Bayesian approach. The chain ladder technique
and graduation are also reviewed in a Bayesian framework in subsections 3.2 and 3.3.

3.1 CREDIBILITY THEORY

Credibility theory was first tnitroduced in 1914 by a group of American
actuaries almost at the same time as the Casualty Actuarial Society was created. At
that time those actuaries had to define a premium for a new insurance product —
“workmen's” compensation — so they based the tariff on a previous kind of insurance
which was substituted by this one,

As new experience arrived, a way of including this information was
formalised, mixing the new and the old experiences. This mixture is the basis of
credibility theory, which searches for an credibility estimator that balances the new
but votatile data, and the old but with a historical support. Most of the research vl
1967 went in this direction, creating the branch of credibility theory calfed Limited
fluctuation.

The turning point in this theory, and the reason why it is used nowadays,
happened when actuaries realised that they could bring such a mixture idea inside a
porifolio. This new branch searches for an individual estimator (or a class estimator},
but still using the experieace for the whole portfolio. Such an estimator would
consider the “own” experience on one side, but giving more confidence to it by also
including a more “general” one on the other side. In a way, it formalises the mutuality
behind insurance, without the loss of the individual expersence.

There are many papers discussing this theory, but the one by Bithlmann (1967)
is geneeafly seen as a landmark. In this paper credibility theory was completely
formalised, giving a basic formula and philosophy. Since then, many models have
been developed. Given that credibility theory is completely based on Bayesian
statistics, a bibliographical review is presented at the end of this paper.

In order to Mustrate credibility theory the Blihtmann and Straub (1970) modet
is used, which is a step forward from Buhimann (1967)°, The data set is taken from
Klugman {1992), which is the first book on Bayesian statistics in actuarial science.
The ohservations are the number of claims (y) for 133 occupations (i=1,...,133) in
workers' compensation insorance with 7 years experience (j=1,...,7). The respective
amount of the payroil (wy) is also known and is used as a weight for each
occupational class. In order to explain the data the history for class 11 is given in the
following table:

7 All formulae for both models are given in appendix A,
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Class | Year | Yy |
11 1 45.683 ]
11 2 57947 | &

11 3 74.54% | 5
il 4 181317 | 10
11 3 2066 | 13
il [ 187564 | 7
11 7 220830 | 8

Modelling the frequency ratio x; (y;/w;) by the Bihlmann and Stravh model
gives the following distributions:
x5| 8~ noemal (8, o/wy)
6 ~ nommal (4 7) m

For alti and j, and &%, 4 and 7 known. New, with s the observed mean aud
Zas the credibility factor for class i, the credibility estimator for the class ratio &is:

Xz +ux{l-z} 8

The solution proposed by Bithimann and Straub is to calculate the values of
¢, pand 7 from the observations, substiruting these values and coming out with the
solution for the fortmula above. Proceeding with their cajcnlation changes formula {8)
to:

EXE+IX{0-2) )
where 7 is the estimated value of z;, after including the values for the variances and
¥ is the overall observed mean.

It may not be clesr where the prior information has been inserted into this
model. The reason for this is that the formula (9) was developed in order to balange
the information of the class own observed experience, X, with the observed overall
one, ¥. In this model] the distribution p{& is not playing a role of a real Bayesian
prior, but its pararceters are substituted by the values caleuiated on the dats set.

This type of solution is called empirical Bayes approach. In order to have a
fully subjective Bayesian solution ancther leval of distribution would have o be
included. This would contain information about the parameters %, u and 7, which are
considered nnknown. In this way the model in {7) would includs three levels and be
changed to®

X418, & ~ normat (8, IFfwy)
&lut ~ normal {u7) {0
plaun (for all { and /3

® Observe that once ¢ fand Tare considered unknown (&) # p(&] 4 9 for instance.
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In this new model p{x;|8;, o) stands for each class experience, p{&| 1 ¥ for the
overall porifolio information and p(ep,7) brings the prior distribution for the
unknown parameters in the previous distributions. Now, p(&] g7} informs only that
each class mean comes from the same distribution. Unfortunately unless very strong
assumptions for p{e 1) are included, it is not possible to derive the posterior
distributions for &

In order to use a pure Bayesian approach, Klugman {1992) included priors for
&, t and 7, but in a “non-informative” way. No analytical solution is available and
an approXimation technique (Gaussian quadrature) was used. Both solutions® are

shown for some classes in the following table:

Solution Forecasting
Class ﬁ Wy x Bihlmann Klugman wir ¥i7 Bihlmann Klugman
= and Straub and Stravb

4 0,037 0.0 0.03949 | 0.04045 . 0 - -
11 1,053,126 | 004446 | 0.04345 | 004422 | 229.83 8 999 10.16
112 | 93,383.54 | C.00188 | 0.00201 | 0.00193 | [8,800.7 | 45 3781 36.30
0 287.911 6.0 0.02059 | 0.01142 34.81 0 ik3 0.63
20 | 1107531 | 0.03142 | Q.03164 | 003151 | 1,31837 ¢ 22 41.62 4].45
89 620.968 | 042997 | 0.29896 | 0.36965 79.63 40 23.81 2044

Forecast ecror® | 15.3 1320

However, it is sometimes desirable to include more information in p{g i 1),
which would aiso mean more difficulty in calculating the solution. In order io
overcome such problems powerful simulation techniques have been developed in
recent years and subsection 4.1 shows how to apply them.

3.2 CLAIMS RESERVING

Claims reserving is one of the most important branches in the general
insurance area of actuarial science. Usually a macro model, where data are
accumulated by underwriting year and development year, is used, and the data are
given in a triangular format. One of the features of those models is the small amount
of data available for the later development years, and this gives a large degree of
instability to any estimate. Actuaries overcome this problem through professional
judgement when they choose factors or consider benchinarks.

* Although data were observed for 7 years the two solutions ooty use 6 years to do the calculations.

m
'° Forecast erroc = - (Forecast =¥, ' 1w,
ol
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Here another way of including this subjective information wilt be given, which
is more formal, statisticaity speaking, since it uses a prior distribution. The approach
usesl here is the chain ladder technique, which is one of the most popular macro
methods to predict claims reserves. But in the following examples no inclusion of the
tail factor will be considered.

The data comes from Taylor and Ashe (1983), and the exposure factor per
underwriting years and the date are given below, where the influence of the exposure
has to be taken out from the clatm amount before any analysis.

Exposure: 610 721 697 621 600 352 543 503 525 420

Development year
357843 766040 GLOSAZ 482040 527326 574398 136342 130950 227239 GFMS
352138 BB4021 933854 1183285 445745 320906 SITR4 266172 425046
200507 1001799 926218 1016654 TS0B16 148923 494992 280405
310608 1108250  TIGIAY  1SG2400 773483 IRONF 206286
443160  £DI1O0  9FINE3  TEOMSE  SD48SI 470639
396132 9IRS 847498 ROSO3T 705960
440832 B47651 L3198 1063269
350480 1061648 (443370
376686  VRGGOR
344024

Underwriting vear

In Kremer {1982), which is a paper on credibility theory, the chain ladder is
proved to be similar to the two way analysis of variance linear model expressed hy:

Xi= In(yg) {1i)

With xy independent normal(6;, ¢°), where & = i + & + f and y; as the
incremental vaie of the claims for row (underwriting yeat) / end column
(develppment year} §.

The solution of Kremer (1982) is to calculate the MLE of the unknown
parametets together with the estimate of &, In Verrali (1990), which is the paper
reviewed here, the same model is used but a Bayesian solution is applied. In fack three
Bayesian solutions are presented: “pure Bayes wilhout prior information”, “pure
Bayes with prior information” and “empirical Bayes”. The formulae of those modeks
ate given in full in appendix B, but here the main ideas behind each model are given.
It is interestimg {o notice that in order to have an analytical solution, none of these
models inclndes a prior distribution for the varjance paremeters.

Proceeding the explanation, a prior distribution is attached to the model in (11}
that is rewritten in a matrix notation:

X1 8 -~ normal (K8 & D
8} 6 ~ normal (6, 5) (12)
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where  X={x1n . wXinXthhem Xin-1:- ..,X.,;),
B=(th Query G P - B)e
Tz diaglon’, Ou’.r O’ OFnns G5,
b = (ﬂ.: G.’;, werr a;’ﬁz.- “")8;)‘
K is the design matrix in order to produce the model in (11),
I as the respective identity matrix,
&,0,% 0., as? are known variances,
o= =0 for uniquencss {see Verrall (1990} for details).

The “pure Bayes without prior information™ uses a non-informative prior
approach. In this way, 0, "0 and 37 go to zero and the model solution gives
exactly the same results as the classical and usual MLE used in Kremer (1982),

But more information could be inserted straight into this second level
distribution, instead of using the non-informative one for all parameters. This is the
“pure Bayes with prior information” approach and will be applied by changing & and
Zin order to kesp the non-informative approach for perataeters (1.5, ..., ), but not
for the row parameters. Proper prior distributions for {04,..., &) are defined, but they
are hard to define, since there is no intuitive explanation related to them In this
example the following set of prior distribution {based on the result obtained at the
MLE model} was chosen:'!

& ~ nomoai (0.3, 0.05); {13)
foralli=2,...n

The third approach, “empirical Bayes” is based on the credibility theory
assurnpiion, that there is some dependency among the parameters related to the row
and they are not really independent as before. So, in formula {12} the non-informative
approach is kept for (4, ..., ). {0u 7 and o3 7 = 0), but a different one is imposed
for the row patameters.

Now, instead of defining a distribution like (13), the peneral distribution (12)
is kept and another level of prior disteibution is added to (g, ....0x)), with 2 non-

informative approach. In this way no prior value is given, but only a dependency
artonyg the row paraneters is imposed.

All three models were applied to this data set. “Pure Bayes without pricr
information”, which is the egnivalent to the MLE solution by Kremer (1982), had the
worse performance when compared to the other two in all apalysis done by Verrall
{1990). “Pure Bayes with prior information” and “empirical Bayes™ also had a better
smoothness to the row parameters as can be seen in figure 3:

' which is the sume as o8 = 0.3 for i=2,...4 and 7, =0.05.
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Figure 3
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All these models have analytical solutions, but a prior distribution for the
variance parameters was not used. The way in which this can be done will be
explained in subsection 4.2

3.3 GRADUATION

Graduation is an important part of the job of a life actuary and rmany methods
have been developed in order to carry it out. Using the definition from Habetman
(1996} “graduation may be regarded as the principles and methods by which a set of
obssrved probabilities are adjusted in order 10 provide a suitable basis for inference to
be drawn and further practical computations to be made”,

The usuai data set where graduation is applied includes the number of
policyholders in the beginning of the observation period (usually one year) and at its
end the number of occurred deaths is accounted. In order to illustrate it, the following
sample was taken from London (1985):

Age Frequency Nusnber of:

( pate (x;) Policyholders {n;) | _ Deaths (d)
63 0.00928 9487 88

64 0.01226 10,770 132
65 0.01100 24,267 267

66 0.01120 26,791 300

67 0.01481 29,174 432

Whittaker graduation is one of the most well known methods among actuaries.
This can be considered as the first Bayesian approach to graduation, since it can be
derived using Bayes theorem. But no real prior subjective information was formally
used in the first development of this model, in contrast to the approach given by
Klugman (1992) to the same model.

A model that could be seen as a step before the Whittaker one is the Kimeldotf
and Jores (1967} model explained in London (1985). This modei is written fully in
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appendix C, and it states that the observed frequency of death will be modelled as:

X8 ~ normal (8.8)
&~ normal (14,A) (14}
where  X=(x4..., Xuh
O=(8.... B).
H= Luhﬂ-l ,Un},

n is the cumber of ages and A and B are known covariance matrices.

4 is taken from another life table and B is fixed and fully explained in the
appendix C. The covariance matrix A is defined by the analyst and it is the one
controlling the amount of smootimess. This is also presenied in the appendix, but
some other possible formats are discussed in London ([985). The graduated values
are obtained as the posterior mean of &and the graph of the estimates in the example
analysed in London (1985) is shown on a log scale in figure 4.

Fige 4

4.7

58 57 53 &1 a3 ] &7 68 Tt 73
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The two Bayes results show how to control the model, with higher and lower
level of smoothness, depending on the chosen value of A. Bayes-low is also so close
10 the observed data that it is even hard to distinguish them,

A different approach is presented in Klugman (1992), bringing a different
approach to the Whittaker model. [nstead of using prior information from another
table, as in London (1985), a relationship is imposed among the parameters in €. In
order to do this, a design matrix is included transforming the modet into:

X|® ~ normal {68)
K8~ normal (0,4) (15)
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Where K is the matrix that produces the z° differences of a sequence of
numbers. Choosing properly the values for A and B and letting z = 3 gives the
posterior mean as the same solution as the one proposed by the Whittaker model. But
in the new Whittaker approach not only the estimator of & was found, but also is
covariance matrix. In this way a confidence region coukd be eastly found.

En fact, one of the first applications of the model expressed in formata (15)
was the caleulation of a reserve, where a confidence interval was also presented. The
case when a prior distribution s given for A and B is also analysed in Klogroan
(1992).

Section 3 has given an outline of models with 2 Bayesian flavour. Models
taking previous data information through p(&) are shown, like Kimeldorf and Jonss
{1967} and the “‘pure Bayes with prior information™ from Veprall (1990). Also models
where p(£) was presented to impose a dependency among & was used, like the
“empirical Bayes” from Verrall{i990) and Whittaker graduation from Klugman
{1992}, All the models have analytical solutions, and most of them are fully explained
in the appendix.

Now, in the following section, an introduction to simufation will be given,
which is the basis for the more elaborate models using Bayesian theory, Some models
where the variance parameter also has a prior distribution will also be considered.

4 SIMULATION PN BAYESIAN STATISTICS

“The difficulty in carrying out the integration necessary to compute the postetior distribution
has prevent such approaches from being seriously contemplated until recently (...)."
Carlin (1952}

As stated before, many models in Bayesian theory cannot be solved
anaivtically. In order o apply them an approximation would be required and
simulation: is ofter used in implementing those models. This is not the only possible
kind of approximation and the Gaassian quadrature used In Klugman (1992) could ke
cited as a different example. But since the advent of Gibbs sampling, simulation kas
superseded all other types of approximation.

In order to iltustrate the simulation philosophy, suppose that the posterior of 2
specific parameter 8 is needed. If an analytical solution were available, a formula
would be derived, where the observed data and known parameters would be ircloded,
defining a final result. But, depending on the model, this solution will not be possibie.
In such cases an approximation for the posterior distribution of &is needed. One way
of finding this approximation is by simulation, that substitutes the posterios
distribution by a large sample of & based on the characteristics of the model. With this
large sample of & many summary statistics could be calculated, like the mean,
variance or histogram, extracting from this sample of the posterior distribution all the
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information peeded.

‘There are a number of ways of simulating and in all of them some checking
should be carried out to gusrantee that the simulation set is really representative of the
required distribution. For instance, it must be checked whether the simulation is
mixing well or, in other words, if the simulation procedure is visiting all the possible
values for 6. It should be also considered how large the sampie should be, and
whether the initial point where the simulation starts does not play a big role. Among
many other issues, the moment when convergence to the true distribution of 2 is
achieved should also be monitored.

All these features can make the technique difficult to apply, and, even worse,
perhaps dangerous o use. This happens because once all the needed procedures o
start the simulation are ready, a sample of # could always been obtained. This,
however, does not mean that it is really representative of the posterior disteibution.
The only way the analyst could assure that the sample does not have any deviation
from the posterior distribution is through the tests listed above,

The most popular type of simulation in Bayesian theory are the Markov chain
Monte Carlo (MCMC) methods. This class of simulation has been used in a large
number and wide range of applications, and hias been found to be very powerful. The
essence of the MCMC method is that by sampling from specific simple distributions
{derived from the combination of the likelihood and prior distributions), a sample
from the posterior distribution will be obtained in an asymptotic way. Among the
technigues that use MUMC, one of the most popular is Gibbs sampling. WinBUGS or
a specifically developed program could implement this method.

WinBUGS is the newest version of BUGS (Bayesian inference Using Gibbs
Sampling) which was first made available in 1992, This software works under
Microsoft Windows® and this makes it easier to manipulate. Many wvseful tools for
analysis are akready included, and this helps to check if the simulation follows the
mules cited here before. There is also software called CODA that produces some tests
to check whether the simulation can be regarded as representative of the posterior
distribution. It also includes a manual and a set of examples, and the more interested
reader should visit www.fore-bsu.cam.ac uk/bugs in order to get this free software,
Although it has a very specific notation and use, someone interested in redoing the
following examples should be able to do it, and get a feeling of what can be done
under WinBUGS.

One way of representing the model which is the basis of WinBUGS is the
graphical model Such & schems is often used in Bayssian analysis to give a betler
understanding of the models, particolarly when the dependencies between the data

and the paiameters are complex. Figure 5 shows the graphical representation for the
Bithlmann and Straub mode] described in subsection 3.1.
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Where circles stand for random variables {x8.0%47), rectangles for
constants (wy) and the big rectangles for the index (7 and j). This graphical model
shows that once the parameters & are given, the data xydo not depend on u or # any
more. It also shows that once & are given, they contain all the medel information
needed o update g for instance. This feature is the basis of Gibbs sampling, since
through this conditional independence it i possible to derive simple distributions,
which will be used to update the parameters values. In the next sections most of the
model will have a graphical model to guide the reader on applying the model in
WnBUGS.

Simulation deals with missing values in & very straightforward way. Thoss
values are treated as variables, in the same way as the parameters. So, in sach
iteration, a vatue for the missing value is aigo caleulated and inference is carried ouy
as usual [n WinBUGS, for instance, the missing value is stated as a "NA™ (Not
Available) in the data set itself.

In order to illastrate these techniques, the traditional models reviewed in
section 3 will be reconsiderad in this section. In all of them, simulation will be used.
The order in which they are presented is also the same as in the previous section and
some of the exampies have their code in WinBUGS written in appendix D.

4.1 CREDIBILITY THEORY

Returning to the credibility model in subsection 3.1, iwo new models will be
used here 1o apply WinBUGS. The first one only aims to show how to use WmBUGS
ane is defined by the simply addition of prior distributions for the unkoown
parameters in the Bithlmann and Straub model. The second ons changes the core
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assumptions of the Biuhlmann and Straub model and shows how this is easily
jmplemented in a simulation environment.

The data are the same as the one in subsection 3.1 and were also analysed by
Scolinik (1996} and Smith (1996). The approach used here is the ope adopted in
Persira {1998).

Recalling the model from Buhlmann and Straub, p(x;| & 0} is normal( & ,ozﬂv;,-)
and p(Gl 1) is a normal(y, ), with unknown o, 4 and 7. In the solution proposed
by Klugman {1992) a set of non-informative prior distetbutions were used and the
solution, which did not have a analytical sclution, was found by a non-simulation
technique. In that solution 2 program had to be specifically written in order to camry
out the model implementation and, depending on the approximation technigue chosen,
the calculations conld take 2 hours.

The first example in this sabsection reanalyses those data, but using
WicBUGS. The model is written in a WinBUGS terminology in figure 6 with the
following set of prior distributions, which has a non-informative objective:

£ ~normal {0, 10%)
1/7 ~ gamma (0.001, 0.001) {16)
/¢ ~ gamma (0.001, 0.001)

Figure 6

mode] BiihimanaStraub; 12
const
N =130, # nember of classes
U=6; ¢ number of abserved years
var
ma, thefa{NL Y[N,U] tau,sigma,w{iN, U} sige[N,U);
data in "datafile”;
inits in "nitialfile";
t
mu ~ dnorm {0, LOE-5);
tau ~ dgamma (1.0E-3,1.06-3%
sigma ~ dgarmma {1.0E-3,1.0E-3);
for (1 in :ND {
thetali] — doorm (mitau);
for (jin L:U) §
sigef} <sigmarwiifl
| YT~ dnor, tali gl
i
1

" In WinBUGS instead of the variance, the precision { Lfvariance) is used for the normal distribution
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The implementation of this modef took 5 minutes on. a fairly old comgter,
with a total of 2500 simulations, where the first 500 were discarded to eliminate the
effects of the initial conditions, Before showing the results the second model will be
described. Since the observations are numbers of claims it is more suitable to madel
the data using, for instance, a Poisson distribution rather than normal distribations. kn
WinBUGS this is a direct generalisation of the previous model and it is only
necessary 10 change the model, using non-informative prior distributions {(also
representsd as graphical mode! in figure 7), to:

yi| 6 ~ Poisson {&xwy)
& o B~ gamma (& 5 an
¢e~ uniform (0.01, 50) and £~ uniform (0.01, 50)

Figure 7"

©
\/
_.m -

j=l..n
izl k

This model did not take much longer than the previous one to be implemeated
with the same amount of data. Since one of the main quantities of interest is the
forecast of the nember of claims for the 7" year, this is done in WinBUGS without
calcuiating &, but rather by sampling the value of y directly. This is possible since
the values for the 7 year can be treated as missing values. The table below gives the
results, where the value of the deviance is related directly to the forecasted valve of
Yir.

" WinBUGS code in appendix D.
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Observed data Normal Poisson
Class Wiz yz | Forecast | Deviance | Forecast | Deviance
4 - Q - - - -
1t 229.83 8 10.15 7.28 10.21 3.57
112 | 13,809.67 | 45 38.24 656.06 35.64 6.63
70 54.81 0 (.60 3.47 0.254 0.57
20 1,315.37 | 22 41.24 16.54 41.48 6.55
89 79.63 40 29.56 4.11 32.82 6.17
Forecast error 13.22 12.44

Comparing these values to the ones found in subsection 3.1, it is observed that
the Normat solution is almost the same as the previous ones. The benefit for using the
Poisson distribution can be seen in the smalier forecast error found in this case. And it
is also observed that in many classes the deviance was smaller when the Poisson
distribution was assumed,

4.2 CLAMS RESERVING

The flexibility in the solution by simulation gives an enormous number of
models that can be applied to better understand processes in insurance, In the previous
subsection the use of a Poisson distribution was a fairly easy and straightforward one.

"Fhe use of WinBUGS in order to implement the Gibbs sampling technigue is a
very convenient one. This is mainly because of the development of a specific program
i not needed and the number of techniques io control the simulation whick are
already built in.

Not much research has been done in order to implement chain fadder based
models using WinBUGS, This mainly due io the amount of missing values which
there are in claims reserving (the outsianding clzims are treated as missing values in
WinBUGS). So in order to use such triangular date, the model was implemented
either using specifically written programs, or by imposing very strong assumptions,
Other researchers have wsed new models, which would not use the data in the
triangular format, but the individual claim amouonts. An overview of what has already
been done in this direction will be given in subsection 5.3.

Two works using triangutar data will be cited here. The first one is Charissi
{1997) where the “pure Bayes without prior information” model in Verrall {1990) is
reanalysed using BUGS (the previous version of WinBUGS). But now there is 4
proper prior distribution for each of the parameters, These are included in the second
tevel, and independently of the chosen distribution, each one had te be centred on the
values observed in the data, with quite a low variance, The graphical model would be
ds in figure 3;

182



Figure §
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The data from Taylor and Ashe (1983) were reanalysed and the resulis of the
posterior mean for the row parameter is plotted in the figure 9 together with the valnes
found before in Verrall (1990). Or oge hand, it is easy to see that the set of chosen
prior was not able to influence much the mean of the row parameters (or even the
other ones), keeping the same result a5 the one found in “pure Bayes with no prior™.
But, on the other hand, in this new analysis the influence of the prior was enough to
decrease the standard error of the parameters by an average of 30% compared to the

previous approach,

j=loon i=hon

Figure §

2 3 4 5 & i i 9 10

—4&— Bayes no prior  ——&— Bayes prior
-—&—- Empirical Bayss ——— Charissi
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The second paper is Ntzouftas and Dellaportas (1997). Gibbs sampling is
again used as simulation technique, but although this paper was prepared after the
development of BUGS, 2 specific implementation program was used instead. Five
models were presented in the paper and atl of them were applied to the same data set.
This set includes the inflation rate for the observed calendar years and bwo
incremental development triangles: amount and number of claims. With all of this
information in hand they proposed new models that would take into consideration the
number of claims in order to predict the claim amounts, which would be deinflated
before any analysis. Only one model among all five will be fully explained here. The
more interested reader should report to the original paper in order to see all
sxplanstions apd formulae for the other models,

“Log-normeai & Poisson mode!” is a direct generalisation of Kremer (1982).
Now, instead of using only the information from the amousnt of claims, the history of
number of claim (n;} reported in tow i and column § is also taken into consideration.
Now the model in (11} wilt be changed to;

x;= In(yy)

x)8s ¢f ~normai( 8 o)

6= i+ G+ i+ In(n) (18)
ngldy ~ Poisson(Ay)

InfA = u + o + 3

with constraints and prior disteibutions for g1, &, 8, #.6" 8" o fully described in the
paper.

An analysis was pecformed with all modeis, and it was shown that for the
specific data used the models that included also the number of claims, like the one
explained above, had e better prediction than the ones that did not use such
information. This was mainly due to the long tail characteristic of the data set, where
claims were stiil being reported after 7 years of occurrence.

This subsection has shown that the flexibility of the simulation approach was
abie to allow also the inclusion of the development of number of clims in the chain

ladder model. In the next subsection some applications of simulation will be used for
graduation as well.

4.3 GRADUATION

The paper from Carlin (1992} uses Gibbs sampling technique to graduate not
only mortality table but also the sging factor cost related to health insurance. In both
of these applications serme resirictions were imposed in the mode! structure, like for
instance, the growth on mortality expected in adolthood. Here only the mortality
example witl be explained.
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The paper was developed before BUGS was implemented, so a specially
written program carried out all calculations. In the graduation problen: the data set has
ages from 35 o 64, so 30 ages were observed, The model states that the number of
deaths y; in age H+34 for i=1,.._,30 is Poisson distributed with intensity given by S
where w; is the nurober of policyholder in i. The model is written as:

8  ~ Poisson (8xw)
8f - gamma (e B £153]

Where & >0, S0 <B.0 <8 - 8i< ... < g~ by, B and r fixed, supposing a
prior disteibution for £ Now a graphical model is drawn for this model. It is shown in
figure 10, where the imposed order among the parameters &35 also represented.

Figure 10

Some constraints were also imposed on the model and the more interested
reader should refer to the originat paper in order to see these in full. The results are
also compared with the ones obtained by the Whiltaker model and the author
comments that “The Whittaker results are fairly similar to the Bayes results, though
the Whittaker rates tend ko be influenced more by the unusually low raie at age 63.". It
means that the model was able to keep the growth among the parameters @, although
this was not observed for all ages in the data set.

An application of BUGS to gradustion can be found in Kouysumoutzis
(1998). In this work a number of models wese investigated and the one explained here
is based on a third degree palynomial regression analysis and expressed by:

91| & ~ Poisson{w;x&) with (20}
(B = B+ B + BOE-1Y2 + B(SF3012 +
B (358302308 + B (31583501 +751)/40,
and S~ normal (0,0.001) for j=0,...,5
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The time needed to run the simulation was again very small and the smoothed
values fitted well the data. The graphical model is show below in figure 11.

Figurel}'

In this section a review of traditional models revised in a Gibbs sampling
approach has been given. Different, new models were incorporated by the inchision of
simulation into the modelling process. It is expected that the more actuaries are able
to use WinBUGS, and more generally Gibbs sampling, the more revisions of
traditional models will emerge.

In the next section completely new ideas will be presented. The assumptions
used in macro models are completely dropped and models with approaches closer to
the process itself will be used.

5 NEW AREAS, NEW POSSIBILITIES

* ...y the potentizl for these methods in insurance application is great.”
Boskov and Verrali (1954)

Up to this point we have discussed well known models which were rewritten
in order to give a Bayesian approach. This opens a2 broad area of research to Bayesian
theory, since most of the well established models in actuarial science can be reviewed
in a Bayesian way. And with the advent of simulation, solutions can be found for
most of them.

But one of most appealing features of a Bayesian analysis is the broader set of
models that can be built, medels which do not have a classical equivalent approach.
This feature is mainly due to the simulation advanced on the Jast few years, when
some new models were developed. In this section some of those new models are
described, including some practical appealing ideas which are easily embraced by a

" WinBUGS code in appendix D.
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Bayesian model

It may turn out {and this is something that remains to be seen) the most
important of thess new ideas is the ability to model at the individual policy level. Now
an “engineering approach”, when assumptions are made straight in the process itself
rather than on the aggregated data, fits fairly easily within a Bayesian model.

In order to show how it is done, three examples are presented in the next
subsections. The first is the use of spatial models in the rating by area problem, not
using individual data but oaly the loss ratio and exposure by area. The individual data
will be considered in the second model, which is an aggregation of continuous
variables in the problem of transforming ages into factors in the rating process. And
the last example is an application to claims reserving, but now considering the
individual data, instead of the usual triangutar format.

All three models use the simufation approach, but none could use WinBUGS
and a specific implementation program had to be written. Their formulae will not be
described in detail, but their assumptions are fully explained. It is hoped that the
reader could get a feeling of those models here, and shoukd refer to the original papers
for a full formulation.

5.1 RATRNG BY POSTCODE AREA

There are many factors that could influence the frequency or cost of a claim
angd that should be taken into consideration when defining the value of the premivm
One of these is the area where, for example, a car is used or parked most often and
this characteristic is usually faken into account through the neighbourhood where the
policyholder lives.

Neighbourhood could have many interpretations, but here postcode is used. In
an office environment it is common to aggregate postcodes with similar experiences
in the same class. At the end of this procedure a small number of classes will be
derived, but the vicinity information is not formally taken into accoant by the model

Taylor {1989) published the first paper with some statistical basis, which
addressed how o carry out this aggregation using the vicinity imformation. He
adapted a two-dimension splines model to the postcode problem, with a totally oon-
Bayesian approach.

In this paper a review of Boskov and Verrall {1994} will be presented. They
use a Bayesian approach, applying spatial models mainly used in epidemiology and
satellite image restoration among other fields. The basis for such models is that areas
that are close together are more likely to be sirnilar in risk than areas that are far apart.

The aim of the model is to find a value for risk parameter (8), that will be
smoothed oven the whole area (that contains n postcodes) but considering only
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information from its neighboors. The data contain the observed loss ratio (x;) for each
postcode area /, and they are assumed to have a normal distribution as follows:

%:|6~ normal (8, o) i=l...n 2n

Where w; is the exposure for postcode area i, Instead of using the variance as a
variable like is some models seen before is this paper, orwill be a constant chosen by
the analyst fixing the required level of smoothness. The bigger o, the smoother is the
result for the posterior mean of 8.

The most important idea of the mode! comes in the definition of the second
level of distributions, when & reiationship among the risk parameters & is defined. For

each postcode rsk & an adjacency set i3 defined as in figure 12, where the darker
areas are incladed in the neighbourhood of the risk.

Figure 12

So the risk parameter of each postcode is defined to be normally distributed,
cenitred on the average of all risk parameters in the adjacency set. All risk parameters
are defined at the same time, influencing their neighbours as well.

This modet does not have a possible analytical solution, and a simulation
approach was used in order to find the posterior of 8. A MCMC method was used and
the fiyll model explanation can be found in the original paper. [a there an anaiysis of
the results are shown for different levels of smoothoess, and it is veally interesting to
observe that the model did work. The risk parameters really took some information
from the neighbours.

In the following subsections, models considering individual data will be
presented. Their solutions are derived through simulation, and one of their common
feature is the long time needed o perform the implementation. This could be a barrier
{0 a practical use, but their benefits could easily justify the time spent on them.
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5.2 GROUPING AGES

In Pereira and Verrall (1999) a method of transforming a continvous variable
into fewer factors is presented. The paper works in the particular example of
policyhoider age, but the modef could be applied in any other kind of continuous
variable.

The main objective of transforming age into a factor is 10 summerise
information. Actuaries usaally do this when, for instance, age is used as a covariate in
ratemaking. Usually age is considered as an integer number (which is already a year
aggregation) and the transformation to groups is a further process. The first step,
considering age in years, is done without a proper analysis and could bring distottions
to the group definition, In this new approach the pure data are used, dropping the first
step used befors, and transforming the real age into a factor with only a few classes.

Informally, the model is specified in the following way. Suppose that age is
limited to some interval [a,b]. The procedure would find at the same time how many
intervals {k) there should be in [a,b], where they would be best located (5 =(sy,....5:.13)
and w_hm_nsk_mLQn,s}Lg {L= (!s..., 4.1}} are appropriate for each of them. This
approach is based on the prermum philosophy that once we know the greups, the
premium lavel will be the same for any policyholder included in a particuiar group.
The graphical model is presented in figure 13.

Figure 13

ab

Finding k, § and L at the same time, would mean that the size of 5 and L
changes according to the value of k. This makes the model fairly difficelt to be
applied and a generalisation of the MCMC techniques is used. It is called Reversible

Jump Markov chain Monte Carlo (RIMCMC) and in this procedare the size of k can
be changed in each iteration,
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Pereira and Verrall (1999) uses as a case study data from a bodily injury motor
insurance. The data consist of the mumber of claims on an individual basts, their date
of ocowrrence and the age (in days) of the policyholder, which was some rumber in
the interval (in years} [19.39, 93.89]. The solution for the model was found through
the calculation of the posterior distribution based on the sample obtained. The piot of
the postetior distributions for &, L and § are presented in figure 14.

Figure 14
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With these posterior distributions at hand, the analyst should choose the values
for the parameters. For the number of jumps, 4=2 is the mode of the posterior
distribution and can be seen as & proper solution. Since the other distributions have
more than one mode (as expected), such an approach is not as clear as in the
definition of k and many analyses coukd be used. In the original paper the posterior
mode was calculated.

In this example the step of defining an estimator after finding the posterior
distribution has been considered. This could be good or bad. On one hand, the anaiyst
does not have a closed and final solution, and he is able to draw conclusions based on
a distribution, which gives an enormous amount of information. But on the other
hand, different anaiysts could chose different values, based on the same result,

Now an example with more specific answers wilt be presented. This will be
the last sodel explained in this section, giving an interesting approach to how include



individval information in the claims reserving procedure,
5.3 CLAMS RESERVING

The majority of methods for estimating claims reserves are based on macro
models, whese the data are aggregated in a trangular format Iike the chain ladder
model. Miczo models, where the individual policyholder characteristics ase
statistically taken into consideration are not usual. The only office based procedure
that takes into consideration some individual information is the case reserve
definition, when the claim characteristic is used, but this does not have any statistical
basis,

One of reasons why this individual characteristic is not used in statistical
models conld be the difficulties that surround any calculation or an individual claim
basis. The fluctuation related to any individual estimate, could be also a good
justification for the lack of use of such mwodels. The key question woukd be to use such
information, but in a more robust way.

Before analysing the model, it would be helpful to think of the claim process.
Cousider now the anatysis done by Norberg (1993) and represented in figure 15. Such
a scheme shows how each claim could be different from another. Most claims can not
be completely settled at the moment the claims reserve is calculated (Reported But
Not Settled - RENS) and after  claim is incurred but not reported (IBNR}. T also
highlights the partial payment process, which for most type of insurance is more usual
than a simple payment.

Figure 15
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Using this approach Haastrup and Arjas (1996) proposed a new method, using
a Bayesian anatysis to define claims reserve for the whole portfolio, but considering
individual information. The IBNR and RBNS claims reserves are calcolated
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separately. In this model no information from the claim itself was taken into
consideration, bat it is possible to do so in such a framework.

In their model the claims frequency and severity are modelied separately. In
the first model age, sex, report delay and calendar time of occurrence are included,
and ir the second modet the analysis uses partial payrents. MCMC simulation is used
in order to obiain the estimated posterior disiributions.

The way of handling missing values in a Bayesian framework is also explored
and the IBNR claims are considered as missing. Since simulation is used, it is possible
to sampie at each step the pumber of claims that had alrexly occurred and that are
missing (IBNE) and their correspondent amounts. At the end of the simulation a
sample of IBNR numbers and values is available and its posterior distribution can be
approximated. The amount of RBNS claims s cakulated in the same way.

The result of this model is given in figure 16, where the graphs are produced
for the number and amount of IBNR, amount of RBNS and both liabilities together,
Values are shown in Danish currency.

Figure 16
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This modei suggests many ideas for further development. If individual
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information could be tzken into account I a statistical model, it means that
characteristics of the claim itself could also be formally considered.

And since their approach also considers the calendar time in order to define
the reserves, it is possible to obtain the amount of the reserve at a specific moment in
time. The vertical line included in the graph shows this feature, giving the
correspondent values expected in 2 specific evaluation moment.

6 CONCLUSIONS

*“ {... Jactuaries baving spent the past half-century seeking lirear solutions {...) logical
solution is to drop the linear approximation and seek the e Bayesian solution.™
Klugrnan {1992)

As it was shown throughout this paper, many models have been developed ina
Bayesian framework. Some of them were only an extension of well known models,
but others included new ideas to the actuarial analysis. And we have given orly a
sample of 2 large variety of papers. [t is hoped that this paper has excited the curiosity
of actuaries and that Bayesian theory will be also applied in practice.

Bayesian models bring to the practitioner actuary two attractive possibilities:
formal inclusion of judgement and wider number of models. In many cases, these
characteristics are very interesting for any actuary. But how can they be made really
practical? In order to apply them the following steps should be done. Firstly, it &
important to make sure that Bayesian theory is fully understood. Secondly, simulation
by MCMC should also be covered.

After these two main areas are covered anyone could easily apply the models
explained in section 3 and 4 of the present paper. The reader is also encouraged 10
experiment with WinBUGS, whick is a powerful tool in Bayesian analysis.
WinBUGS could solve even methods with analytical solution, since it is fast and
accurate.

The range of applications in actuarial science where Bayssian theory could be
used is enormous. For instance, a prior distribution for the interest rate coukd be
included in 2 pension fund analysis, extreme value theory' could be used to price a
catastrophe bond and information on the claim itself could be included in the model
described in subsection 5.3 for reserving, An application that sesms straightforward s
the inclusion of benchmarks in the chain iadder modet described in subsection 3.2 and
4.2,

' Definitian i3 in the reference list on Bayesian Theory at the end of this paper.

193



References:

{1998} WinBUGS Manual; MRC Biostatistcs Unit Cambridge.
(1998) WinBUGS Examples; MRC Biostatistcs Unit Cambridge.

Arjas, B, and Haastrup, 8. (1996) Claims reserving in continuous time; a
nonparametric Bayesian Approach. ASTIN Bulletin, vol 26, no.2, pp 139-164,

Bailey, A (1950) Credibility procedures, Laplace’s generalisation of Bayes® rule and
the combination of collateral knowledge with observed date; Proceedings of
the Casualty Actuarial Society, vol 37.

Boskov, M. and Verrall, R. J. (1994) Premium rating by geographic area using spatial
models; ASTIN Bulletin, vol 24, no. 1, pp 134-143.

Bithimana, H and Jewell (1987} Hierarchical credibility revisited; Butletin of the
Association of Swiss Actuaries.

Bithlmann, H and Straub (1970) Credibility for loss ratios; Bulletin of the Association
of Swiss Actuaries, vol. 70.

Bithlmann, H. (1967) Experience rating and credibility; Astin Bulletin, vol 4,

Carlin, B.P. (1992) A simple Monte Carlo approach to Bayesian graduation;
Transactions of Society of Actuaries, vol XLIV, pp 55-76.

Chrissi, D, €1997) Claims reserving under a Bayesian approach using BUGS; Master
dissertation; City University: London.

Delaportas, P. and Ntzounfras, 1. (1997) Bayesian prediction of outstanding claims.
University Report.

DeGreot, MLH. (1986) Probability and statistics: second edition; Addison-Wesley
publishing company: USA.

Haberman, S. (1956) Landmarks in the history of actuarial science (up to 1919);
Research report, City University: London/UK.

Kimeldorf, G.S. and Jones, D.A. (1967) Bayesian graduation; Transactions of Society
of Actuaries, vol XIX, pp 66.

Klugman, S. A. (1992} Bayesian statistics in actuarial science with emphasis on
credibility theory; Boston: Kluwer,

Kouyoumoutzis, K (1998) Menitoring mortality over time; Master dissertation; City
University: London.

Kremer (1982) Exponential smoothing and credibility theory; Insurance: Mathematics
and Economics, vol 1, n® 3.

Liu,Y.-H, Makov, U. E. and Smith, A. F. M. (1996) Bayesian methods in actuarial
science; The Statistician, 43, v° 4, pp 503-515.

Lordon, D. (1985) Graduation: the revigion of estimates; ACTEX Publications: USA.

Norberg, R (1993) Prediction of outstanding liabilities in non-life insurance. Astin
Butletin, vol 23, n° 1, 95-115.

Pereira, F.C. (1998) Teoria da credibilidade: uma abordagem integrada. Caderno tese.
Funenseg: Rio de Janeiro/BR.

Pereira, F.C. and Verrall, R. J. (1999) A Markov chain Monte Carle approach to
grouping premium rating factors. (to appear).

Scollnik, D.P.M. (1996) An introduction to Markov chain Monte Carlo methods and
their actvarial applications. Proceedings of the Casualty Actuarial Society, vol

194



LXXX3T, o° 158.

Taylor, G.C. (1989) Use of spline functions for premium rating by geographic eres.
Astin Bulletin, vol 19, n° 1, pp 91-122.

Taylor, G.C. and Ashe, F.R. {1983} Second moments of estimates of outstanding
claims. Journal of Econometrics, vol 23, pp 37-61.

Verrall, R. J. (1990) Bayes and empirical Bayes estimation for the chain ladder
model. Astin Bulletin, vol 20, n° 2, 217-243.

Chib, 5. and Greenberg, E. (1994) Understanding the Metropolis-Hastings algorithm.
University Repost.

Gamerman, D and Migon, H. (1993) Inferéncia estatistica: uma abordagem integrada,
Mathematics Institute, Federal University of Rio de Janeire - UFRI.

Gamerman, D. (1997) Markov chain Monte Carko: stochastic simulation for Bayesian
inference. London: Chapman & Hall.

Gilks, W.R., Richardson, S: and Spiegelhalier,D. J. {1996) Practical Markav chain
Monte Carko. London: Chapman & Hall.

Green, P. 1. (1995) Reversible jump MCMC computation and Bayesian model
determination. Biometrika, 82, 711.732,

Green, P. J. and Richardson, 8. (1997) On Bayesian analysis of wmixtures with an
unknown number of components. §.R.Statistic Society B, 59, n° 4, pp 000-000.

Hastings, W._ K. (1970) Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, vol 57, pp 97-109.

on i 3

(1986) Special issue on credibility theory; Insurance Abstract and

Reviews vol. 2, Feb.1986, o’ 3.

Albrecht (1985)An evolationary credibility model for claim numbers; Astin Bulletin,
vol. 15, n®1.

Dannenburg, D. (1993) Some resulis on the estimation of the credibility factor in the
classical Bithtmann model; XXIV Astin Colloquivm.

Goovaerts, M.J and Hoogstad, W.J. (1987} Credibility theory; Surveys of Actuarial
Studies, n° 4, Nationale-Nederlanden N.V.

Goovaerts, M.J, Kaas, R., Van Heerwaarden, A.E. and Bauwelinckx, T. (1990}
Effective actuarial methods; Elsevier Science Publishing Company, Holland.

Hachemeisier (1975) Credibifity for regression models with application to trend,
Credibility: theory and applications, Proceedings of the Berkeley Actuarial
Research Conference on credibility, Academic Press.

Jewell (1974} Credible means are exact Bayesian for exponential families; Astin
Bulletin,vol,8,n°1.

Jewell (1975) The use of collateral data in credibility theory: a hierarchical model;
Giomaie dell’Istituto Iralizno deghi Asuari, vol 38.

Jewell (1976) A survey of credibility theory; Operations Research Center, Research

195



Report n® 76 - 3, Berkeley.

Tong and Zehnwirth (1983) Credibility theory and the Kalman filter; Insurance:
Mathematics and Economics, vol 2,

Kling, B (1993} A note on iterative non-linear regression in credibility; XXIV Astin
Colloguiwm.

Ledolter, J. , Klogman, S. and Lee, C.S. (1990} Credibility models with time-varing
trend components, Astin Bulletin, vol 21, n® 1.

Longley-Cook (1962) An introduction to credibility theory; Proceedings of the
Casualty Actuarial Society, vol 49.

Sund¢ (1982) Tnvariantly recursive credibility estimation; Insurance: Mathematics and
Economics, vol 1, n° 3.

Sundt (1983) Finite credibility formulae in evolutionary models; Scandinavian
Actuarial Journal, n°2

Sundt {1987) Credibility estimators with geometric weights; XX Astin Collequium
Scheveningen.

Waters, H. R. (1937) Special note: an introduction to ¢redibility theory; Institute of
Actuaries and Facalty of Actuaries.

Whitney, A, (1918) The theory of experience rating; Proceedings of the Casuaity
Actuarial Society, vol 4.

196



Appendix A

General model expression
X|g=Ao+ g & ~ normal(d, F)
G=Bpu+ g & ~ normai(0, GY
2 F.G) respective priors
BUHLMANN(1367} BUHLMANN & STRAUB(1970)
g Xﬁza‘i‘ﬁi & “"ml(o,oz} -x(,I:&"‘a;i gyﬂmml({)’o%}r)
g |G=u+a & ~ nomul(Q, 7) ; '
é p(;:,oz,z’) =g+ g & ~ nommal(0, )
= Pl o, 7) wyis the weight
X' (et X bim e Xt [ETTRNN /% - TR
& (4.8 {&,...50
B 1; 1&
F | Pl A (P i1 O W)
H ,ﬁ.lk #LE
L @ 0, L o 0,
0, i, 2 . o 0
A4 N oo
9, 0, 1, 0, & - 1,
G | 7L L
Usual estimators for variances used in the classicai approach:
1] £ x 1 ] 2
Xy — % —_ wolx, —x,
. k(ﬂ—ngg( L) )3 k(n-—l)g‘; fi( 3 hv)
&
AW,
R it A
e ja W %o
v.4 &
Loyfsf-& ST S PRSP B¢ ST
2 k-1 R wh —ﬁw: A

el
Ko = ii"wlxv

w jm Wi
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Appendix B

Cham Ladder models (subsachon 3. 2)

X } 6-— normal (K&ozl) .
&} 6 ~ normal {£,);

with

X, B K I Zand & as described in equation {12) and

B jthout Pure Bayes with priof infotnation
in jon -
. O =gy =05 =0 G =103..,9030..0%
As
| Aesumerion o= 0g’=0; g = 0.05
Eg?;)“ normal( & ,{o K"K notmal(z8 +(1-08, (6 2K K+A T
Ré=X dand ¢ as in model |
s X -KEY(X - K6) =o'k + AT 07Kk ]
(r+2) g
0
Formulas
ATl = o]
2
o
Appendix C
Kimeldorf and Jones {1967) model (formulae taken from London{1985))
posterior distzibution:
8| X ~ pormal((A+ BN B X+ AT+ BD )
H= (mhmza-wlmﬂ)
B = diag(bys,..,Den)
by = ml-m) . where n; is the number of policyholders in age i.

]

A bas elements a; =p’r*# (with £ and p defined by the analyst)
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Appendix D
WinBUGS code for figure 7

model poisson;
const
N =130, # number of classes
Q = 895; # number of observation
var
mu, tu,theta[N], YIQLPEQ] the_temp([Q, TINLIINL
data in “d27nna.txt";
inits in "d2¥Fraain®;
{
mu ~ dunif(0.01,50);
tau ~ dunif0.01,50%;
for (i it 1:N) [
thetali} ~ dgammaimi,tau);
for {j in: TE)-THE] |
theta] <-the_templi]*wii};
| Y[j] ~ dpois{thetalf});

!
]

WinBUGS code for figure i1

model graduation;
const
N = 68; # number of ages
var
WIN], YINI, agefN], theta[N], theta_temp(N},
b0, b1, b2, b3, bd, b5;
data in "datafile”;
irdts in “initialfile";
[
for (i in TN} [
Y]i) ~dpois{theta, templi]);
theta_templi] <- Wiil*theta(i];
In {thetali]) <- b0+b1*ageli}+
B24((3"pow(agelil 2)-1)/2+
b3*((5*powlagefil,3)- 3 agefi}/2)+
b4*((35*powlagelil A)-30powlageliL2)+3)/8)}+
b5M({315* powlagelil. 5)-350(age]il 3)+75*pow(ageli].2))/40)
|
b0 ~ dnorm (G, 0.001);
b1 ~ dnorm (0, 0.001);
b2 ~ dnocm {0, 0.001)%
b3 -~ daorm {0, 0.001);
b4 ~ dnorm (0, 2.001);
b5 ~ dnorm (0. 0.001);
1
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