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Abstract

The aim of this paper is to present an overview of stochastic reserving suitable for both those
working at the coalface of reserving as well as more senior actuaries tasked with oversight
of the process. An overview of the stochastic reserving process is presented, together with
a discussion of ultimate and one-year views of risk, with the paper restricting its scope
to the former. Three commonly used stochastic reserving models are described: Mack’s
model, the Over-Dispersed Poisson model and a stochastic Bornhuetter-Ferguson model.
The estimation of variability directly from the models and via sampling methodologies
such as the bootstrap and Monte Carlo is discussed. Some numeric examples are provided
to illustrate the concepts discussed in the paper from model fitting, to validation to
variability estimation.
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Chapter 1

Introduction and Scope

1.1 Overview

1.1.1 Scope

The aim of this document was encapsulated in the title of our working party: The
Pragmatic Stochastic Reserving Working Party. Our ambition was to smooth the path
for general insurance actuaries, regardless of experience, to engage with and understand
the commonly used stochastic reserving methods. Our original scope also encompassed
providing practical guidance to actuaries in relation to which methods to use and when,
and we believe that we have made some progress towards achieving this.

Our target audience falls into two categories:

• Actuaries tasked, through calculations and analysis, with assessing reserve variability;
• More senior, experienced, actuaries with responsibility for the oversight and, most

likely, review of such reserve variability assessments.

Recent years have seen a greater interest in and focus on economic and regulatory capital
modelling, requiring quantification of the uncertainty attaching to unpaid claims reserves.
Given the undoubted complexity and technical challenges of using stochastic reserving
models, many senior actuaries in particular have needed to develop their skills and
understanding of the different methods. As in other areas of actuarial practice, senior
actuaries need to understand the main assumptions, drivers and limitations of methods,
as well as having the breadth of perspective to be able to guide and review the detailed
technical work of others.

Other actuaries, most likely younger career-wise and relatively less experienced, will be
responsible for the detailed numerical work involved in reserving and reserve variability
assessments. These actuaries will face the challenge of engaging with a substantial and
sophisticated body of material. Also, the number of methods available is steadily increasing
as new academic papers are published and new software is released. How best to catch up
with and make sense of this rapidly expanding field?

To spare both the reader and authors, we have found it necessary to define a tight scope
for this paper, to limit ourselves to a small number of commonly used stochastic reserving
methods.

3



From the diverse and expanding range of available stochastic reserving methods, we have
chosen to limit our scope to the following three:

• Mack model
• Over-dispersed Poisson model
• Stochastic Bornhuetter-Ferguson

(These models are described in section Models so we direct those unfamiliar with them to
that part of the paper).

These particular models have been chosen after due consideration of a number of factors,
including use amongst practitioners, profile in the academic literature and ease of definition
and initial application. However, it must be noted that the stochastic Bornhuetter-Ferguson
method is not as well developed in the literature as the other two models. We have elected
to include it here due to the usefulness of the BF method for long tailed lines of business
where experience emerges slowly. Furthermore, we opted for a version of the Bornhuetter-
Ferguson model with an underlying Over-dispersed Poisson model which does not require
many parameters to be estimated via expert judgement; thus it is more suitable for use in
bootstrapping which requires automation of model fit.

Furthermore, we have therefore limited ourselves to looking at the application of the
methods to gross data, without allowance for reinsurance recoveries. We have also focussed
on “Accident Year” data, instead of “Underwriting Year”, accepting that the latter is in
common use. Our main reason for this is to preserve the relative independence of the
resulting claims cohorts, which is a common assumption within the methods.

We have also concentrated on an “ultimate” view of risk rather than a one-year view. Some
further discussion of the meaning of each of these views and the rationale for considering
the ultimate view only are given in section Ultimate vs One-Year View of Risk.

Finally we have restricted our attention to the consideration to independent error which
is amenable to quantitative measurement. Model error, or systemic risk which requires a
more qualitative, judgemental approach, is out of scope of the paper. However, this scope
limitation is not intended to imply that model error may be ignored. In many cases, it
represents a material component of the overall prediction error. Some further discussion
on this point may be found below in section Sources of Uncertainty.

1.1.2 Guide to the paper

The paper opens with some introductory comments on different views of risk, in particular
the ultimate view and a one year view of risk, before electing to consider the ultimate
view. We then describe the reserving framework in which the central estimate of risk and
the measurement of uncertainty occur, including the sources of uncertainty that need to
be considered in any quantification of risk.

Sections Models, Model Validation and Estimating the Reserve Distribution contain the
methodological part of the paper - introducing the reader to the three models under
consideration, discussing model fitting, validation and uncertainty quantification using
analytical formulae, bootstrapping and Monte Carlo simulation.
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We illustrate the use of the various models for two example data sets in section Numerical
Examples while the last section gives some concluding remarks.

As a number of acronyms are used in this paper, we have included a glossary for ease of
reference.
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Chapter 2

Ultimate vs One-Year View of Risk

As a starting point, we considered the definitions of the Solvency Capital Requirement
and Non-life underwriting risk from the Solvency II technical specifications:

SCR.1.9: The SCR (Solvency Capital Requirement) should correspond to the Value-at-Risk
of the basic own funds of an insurance undertaking subject to a confidence level of 99.5%
over a one-year period.

SCR.9.1: Non-life underwriting risk is the risk arising from non-life insurance obligations,
in relation to the perils covered and the processes used in the conduct of the business.

SCR.9.3: The non-life underwriting risk module takes account of the uncertainty in the
results of undertakings related to existing insurance and reinsurance obligations as well as
to the new business expected to be written over the following 12 months.

As we can see, there is not an explicit definition of Reserve Risk in the Technical
Specifications. In order to get that, we must refer to the Solvency II Glossary

Claims Risk An underwriting risk. A change in value caused by ultimate costs for full
contractual obligations (claims without administration costs) varying from those assumed
when these obligations were estimated. [. . . ] Reserve risk only relates to incurred claims,
i.e. existing claims, (e.g. including IBNR and IBNER), and originates from claim sizes
being greater than expected, differences in timing of claims payments from expected, and
differences in claims frequency from those expected.

Overall, if we consider all the above definitions together, we could summarise that the
Reserve Risk is the result from fluctuations of claims settlement over a one-year period.
This interpretation leads to some concerns around what should be considered as a “one-year
period”. Thus, in order to clarify it, in 2008 the IAIS stated:

[. . . ] Shock period: the period over which a shock is applied to a risk;

Effect horizon: the period over which the shock that is applied to a risk will impact the
insurer.

In essence, at the end of the shock period, capital has to be sufficient so that assets
cover the technical provision (. . . ) re-determined at the end of the shock period. The
re-determination of the technical provisions would allow for the impact of the shock on the
technical provisions over the full time horizon of the policy obligations

This definition led to the following two views for the Reserve Risk:
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• Ultimate view: the uncertainty due to all future payments P (t); and
• One-year view: the uncertainty of the Claims Development Result, i.e. the uncer-

tainty of the payments which will occur during the year P (1) plus the revaluation
of the claims’ reserve at the end of the year.

In mathematical terms, they are defined as follows:

Figure 1: Ultimate View

Figure 2: One Year View

Where:

• R0 is the opening reserve, and is known (i.e. VAR(R0) = 0);
• P (t) are the payments during calendar year t, solely for claims already happened at

the moment of evaluation t = 0 (i.e., it is assumed that there is no new business);
• R1 is the closing reserve after having observed P (1).

CDRt is the Claim Development Result after t years from the instant of evaluation, i.e. the
difference between actual and expected over the specified tth period. Ideally, if actuaries
truly reserve at best estimate taking into account all the possible knowledge, the expected
value of the CDR for any future t at the instant of evaluation should be zero (“prospective
CDR”). This is opposed to the “retrospective CDR”, which is the observed CDR after
t years and thus not centred on zero. We recommend Wüthrich and Merz (Merz and
Wüthrich 2008) for further reading on this topic, as this paper is only concerned with the
prospective view.
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In summary, the “ultimate view” assesses all the possible reserve paths1 until reserve
run-off, whilst the “one-year view” assesses only the different paths over the first year and
the resulting reserve an actuary would estimate after observing each of these one year
paths (the process is frequently referred to as “actuary-in-the-box”, i.e. a re-reserving
algorithm). More discussion about “re-reserving algorithms” can be found in Ohlsson,
Esbjörn and Lauzeningks (Ohlsson, Esbjörn, and Lauzeningks 2008).

We have elected to focus on the ultimate view of risk in this paper as a clear understanding
of this is a pre-requisite for tackling the problem of estimating the one-year risk. The
one-year view reserving problem is a subject of ongoing work by the working party.

1i.e. as development to Ultimate.
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Chapter 3

The Stochastic Reserving Process

In this section, we discuss the reserving process, much of which will be familiar to many
readers, but is helpful to include here to frame the discussion on the estimation of
uncertainty. We open with a review of data requirement - the models discussed in this
paper are dependent on good quality data to avoid the problem of “GIGO” (garbage in,
garbage out). We discuss both deterministic and stochastic reserving processes, noting
that deterministic methods, usually overlaid with judgement, are the most commonly
used technique for reserve estimation. Consequently, when assessing variability, it is often
necessary to align results from a deterministic estimation with those from a stochastic
model and the section concludes with some pointers for how this may be accomplished.

Finally, we consider the sources of uncertainty in the reserve estimate; describing methods
for measuring this uncertainty is the aim of this paper.

3.1 Data

3.1.1 Overview

Given our focus on numerical methods for assessing reserve variability, careful consideration
should be given to the source, form, quality and quantity of data used. The methods
considered in this paper make use of triangulated data, so the following comments relate
to triangulated development data, to which the various models might be applied though
many comments are also applicable to individual data. Equally, the comments are relevant
to deterministic models, so most readers will routinely be familiar with such considerations.
They are included for the sake of completeness. Additionally, stochastic models are often
used in automatic fitting processes such as the bootstrap. With less scope to apply
judgement to adjust results, it may be argued that data issues require greater attention.

Four areas of consideration relating to data are discussed briefly below:

Source: Actuaries should understand the following: where the triangulated data has
come from; how this relates to business processes and how those processes have changed
over time; how data capture has been controlled and managed over time; how the data
has been collated from its granular form to arrive at the summary view of development
over time. This knowledge can provide insights into limitations and features of the data,
for example where past line of business categories have been combined or split.
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Form: Being clear on the definition and treatment of data items, whether Paid, ‘Reported
but not Settled’ (RBNS) or Incurred but not Reported (IBNR), the treatment of Salvage
& Subrogation (S&S) and reinsurance recoveries. Also, assurance should be sought that
data items are properly ‘date stamped’ and therefore captured correctly in different cells
in the data triangle.

Quality: There is increasing recognition that data is a valuable business asset, which
firms should manage carefully, whether preserving data from corruption, or protecting
it from inappropriate use by external parties. The quality of data can also be defined
and managed, with consequential benefits for firms in terms of operational effectiveness,
efficiency in handling fewer errors and in reinsurance purchasing.

Quantity: Actuaries will also need to judge how much data is needed for the results to
be credible: to have sufficient data to include features such as surges in claims frequency
or inflation, or challenging market conditions placing a strain on bottom line results and
levels of prudence in claims reserves. Data series for individual origin years should be long
enough to include at least a single realisation of claims development ‘to ultimate’, leading
to the conclusion that longer tail lines of business will require larger data triangles. If the
data triangle does not include ‘to ultimate’ results, then tail-fitting procedures can be
applied, although care should be taken to recognise the estimation uncertainty that will
remain as a result of making these estimates.

3.1.2 Statistical Credibility, Stationarity and Segmentation

Actuaries will seek a balance between collecting and using enough data to achieve statistical
credibility; against using longer duration data that may incorporate effects, whether from
the external environmental or changes in internal processes, which are markedly different
from present and anticipated future experience. Fundamental to all reserving and

stochastic reserving methods is the assumption that future experience will be

broadly in line with past experience, as reflected in the data but subject to

adjustment for known and measured changes - say in underlying exposures or in
inflation if this is adjusted for separately within the modelling process. The assumption of
future experience being the same as experience is sometimes referred to as the “stationary
assumption”. Although it is possible to arrive at a more stable, and potentially more
credible, data set by combining triangles from a number of similar lines of business, care

should be taken to not combine heterogeneous sub-segments where changes in
the relative balance of these sub-segments might change over time, leading to features in
the combined data that do not reflect the underlying experience.

For most purposes, data should include claims costs , but also Allocated Loss

Adjustment Expenses. Also, if Salvage & Subrogation (S&S) are common features
of the business line then careful consideration should be given to this. It should also
be noted that the potential for negative development increments may undermine the
applicability of some of the methods.

Independence: Each of the stochastic reserving methods assumes that (origin year)
cohorts of claims are independent of each other. As such, it is necessary for the data to be
provided and analysed on an Accident Year (AY) basis, although Underwriting Year (UY)
data may be used if there is reasonable assurance that those UYs are independent - this
would be more likely if large and catastrophic losses were first removed from the analysis,
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which then focussed on attritional losses only. If the claims cohorts are not independent
then a fundamental assumption for the other methods will have been breached. These
dependences might be reflected through the use of correlation assumptions in other simpler
methods, as explained in section Other Models.

Ideally, the segmentation used should reflect how the business is being managed

, not least to allow meaningful discussions with the business areas in understanding and
interpreting the data.

It is the working party’s view that segmentation can usefully be applied, as a

minimum requirement, at the Solvency II segmentation, as this is likely to map
to the regulatory capital requirements, whether for standard formula appropriateness or
internal model purposes, and it is likely to be in common use amongst market practitioners

3.1.3 Treatment of Outliers

Generally speaking, all available data should be used where possible. However, outliers
have the potential to greatly influence model results so due consideration needs to be
given to whether this influence is appropriate or not. We would encourage the application
of models with and without such outliers, to understand what impact they have on the
results and to consider whether the underlying business might generate such extremes
again in the future. In particular, outliers should only be removed outright if there is
reasonable assurance that these are exceptional outcomes that cannot happen in the
future.

Large and catastrophic losses can be a strong driver of overall results, including
reserve variability, and will have an effect on reserving uncertainty. As such, natural
catastrophes and significant man-made events should be included. However, if these
are significant and have happened recently, these could lead to biased results, requiring
judgements as to how much they should be reflected in the results. It may be necessary to
remove data relating to these events from the model data if they have a large influence on
the rest of the model. However, separate allowance must then be made for similar future
events, both in terms of the central estimate and the levels of variability.

All adjustments to data should relate to specific and well-documented reasons to exclude
small portions of the claims reserving triangle, e.g. a single accident period, or a single cell.
Such reasons might include: poor data quality; claims management changes; underwriting
policy changes; portfolio cleansing, etc., all of which have a clear impact on the data
triangle.

3.1.4 Data History

As mentioned above, the longer the development duration for the business, the more data
will be needed. Suppose d is the reserve duration. As a “rule of thumb”1 the working
party would recommend:

1The rationale behind this rule of thumb is driven by practical experience, i.e. we observed that good
models for short tail lines of business (d = 2) have around 10 to 15 years of history, whilst long tailed
lines (d = 4) ideally have 20 to 30 years (or more)
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• Minimum number of historical years = d × 5
• Maximum number of historical years = 1.5 × d × 5

where we would consider a LoB as:

• Short tail: d ≤ 2
• Normal: 2 < d ≤ 4
• Long tail: d > 4

3.1.5 Reinsurance

The view within the working party was that reserving variability analysis should be carried
out using gross data. Three specific arguments supported this view:

1. Net data provide an incomplete view of the underlying volatility in experience, and
systematically understate the potential downside risk, say if extrapolated to derive
a capital requirement figure.

2. Reinsurance programmes may not respond (by design or through exhaustion) in the
same way in the future as in the past.

3. For longer-tail lines of business, the impact of existing reinsurance could be poorly
reflected in development to date (for example, under a ‘Risk XL’ programme
protecting a liability book) leading to greater estimation error in the final result.

3.2 Deterministic Reserving - Actuarial Best Esti-

mate

Deterministic reserving has been used for many years to value general insurers’ claims
liabilities. Widely used methods include the Chain Ladder (CL) method and Bornhuetter-
Ferguson (BF) method. The CL and BF methods form the basis of the starting points for
some stochastic methods, which will be explained in this paper.

One of the advantages of deterministic methods is that they produce one answer (i.e. the
Actuarial Best Estimate itself, or ABE) which is easy to understand and communi-
cate to management. In addition, they usually allow the inclusion of external judge-
ment/knowledge in the reserving evaluation in a fairly transparent way, as stochastic
assumptions are not required.

The key weakness of deterministic methods is that they provide little understanding of
the level of the uncertainty associated with the ABE. Scenario and sensitivity testing may
provide some insight into reserve variability, but a complete picture of the volatility is not
possible. For this, a stochastic model is required.

Ideally, the same (stochastic) model should be used for both the estimation of the ABE
and its associated uncertainty to ensure that the uncertainty estimated is truly that of
the ABE. However, it is a common market practice that an ABE is derived from the
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results of one or more deterministic models, overlaid by judgemental adjustments to reflect
extraneous information not present in the data triangle. Many stochastic models do not
readily lend themselves to these types of manual adjustments, so there are often sound
actuarial reasons for this approach.

Therefore, common market practice uses deterministic methods for reserving, combining
them later in the reserving process with results from the stochastic reserving exercise to
derive estimates of uncertainty.

3.3 Stochastic Reserving

Stochastic methods provide information about the reserve distribution: at least the first
two moments, i.e. the mean and variance, but frequently the full distribution of reserves.
This is achieved by setting some stochastic assumptions underlying the observed process,
doing inference and then applying either an analytic or a simulation approach.

The key strength of stochastic methods is that they yield a wealth of statistical information
which would not have been available from deterministic methods. This information can
be used to give more insights to the senior management and to improve their decision
making process. For example, an understanding of where the mean lies amongst the range
of possible outcomes provides some insight into the degree of conservatism built into the
reserves. Other useful output includes confidence intervals around a particular chosen
mean, reserves at the extreme tails (e.g. 95% or 99%) and sensitivity analysis.

However, stochastic methods are subject to some drawbacks. They are data intensive,
requiring historical data to parametrise the models. Sufficient data may not be available, or
the environment may have changed meaning that past experience is no longer representative
of future experience. It is also important to recognise that all results from a stochastic
method are subject to model error (section Sources of Uncertainty) so must be interpreted
with due care - for example, even with a large number of simulations, model error may
mean that some key adverse scenarios may be missed. Furthermore, the proper use of
stochastic methods usually requires a reasonable degree of technical skill.

As discussed in the previous section, actuarial judgement is often used to deal with
cases where there is limited data, or to incorporate extraneous data and we noted that
incorporating such judgemental adjustments may not be straightforward in stochastic
models, though not necessarily impossible. For example, Bayesian methods may be used
to combine objective data with more subjective option when estimating a reserve, though
fitting an appropriate model may be difficult in practice. In cases where the actuary
takes the view that future experience will unfold differently to the past, stochastic model
parameters could be adjusted to reflect this, though the actuary would then need to
consider the impact of any such adjustments on the uncertainty estimates.

As noted in the previous section, the common market practice is that stochastic methods
are implemented alongside the deterministic ones. The stochastic results are reconciled
to the deterministic results before the distributional information is used to estimate the
uncertainty. This process is discussed in the next sub-section.
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3.4 Reconciling the Stochastic Best Estimate to the

ABE

As the ABE and the stochastic reserving model frequently follow two different processes,
it is likely that the former will differ from the Stochastic Reserving Best Estimate
(SBE) (where the best estimate is defined as the central estimate, or the mean, of the
stochastic distribution). This is usually due to the fact that it is easier to embed external
business knowledge in the ABE than in the stochastic models, as the latter have stronger
assumptions and are often less flexible. However, it is reasonable to expect the ABE
and SBE to be in a reasonable range (to within approximately 10%), as the SBE should
represent the uncertainty around the ABE process and thus be reasonably aligned to the
ABE. In practice, this may be difficult to achieve, as the standard parametrisations of
the most commonly-used stochastic methods (Over-dispersed Poisson model and Mack,
refer to section Models for more details) have SBEs equal to the deterministic Chain
Ladder (or Volume All DFM) estimate. In other words, the further the ABE is from a
Chain Ladder estimate, the more it will usually differ from the SBE given current market
practice. If the difference is material (e.g. >10%), it is recommended to consider either
other stochastic methods that replicate better the methodology used for setting the ABE
(e.g. the Stochastic Bornhuetter-Ferguson is often a useful alternative) or to change the
GLM regression structure and assumptions underlying the stochastic models.

On the contrary, if the difference falls in a reasonable range, it is widely accepted practice
to align the SBE to the ABE. This is usually achieved by shifting the reserve distribution
using either an additive or multiplicative scaling. In a nutshell, additive scaling keeps the
same standard deviation after scaling as before, whilst the multiplicative keeps the same
CoV, as shown in Figure 3 and Figure 4.

Figure 3: Additive Scaling

As we can see, whilst the additive method shifts the distribution to the ABE keeping
the same uncertainty, the multiplicative method stretches (shrinks) the uncertainty if
the ABE is greater (lower) than the SBE. For this reason, common market approach
recommends to adopt a conservative approach when shifting the distribution, i.e. apply
the additive method if the ABE is less than or equal to the SBE and the multiplicative
method otherwise.

More advanced techniques include considering the above for each accident year and - when
the full (simulated) distribution is available - performing a simulation by simulation shift,
but the overall concept is always to go for the more conservative option.
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Figure 4: Multiplicative Scaling

3.5 Sources of Uncertainty

Let Yij represent the random variable2 of interest relating to accident or origin period i
and development period j. Suppose that the true underlying model of Yij is

Yij = u(i, j; θ) + εij

where θ is the set of model parameters and εij represents the stochastic error, centred on
zero, i.e. E[εij] = 0.

In practice, as the model u(i, j; θ) is unknown the modeller will fit a different model with
a different parameter set:

Yij = ν(i, j; ϕ) + εij

where the error term εij is now applicable to the actual model fitted.

The fitted values for this model are:

Ŷij = ν(i, j; ϕ̂)

where the hat symbol represents fitted values.

The prediction error of this model is Yij − Ŷij which may be decomposed as:

Yij − Ŷij = [ν(i, j; ϕ) − ν(i, j; ϕ̂)] + [εij] + [u(i, j; θ) − ν(i, j; ϕ)]

where each of the three bracketed terms corresponds to a different source of error, namely:

Parameter error: [ν(i, j; ϕ) − ν(i, j; ϕ̂)]. This represents the uncertainty in the param-
eter estimates assuming the model is correctly specified

Process error: [εij]. This represents the randomness in the future outcomes. Even if
the model were correctly specified and the parameters correctly estimated, the volatility

2For example the incremental claims in an ODP model or the link ratios in the Mack model
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associated with the insurance process3 is likely to result in differences from the expected
outcomes. In other terms, it’s what is commonly called variance of a random variable.

Model error: [u(i, j; θ) − ν(i, j; ϕ)]. This measures the difference between the parametric
form assumed for the model and the true but unknown parametric form, i.e. the error
introduced by the choice of model.

A simplified graphical representation of each of the three sources of error is given in Figure
5, Figure 6 and Figure 7.

Figure 5: Parameter Error

From Figure 5 we see that parameter error (or risk) represents the difference in mean values
between the estimated distribution and the assumed distribution with true underlying
parameters.

Figure 6: Process Error

Process error is depicted in Figure 6 This represents the error caused by the actual
future value differing from the mean of the assumed underlying distribution with the true
parameters.

Model error is shown in Figure 7, i.e. the error that the model is mis-specified. In this
simple example, the true model is a log normal distribution but the assumed distributional
form is normal.

3It could be argued that the insurance process is not random, but is instead deterministic given
sufficient knowledge of all claims, claimants, claims managing processes etc. In practice this is not possible,
so it is reasonable to proceed as though the process is indeed stochastic.
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Figure 7: Model Error

Parameter and process error are the two components of independent risk - i.e. those
risks that arise from the inherent randomness in the insurance process.

Model error, i.e. the risk that a model is mis-specified includes both the risk of selecting
an incorrect model (e.g. an incorrect distribution or modelling incremental amounts
where cumulative amounts are more appropriate) and systemic risk. A model may
be appropriate for past data but future events may mean that forecasts based on this
model are incorrect. Examples of systemic risk include legislative or other environmental
changes or claims process changes that impact the number and settlement size of claims.
The emergence of latent claims, binary events and ENIDS (Events Not in Data) are all
components of systemic risk.

Since model error involves the true unknown underlying distribution, its quantification
is difficult. There is no known procedure for its estimation by reference just to the data
relied on by the modelling. However, there have been some attempts to quantify model
error from data and opinions external to the data set. O’Dowd et al (O’Dowd, Smith, and
Hardy 2005) and subsequently the Risk Margins Taskforce (Actuaries’ institute, Australia)
(Taskforce 2008) set out a process to tackle this issue by:

• Identifying the major potential causes of model error
• Scoring each subjectively for its likely impact
• Mapping the scores to a quantitative measure of error such as a coefficient of variation

Combining these measures with the equivalent for parameter and process error produces
an overall estimate of prediction error.

The agreed scope for this paper was to consider parameter and process error only (i.e. in-
dependent risk). Thus model error (or systemic risk) will not be discussed in detail here.
However, this should not be taken as a statement that model error is of lesser importance.
In many cases it will represent a material, possibly even dominant, proportion of prediction
error. Therefore, it must be considered by the actuary.

The Solvency II standards say the following regarding model error:

SCR.1.23 Undertakings are not required to quantify the degree of model error in quantitative
terms, or to re-calculate the value of the capital requirement using a more accurate method
in order to demonstrate that the difference between the result of the chosen method and
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the result of a more accurate method is immaterial. Instead, it is sufficient if there is
reasonable assurance that the model error included in simplification is immaterial.

So there is an onus on the actuary to satisfy themselves that their selected form of
variability estimation adequately captures the main sources of error. Section Model
Validation contains information to help the actuaries in this sense, giving an overview of
the techniques that can be used to validate model assumptions.

3.6 Measures of Reserve Uncertainty

A commonly used measure of prediction error is the mean square error of prediction

(MSEP). In the case of a reserve estimate, the MSEP is the expected value of the square of
the total reserve error (see, e.g. (Taylor and McGuire 2015). In cases where the parameter
and process errors are stochastically independent, the MSEP may be decomposed into
the sum of the squares of the parameter and process errors.

It is also common to use a coefficient of variation (CoV) to express reserve uncertainty.
A CoV is defined as a standard deviation or standard error measure divided by a central
estimate. In the reserving case, the numerator is the root mean square error of

prediction (i.e. the
√

MSEP or RMSEP) and the denominator may either be the ultimate
loss reserve or the outstanding claims reserve.
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Chapter 4

Models

In this section we describe each of the three models considered in this paper. The three
models are Mack’s model, the Over-dispersed Poisson model, and a stochastic Bornhuetter-
Ferguson model. We briefly describe the historical development of each model, and the
assumptions made by each of the models. We also discuss the analytic calculation of the
MSEP for each model. Throughout we attempt to give intuitive explanations so that
the reader will develop a sound understanding of how each model works and what its
strengths and limitations are. Finally we have a subsection discussing other models that
could be used if the three models presented are not suitable.

4.1 Mack’s Model

4.1.1 Introduction

The Chain Ladder is the most widely used claims reserving method. Taylor (Taylor 1986)
traces its lineage back as far as Harnek (Harnek 1966). According to Taylor ((Taylor
2000)) section 2.2.4) the name Chain Ladder “is understood to refer to the chaining of
a sequence of ratios (the age to age factors below) into a ladder of factors (the age to
ultimate factors below) which enable one to climb (i.e. project) from experience recorded
to date to its predicted ultimate value.” The method was originally developed as an
intuitively appealing procedure for computing reserve estimates, and only afterwards was
thought given to whether there was a stochastic model underlying the method.

It was recognised quite early by Hachemeister and Stanard (Hachemeister and Stanard
1975) that a Poisson distribution assumption for incremental claim numbers leads to
the same reserve estimates as the Chain Ladder method. This insight may be seen as a
precursor of the over-dispersed Poisson model described in the following section. Several
other attempts were made to specify a stochastic model which gave the same reserve
estimates as the Chain Ladder method (see (Mack 1993b), (Taylor 2000) section 2.2.4
and chapter 7, and the references therein). However, none of these models successfully
reproduced the Chain Ladder estimates exactly. In 1993 Mack (Mack 1993a) proposed a
distribution-free stochastic model which reproduced the reserve estimates of the Chain
Ladder method exactly, and within this model he derived analytic formulae for the mean
squared error of the reserve estimates. Because the model reproduces the reserve estimates
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of the Chain Ladder method exactly and it makes no assumptions about the underlying
distribution of claims amounts, it has become one of the most popular stochastic models
for claims reserves. It is this model that is described in this section.

The deterministic basic Chain Ladder method involves calculating development factors
(i.e. age to age factors) which are then applied to the latest cumulative claim amounts in
the claims development triangle to estimate the ultimate claim amounts. The development
factors are calculated as the volume weighted average of the individual development
factors. Mack shows that, within his model, this calculation gives unbiased estimators for
the development factors, and that applying the estimated development factors to estimate
the ultimate claims gives an unbiased estimate of the ultimate claims. He thus provides
justification for the heuristic calculations of the basic Chain Ladder.

One way of viewing Mack’s method and the Chain Ladder which can be helpful, but which
should not be taken too literally, is to think of the Chain Ladder as fitting a weighted
regression model on the triangle’s development factors, with the weights being given by
the cumulative claims amounts. This is because the basic Chain Ladder calculation of the
development factors is just the weighted average of the individual development factors.
The basic Chain Ladder development factors may then be thought of as the “fitted” or
systemic part of our regression, while the difference between these fitted development
factors and the individual development factors can be seen as “noise”. In much the
same way as the distribution of the noise or error terms in a regression model gives
the distribution of the prediction, we can estimate the variability of the Chain Ladder
prediction by investigating the errors between the fitted and actual development factors.

As noted above, it is advised that this way of thinking about Mack’s model should not be
taken too literally. The standard linear regression model assumes that the explanatory
variables are known with certainty, and only the dependent variables are stochastic.
However if we interpret the calculation of the Chain Ladder development factors as a
regression both the explanatory and the response variables are stochastic, thus violating
the assumptions of the standard linear regression model. Therefore, the parameter and
standard error estimates implied by the standard linear regression model are not correct.
As will be seen below, Mack gets around this problem by using conditional expectations in
his model assumptions; the use of conditional expectation in the assumptions is essential
for ensuring that the estimates of the parameters and the standard errors are correct.

4.1.2 Mack’s Model Assumptions

As with the basic Chain Ladder, Mack’s model takes as input a triangle of cumulative
claims. This could be a paid claims triangle or an incurred claims triangle. We denote
origin periods by i and development periods by j. For ease of exposition we will assume
that the triangle of claims is “regular” in that the number of origin periods is equal to the
number of development periods, although the model can work with “irregular” triangles
of claims data. We assume that there are n origin periods, and n development periods.
We denote the cumulative claims amount for origin period i and development period j by
Cij. The triangle of claims data that we have is therefore:

{Cij : i = 1, . . . , n, j = 1, . . . , n − i + 1}
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Mack’s model makes the following assumptions:

1. For each j = 1, . . . , n − 1 there are development factors fj such that
E[Ci,j+1|Ci1, . . . , Cij] = Cijfj;

2. Origin periods are independent i.e. for each s 6= t ,
{Cs1, . . . , Csn} , {Ct1, . . . , Ctn} , are independent.

Mack shows that, with the above assumptions, the basic Chain Ladder estimators for
ultimate claims and the reserve are both unbiased estimators ((Mack 1993a), section 2).
Note that the model assumes that the origin periods are independent. In some cases this
assumption might not be true. For example, if underwriting origin periods are used then
there might be a dependence between adjacent origin periods, due to the overlap in the
corresponding exposure periods. If accident origin periods are used then there might be a
dependence between origin periods as a result of a legal change or ruling which applies to
all open claims, regardless of origin period.

To allow a calculation of the mean squared error of prediction (MSEP), Mack made the
following additional assumption:

3. For each j = 1, . . . , n−1 there are parameters σ2
j such that V ar[Ci,j+1|Ci,1, . . . , Cij] =

Cijσ
2
j .

Using these three assumptions Mack derives formulae for the mean squared error of the
reserve for each individual origin period and for the total reserve across all origin periods.
Refer to ((Mack 1993a) for the details.

4.1.3 Analytic Calculation of MSEP

Mack derives analytic formulae for the MSEP for the reserve estimates of individual origin
periods, and for the total reserve across all origin periods. The MSEP consists of the
parameter error and the process error (section Measures of Reserve Uncertainty). Recall
from section Sources of Uncertainty that parameter error is the error due to the fact that
the parameters are estimated from a limited set of data, and therefore unlikely to be equal
to the “true” underlying parameters, while process error is the error somehow inherent
in the underlying process producing the claims data. The parameter error arises from
fitting the model to the given claims triangle, the process error arises from projecting from
the given claims data to estimate the ultimate claims amounts. In assumption (2) Mack
assumes that the origin periods are independent. It follows from this that the process
errors for different origin periods are independent. However the parameter errors for two
different origin periods are both based on the same estimated parameters, and so are
correlated. Therefore the reserve estimates for different origin periods are correlated, and
this needs to be taken account of when calculating the MSEP of the total reserve estimate
across all the origin periods.

We now describe the formula for the process error component of the MSEP for an
individual origin period. The process error is governed by the parameters σ2

j introduced
in assumption (3). The first step is therefore to estimate these parameters. Mack does
this using the following formula:
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σ2
j =

1

(n − j − 1)

n−j
∑

i=1

Cij

(

fij − f̂j

)2

Where the fij are the individual development factors:

fij =
Ci,j+1

Cij

Recall the loose interpretation of Mack’s method as fitting a weighted regression model to
the development factors. With this interpretation, the formula for σ̂2

j is analogous to the
usual unbiased estimator of variance of the errors in the normal weighted linear model,
where the weights are the Cij.

There is a problem with the formula for σ̂2
j above. It is only valid for 1 ≤ j ≤ n − 2 and so

cannot be used to estimate the variance parameter σ2
n−1 for the final development period.

Fundamentally this happens because for the final development period there is only one
individual development factor, and so it is impossible to estimate a variance parameter.
Mack gets around this in an ad hoc and rather unsatisfactory way, by using the following
value as an estimator:

σ̂2
n−1 = min

(

σ̂4
n−2

σ̂2
n−3

, min
(

σ̂2
n−3, σ̂2

n−2

)

)

Mack justifies this as an exponentially decreasing extrapolation of the series σ2
1, . . . , σ2

n−2.

Mack’s estimator for the process error component of the MSEP for the reserve estimator
for a single origin period is then:

Ĉ2
in

n−1
∑

j=n+1−i

σ̂2
j

Ĉij f̂ 2
j

Mack’s estimator for the parameter error component of the MSEP for the reserve estimator
for a single origin period has a similar form:

Ĉ2
in

n−1
∑

j=n+1−i

σ̂2
j

∑n−m
m=1 Ĉmj f̂ 2

j

Summing these two terms gives the total MSEP for the reserve estimator for an individual
origin period ((Mack 1993a) theorem 3):

MSEP(R̂i) = Ĉ2
in

n−1
∑

j=n+1−i

σ̂2
j

f̂ 2
j

(

1

Ĉij

+
1

∑n−j
m=1 Cmj

)

Now consider the MSEP for the total reserve estimator. As discussed above, to calculate
this we need to allow for the fact that the reserve estimators for the individual origin
periods are correlated due to the fact that they rely on the same estimated parameters
f̂j and σ̂2

j . The basic structure of the total reserve MSEP is the sum of the MSEPs for
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the individual origin periods plus an allowance for the correlation between the estimators.
The formula given by Mack is ((Mack 1993a) corollary to theorem 3):

MSEP(R̂) =
n
∑

i=2



MSEP(R̂i) + 2Ĉin





n
∑

m=i+1

Ĉmn





n−1
∑

j=n+1−i

σ̂2
j

∑n−j
m=1 Cmj f̂ 2

j





4.2 Over-dispersed Poisson model

4.2.1 Introduction

In section Mack’s Model above, we discussed the development of stochastic models of the
Chain Ladder. We noted that it was recognised quite early by Hachemeister and Stanard
(Hachemeister and Stanard 1975) that a Poisson distribution assumption for incremental
claim numbers leads to the same reserve estimates as the Chain Ladder method, and that
this insight may be seen as a precursor of the over-dispersed Poisson (ODP) model.

Hachemeister and Stanard’s Poisson model is described in detail by Wüthrich and Merz
(Wüthrich and Merz 2008), section 2.3. It is a model of incremental claims numbers by
origin period and development period, and assumes that these are independent and have
a Poisson distribution. It assumes that the mean number of incremental claims for each
origin period and development period is the product of an origin period parameter and a
development period parameter. The parameters are estimated using maximum likelihood
estimation. The estimated parameters can then be used to estimate the incremental
claims numbers for future development periods for each origin period. The estimates
thus obtained are identical to the estimates obtained by applying the basic Chain Ladder
method.

A Poisson distribution is subject to some limitations: it only takes non-negative integer
values, and the variance is always equal to the mean. The ODP model is a generalisation
of the Poisson model and overcomes many of the limitations while retaining the same
basic structure and the desirable feature that the reserve estimates are identical to those
obtained using the basic Chain Ladder method.

The over-dispersed Poisson distribution allows the variance to be different from the mean,
and permits non-integer values. The restriction to non-negative values takes the much
weaker form that only the column totals must be positive in the triangle of incremental
claim amounts, but note that this implies that the expected value of the incremental
claims amounts cannot be negative, which might be undesirable in certain cases. The
basic structure of the over-dispersed Poisson model (“ODP”) is the same as the original
Poisson model - the mean of the incremental claims amounts is assumed to be the product
of an origin period parameter and a development period parameter. As the variance
can be different from the mean a variance assumption is also needed. The ODP model
assumes that there is a scale parameter such that the variance of the incremental claims
amounts is equal to the mean times the scale parameter. The scale parameter may either
be constant, or allowed to vary by development period. In practice it is usually more
appropriate to allow the scale parameter to vary by development period, but here, for
ease of exposition, we assume that the scale parameter is constant.
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The ODP model was introduced by Renshaw and Verrall (Renshaw and Verrall 1998).
They presented the model as a Generalised Linear Model (GLM). The GLM framework
is an established and flexible framework for statistical modelling (See McCullagh and
Nelder (McCullagh and Nelder 1989) for a book length treatment of GLMs). Using GLMs
has the advantage that there are many related alternatives and extensions that could be
tried if the basic ODP model is found to be inadequate. For example, calendar period
parameters could be added to the linear predictor to allow for calendar period trends such
as inflation explicitly, or incremental claims could be assumed to be distributed differently,
say following another distribution from the Tweedie family such as the gamma. Refer to
Taylor and McGuire (Taylor and McGuire 2015) for examples of some of these extensions.

The Mack and the ODP model both give exactly the same estimates of the reserves as the
basic Chain Ladder method. However they are two distinct models. In particular they
give different estimates of the mean squared error of prediction. See Mack and Venter
(Mack and Venter 2000) for a detailed discussion of the differences.

4.2.2 Assumptions

Let Pij denote the incremental paid claims amount for origin period and development
period . The ODP model assumes that there are origin period parameters x1, . . . , xn and
development period parameters y1, . . . , yn such that

E[Pij] = xiyj

With the further assumption that
n
∑

j=1

yj = 1,

the origin period parameters xi may then be interpreted as the unconditional expected
ultimate claims amount for the relevant origin period, and the development period
parameters yj may be interpreted as the expected incremental development proportion
for the relevant development period.

By the ODP distributional assumptions,

Var(Pij) = φijE[Pij]

It is common to make simplifying assumptions for the scale parameters, φij. A common
simplification is that the scale parameter varies by development period only. In this case
we would assume that there are scale parameters φ1, . . . , φn such that

Var(Pij) = φjE[Pij]

A further simplification would assume that the scale parameter is constant, i.e.

Var(Pij) = φE[Pij]
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In practice, the scale parameter may often vary by development period. However, for
the purpose of this paper, we assume, for ease of exposition, that the scale parameter is
constant (also as noted in Taylor and McGuire (Taylor and McGuire 2015), a constant
scale parameter will ensure that an ODP model set up as a GLM will yield the conventional
Chain Ladder estimates as maximum likelihood estimates).

Renshaw and Verrall (Renshaw and Verrall 1998) express the ODP as a Generalised Linear
Model (GLM). GLMs generalise linear regression by allowing error distributions other than
the normal distribution and allowing the response variable to be a function (called the link
function) of a linear combination of the explanatory variables. The class of distributions
considered by GLMs is the exponential family of distributions. This family includes
many common distributions such as the normal distribution, the gamma distribution, the
Poisson distribution and several others (McCullough and Nelder (McCullagh and Nelder
1989)).

As described above, the ODP model assumes that the mean of the incremental claims
amounts has a multiplicative structure. Therefore, by taking logs this may be transformed
into a linear structure. Considered as a GLM, the ODP model has:

• A log link function
• Over-dispersed Poisson as the error distribution
• log(E[Pij]) = αi + βj, or equivalently, µij = E[Pij] = exp (αi + βj),
• Var(Pij)φµij (assuming a constant scale parameter as discussed above).

Note that by using a log link function, it is necessary to assume that E[Pij] > 0. This
requirement means that the ODP model is not suitable for data-sets where negative
expected increments are material.

The Poisson model of Hachemeister and Stanard estimated the parameters using maximum
likelihood. The parameters of a GLM are estimated using the more general procedure of
maximising the quasi-likelihood. This permits the generalisation of the Poisson model
by using a quasi-likelihood of similar form to the Poisson distribution but with a scale
parameter φ ≥ 1 (note that the Poisson model may be interpreted as a special case of this
generalised form where the scale parameter of 1, i.e. the mean is equal to the variance).
This results in the over-dispersed Poisson distribution, which allows some negative values,
and non-integer values.

Although estimating the parameters of a GLM can, in general, be quite complicated, for
the ODP model described above, the parameters xi and yj can be estimated using the
Chain Ladder method. This, together with the assumption that the expected incremental
claims amounts are positive, implies that the column sums of the incremental claims
triangle must be positive, so for every development period j we must have

n−j+1
∑

i=1

Pij ≥ 0

The scale parameter can be estimated using the formula

φ =
1

d

n
∑

i=1

n−i+1
∑

j=1

(Pij − E[Pij])
2

E[Pij]
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Where d denotes the degrees of freedom and is calculated as the number of observations
minus the number of parameters fitted. The number of observations is the number of Pij

in the triangle of incremental claims. In a regular complete triangle with n origin periods
this is n(n+1)

2
. The number of parameters fitted is the number of xi parameters plus the

number of yj parameters minus one (because we have imposed the condition that
∑

yj = 1
). If we would like the scale parameter to vary by development period then the sum above
would only vary over the origin period dimension for a fixed development period, and the
number of degrees of freedom would also be amended accordingly.

Alternatively, the ODP model may be fitted using GLM software (see, e.g., Taylor and
McGuire (Taylor and McGuire 2015). Furthermore, the GLM framework allows other
distributions to be considered which may be more appropriate for the claims data (Renshaw
and Verrall (Renshaw and Verrall 1998)).

It is worth noting that the ODP distribution is a special case of a Tweedie distribution,
which was introduced by Tweedie (Tweedie 1984). A characteristic of a Tweedie distribution
is that the variance is proportional to µp where µ is the mean and p ≤ 0 or p ≥ 1 . Members
of the Tweedie family include the Poisson1 distribution (p = 1), the Normal distribution
(p = 0) and the Gamma distribution (p = 2). Models using all these distributions may be
fitted using GLM software (quasi-likelihood is used for the ODP and for non-integer p).
Tweedie models are of particular interest when validating the distribution assumptions
in reserving problems: for example, Jorgensen and Paes de Souza (Jorgensen and Souza
1994) showed that Tweedie models with 1 ≤ p ≤ 2 can be identified as compound Poisson
distributions with Gamma severity distributions. In practical terms, higher values of p
correspond to heavier tailed distributions. Therefore, if ODP model validation (discussed
later in section Model Validation) suggests that the data is heavier-tailed than the ODP
distribution, then a Tweedie distribution with p ≥ 1 could be considered as an alternative.
For further discussion on this, including estimation of a suitable value for p, refer to
(Peters, Shevchenko, and Wüthrich 2009) and (Gesmann et al. 2015).

4.2.3 Analytic Calculation of MSEP

We now discuss the calculation of the MSEP of the reserves in this model. We discuss the
MSEP for the reserve for an individual origin period, and for the total reserves over all
the origin periods. As with the Mack and stochastic Bornhuetter-Ferguson methods, the
MSEP can be broken down into different components. We break the MSEP for the ODP
model into the same components as for the Mack, i.e. into the process and parameter error.
We do not present the formulae for the calculations of the MSEP as shown by England and
Verrall (England and Verrall 2002); instead we attempt to give an intuitive explanation of
the different components and present a numerical example to aid understanding, leaving
the technical details to (England and Verrall 2002).

The process error is calculated as the square root of the (fitted) scale parameter times the
reserve. Because the process error is an increasing function of the reserve, and we would
generally expect the reserve to decline as the origin periods get older, we would therefore
generally expect the process error to decline as the origin periods get older.

The calculation of the parameter error is more complicated. However we can make a few
comments about how it is likely to behave. The parameter error increases approximately

1Or ODP distribution, if the dispersion parameter isn’t assumed as 1.
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linearly with the reserve and with the scale parameter. As with the process error we would
therefore expect the parameter error to decline as the origin periods get older. However
the effect will be complicated as the relationship is only approximately linear.

Note, however, that rather than using analytical formulae, it is usually easier to use
bootstrapping and Monte Carlo simulation to yield a reserve distribution. Details of this
approach are discussed in section Estimating the Reserve Distribution.

4.3 A Stochastic Bornhuetter-Ferguson Model

4.3.1 Introduction

The Bornhuetter-Ferguson (BF) method was proposed by Bornhuetter and Ferguson
in 1972 (see (Bornhuetter and Ferguson 1972)). It is widely used in actuarial work,
particularly for lines of business with limited or no experience for recent origin periods.
The basic idea of the method is to calculate the reserve as a proportion of a prior estimate
of the ultimate claims. The usual practice is to use the proportions implied by the Chain
Ladder development factors, although this is not a logical necessity of the method.

It is comparatively recently that attempts were made to specify a stochastic model consis-
tent with the method described by Bornhuetter and Ferguson, and which could justifiably
be called a Stochastic BF model. In 2000, Mack (Mack 2000) studied Benktander’s
method which is an intuitive credibility mixture of the BF method and the Chain Ladder.
In this paper he described a very simple stochastic model and derived formulae for the
prediction error for all three methods within this model. In 2004, Verrall (Verrall 2004)
studied how the BF method could be written in terms of Bayesian models within the
framework of generalised linear models. The models are implemented using a Markov
Chain Monte Carlo approach (i.e. using simulations) and so no analytic formulae for
prediction errors are given. Mack (Mack 2008) described a stochastic model consistent
with the BF method. He derived formulae for the fitted parameters, and the prediction
error of the reserve. However in this model the proportion applied to the prior estimate of
ultimate to calculate the reserve is different from that implied by the Chain Ladder factors,
and the model is therefore not consistent with how the BF model is used in practice. In
2009 Alai, Merz and Wüthrich (Alai, Merz, and Wüthrich 2009) used the over-dispersed
Poisson model to derive a stochastic model consistent with the BF method and where the
reserve is equal to the proportion of the prior estimate of the ultimate claims implied by
the Chain Ladder development factors. Within this model they derived formulae for the
mean squared error of prediction (MSEP) for the reserves. The following year in (Alai,
Merz, and Wüthrich 2010) they derived significantly simplified formulae. It is this latter
model that we describe in this section.

The stochastic BF model that we describe is based on the ODP model. In this section
we assume that the reader understands the ODP model as described in the section Over-
Dispersed Poisson Model above. We start by reviewing the classical deterministic BF
method. We then describe the assumptions for the stochastic BF model and attempt to
give an intuitive explanation of the calculation of the MSEP for the reserves.

The basic idea of the BF method is to calculate the reserve for each origin period as a
proportion of a prior estimate of the ultimate claims. The prior estimate is an input to
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the model and could incorporate information from underwriters, premium calculations or
strategic business plans. The key thing is that it is independent of the claims data for the
origin period. The proportion applied to the prior estimate of the ultimate claims is, in
practice, usually derived from the basic Chain Ladder factors. It is perfectly possible to
use other factors, but Alai, Merz, and Wüthrich’s model assumes that the Chain Ladder
factors are used.

We can express the deterministic BF method symbolically as follows. Let i denote the
origin period, and let νi denote the prior estimate of the expected value of the ultimate
claims for origin period i. Let j denote development period, and suppose that fj denotes
the basic Chain Ladder development factor for development period j. Then the cumulative
development proportion for development period j, denoted βJ is given by:

βj =
n−1
∏

k=j

1

fk

Let Ci,n−i be the latest observed cumulative payment for the origin period i. The BF
estimate of the ultimate claims is then given by:

UBF
i = Ci,n−i + (1 − βn−i) νi

This formula leads to an alternative view of the BF estimate of the ultimate claims as
a weighted average of the basic Chain Ladder estimate and the prior estimate of the
ultimate claims:

UBF
i = CCL

i,n−i · βn−i + (1 − βn−i) νi

This is the case because the basic Chain Ladder estimate of the ultimate claims is given
by

CCL
i,n−i = Ci,n−i

n−1
∏

k=n−i

fk

and so

Ci,n−i =
CCL

i,n
∏n−1

k=n−i fk

= CCL
i,n · βn−i

Generally βn−i is larger for older origin periods, and smaller for more recent origin periods.
Therefore, for the older origin periods more weight is given to the basic Chain Ladder
estimate, and for more recent periods more weight is given to the prior estimate of ultimate
claims. Below, when we look at the prediction error in the BF estimate of the reserves,
we see a similar pattern. For the older periods the contribution to the prediction error of
the prior estimate of the ultimate claims is relatively small, whereas for the more recent
periods the contribution to the prediction error of the prior estimate of the ultimate claims
is relatively larger.

The BF method is particularly useful when modelling long-tailed lines of business. For
these lines the Chain Ladder method can often give unreasonable results for the more
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recent origin periods. The BF method mitigates this problem by giving more weight to
the prior estimate of the ultimate claims, and less weight to the Chain Ladder estimate of
the ultimate claims. When we look at the prediction error in the estimate of the reserves
we see a similar pattern. In long-tail lines of business, in cases where the Chain Ladder
estimate of the ultimate claims is unreasonable, the stochastic Chain Ladder models can
often give very large estimates of the prediction error. It is important to note that in such
cases, that whilst the best estimate is unreasonable, it is actually quite reasonable to have
a large prediction error. When we apply the BF method to such cases we find that we get
a much more reasonable estimate of the ultimate claims admittedly based on our prior
view, and a smaller value for the prediction error. We see this in the application of the
different models to data set 2 in section Example 2 .

4.3.2 Assumptions

We now describe the assumptions made for the stochastic BF model being considered
here. The model is based on the ODP model, so makes the same assumptions for the
incremental claims amounts Pij with some additional assumptions for the prior estimates
of the ultimate claims. The additional assumptions are:

• The prior estimates νi of the ultimate claims, are independent random variables
that are unbiased a priori estimators of the expected value of the ultimate claims
Cin for all i = 1, . . . , n; and

• Pij and νi are independent for all i, j .

So, in addition to the assumptions of the ODP model, we assume that the prior estimates
are independent of the claims data and are unbiased estimators of the ultimate claim
amounts.

In the above we only assume that the prior estimates νi of the ultimate claims are
independent random variables. For the calculation of the BF estimates of the ultimate
claims we require estimates of the mean, and for the MSEP we need to have estimates
of the variance of these random variables. We assume that these are given exogenously.
Note that, as νi is an estimate of the expected value of the ultimate claims, its variance is
a measure of the uncertainty in the estimate of the mean, it is not the uncertainty of the
ultimate claims themselves.

The assumption that the prior estimates νi are independent might not be realistic. For
example there might be a systematic bias caused by the assumptions made for some
relevant factor (e.g. future inflation assumption) turning out to be materially incorrect in
hindsight.

4.3.3 Analytic Calculation of MSEP

We now discuss the calculation of the MSEP of the reserves in this model. As with Mack’s
model and the ODP model, the MSEP can be broken down into different components. For
Mack’s model and the ODP model the components are the process and parameter error.
For Alai, Merz and Wüthrich’s stochastic BF model we introduce a third category - the
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error due to the prior estimate of ultimate claims. This could be considered part of the
parameter error but it gives more insight into the overall MSEP to consider it separately.

The formulae for calculating each of these components is described in detail in (Alai, Merz,
and Wüthrich 2010). We now attempt to give an intuitive explanation of the different
components.

As described above the three categories of error are: process error, parameter error and
prior estimate error. The stochastic BF model presented here is based on the ODP model,
so we can compare the process and parameter error between the two models.

The process error is calculated in exactly the same way for both models - it is the square
root of the scale parameter times the reserve. The scale parameter is the same for both
models, but the reserve is different, as the BF reserve is a proportion of the prior estimate
of the ultimate claims. The ratio of the process errors calculated will therefore be fully
explained by the ratio of the square roots of the estimates of ultimate claims. For example
if, for a particular origin period the prior estimate of ultimate claims is 21% higher than
the chain-ladder estimate of ultimate claims, then, because the square root of 1.21 is 1.1,
the process error for the stochastic BF model would be 10% higher than the process error
for the ODP model. Because the process error is an increasing function of the reserve,
and we would generally expect the reserve to decline as the origin periods get older, we
would therefore generally expect the absolute amount of process error to decline as the
origin periods get older.

The calculation of the parameter error is more complicated than the calculation of the
other two components. However we can make a few comments about how it is likely to
behave. The parameter error increases linearly with the prior estimate of the ultimate
claims. It also increases linearly with the scale parameter. The parameter error for an
individual origin period also depends on the cumulative development proportion. For a
long-tail class the most recent origin periods will have a small cumulative development
proportion, and so the estimate of the reserve will be mostly determined by the prior
estimate of the expected ultimate claims. In these cases the parameter error will also be
relatively small (although the prior estimate error will be relatively large).

The prior estimate error is specific to the BF model. For each origin period it is calculated
as the coefficient of variation of the prior estimate of the ultimate claims times the BF
reserve. The total prior estimate error is calculated as the square root of the sum of squares
of the prior estimate errors for the individual origin periods. The prior estimation error
for individual origin periods is a linear increasing function of the BF reserve. Compare
this with the process error which increases with the square root of the BF reserve. We
would therefore generally expect the prior estimate error to decline as the origin periods
get holder, and we would expect the rate of decline to be faster than for the process error.
However the effect will be complicated by any differences in the estimate of the CoV of
the prior estimates across origin periods.

4.4 Other Models

It is important that an appropriate model be used for the data under consideration.
Inference using a model which does not fit the data well may be incomplete or even
misleading. Determining whether a model is suitable involves:
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• checking the specific model assumptions to see if these are satisfied by the data
• reviewing residual diagnostics for evidence of poor fit.

Both of these are discussed further in section Model Validation.

This raises the question: what should be done if the above models are not suitable for
the data set? A first step might be to consider models other than the Chain Ladder (and
related models) which may better suit the data in question.

If model diagnostics suggest a calendar period trend is present in the data, then the model
could be extended to incorporate this trend. This is more easily done for the ODP model
fitted using GLM software rather than a Mack model. Interactions between accident and
development periods may be incorporated in a similar manner ((Taylor and McGuire 2015)
works through a specific example of extending the ODP model to better fit a particular
data set). Additionally, other regression structures could be considered, such as those
studied by Gigante and Sigalotti (Gigante and Sigalotti 2005).

Exposure-based models are useful for cases where the modelled quantity is expected to be
roughly proportional to another quantity that varies by accident period, or by accident
and development period. Examples include the ultimate number of motor vehicle claims
which would depend on total numbers of vehicles insured, or payments on liability claims
in a particular period which would depend on the number of claims that finalise in that
period. Further discussion of such models may be found in Frees et al (Frees and Derrig
2014), section 18 and Taylor (Taylor 2000).

Micro models (also referred to as granular models and which include individual claim
models) may also be helpful in some circumstances due to the greater wealth of data
involved. Some examples of their use for third party motor bodily injury are given in
(Taylor and McGuire 2004) and (McGuire 2007) and for medical liability in (Taylor,
McGuire, and Sullivan 2006).

If it is not possible to find a suitable model for the data, or the approaches above
are considered too time-consuming on pragmatic grounds, then it may be possible to
benchmark the line of business against industry results or use other judgemental means
to estimate a CoV for the reserves. The approach of O’Dowd, Smith and Hardy (O’Dowd,
Smith, and Hardy 2005), as discussed in section 3.5 may be helpful in selecting this CoV.
If nothing else, the paper provides a useful check-list of the sources of variability which
should be considered.

Once a coefficient of variation has been estimated, it may be combined with the estimate
of the mean (from the claims reserving process) and a suitable distribution (typically the
log-normal distribution) to produce a distribution of reserves via method of moments
estimation.
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Chapter 5

Model Validation

Before applying the results of any model, or using that model for further inference
(e.g. simulation, bootstrapping as discussed in section Estimating the Reserve Distribution),
it is essential to check that the model provides a reasonable description of the data. Failure
to do so leaves the modeller at risk of using an ill-fitting model. In the specific example
of stochastic reserving, consequences could include materially incorrect estimates of the
reserves (if the model is used to set the central reserve estimate) and materially incorrect
estimates of the reserve uncertainty.

Model validation is the process of examining whether the model provides a good fit to the
data. For stochastic reserving models, validation may be viewed as a two steps process:

• Checking that model specific assumptions are valid for the data
• General statistical model validation including a review of the residuals to check that

they are independent and identically distributed.

This section opens by firstly considering residual diagnostics since these may be applied
to all models. Following that, we outline model specific tests for the models discussed in
section Models.

For the most part, the residuals are assumed to be standardised residuals. These may
be calculated via GLM software. Definitions of residuals for GLMs may be found in
McCullough and Nelder (McCullagh and Nelder 1989). Additionally, the open source
R ChainLadder1 library and its vignette (Gesmann et al. 2015) implement most of the
topics discussed in this section.

Much of the discussion below is drawn from that in Taylor and McGuire (Taylor and
McGuire 2015), wherein further details and examples may be found.

5.1 Residual Diagnostics

For stochastic reserving models, it is critical to check that the (standardised) residuals
from these models are independent and identically distributed before using bootstrapping
to estimate the variability of the reserves. This is due to the fact that the bootstrapping

1https://cran.r-project.org/package=ChainLadder
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process relies upon the inter-changeability of the residuals from one part of the data set
to another. Bootstrapping using residuals from areas of poor fit, or dependent residuals,
risks generating an incorrect distribution for the outstanding claims liability.

Residual plots are frequently used by statisticians to validate models. Other comparisons
that are helpful for stochastic reserving models include:

• Graphs of actual and fitted values (or actual divided by fitted)
• Triangular representation of residual or actual/fitted values to check for areas of

poor fit within the triangle.

We discuss each of these below, together with examples. Before we begin, note that in all
cases, standardised residuals should be used, i.e. residuals adjusted for the different levels
of variability typically seen for different development periods in a claims reserving data
set.

We have used simulated data to illustrate the various diagnostic tools discussed here. We
generated two data sets:

• The first has been simulated from an ODP model - i.e. it has multiplicative accident
and development period terms and an ODP error structure.

• The second has payment year trends in addition to accident and development period
terms. It has also been fitted using the ODP model. While the distribution is
correct, the model does not capture the payment year trend, so suffers from lack of
fit. Note that the payment year trend consists of a step increase or approximately
20% for payment years 5 and higher, followed by an approximate increase of 10%
per annum for payment years 10 and higher.

The data have been simulated and modelled in SAS. The SAS GLM modelling procedure,
proc genmod, has been used to fit an ODP model to each data set and to calculate the
associated standardised residuals. Thus, the first data set is correctly modelled by the
ODP model, but the second suffers from lack of fit.

5.1.1 Residual Scatterplot

This is a simple plot of residuals against a relevant variable to check that the residuals
are homoscedastic. In plain English, a scatterplot of the residuals should show an even
scattering of residuals in a cloud centred around zero with no structure or discernible
pattern. Residuals which exhibit some type of structure are said to be heteroscedastic
and indicate a problem with the model, either with the distributional assumptions or lack
of fit or both.

Within the statistics literature, it is generally recommended that residuals be plotted
against fitted value (or log(fitted value) depending on the scale). This is useful for
stochastic reserving models as well since it examines the distribution of residuals by the
size of the fitted value. However, residuals should be examined by accident, development
and calendar (or payment) periods, in other words, in all three directions of the triangle,
as this may assist the modeller to locate areas of poor fit and to determine an appropriate
model adjustment.
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In these plots by accident, development or calendar period, it is also helpful to include the
mean and standard deviation of the residuals for each period - standardised residuals from
a well-fitting model should have a mean of zero and a standard deviation of 1 (or at least
a constant standard deviation, depending on how the standardisation of the residuals has
been implemented). If the mean varies significantly from 0 then this suggests that part of
the model fits poorly, i.e. the model is biased for that subset of the data. If the mean is
approximately zero, but the standard deviation of the residuals varies (e.g. is smaller for
small fitted values and larger for large fitted values) then this suggests a problem with
the distributional assumptions.

The Figure 8 gives examples of these scatter plots for the first simulated data set, which
has been simulated from an ODP model.

Figure 8: Residual scatter plot simulation 1

The same plots are now shown in the Figure 9 for the second simulated data set. This
data set has a calendar or payment year trend but has been modelled using an ODP so
the payment year trend is not captured in this model.

The payment year scatterplot clearly displays a trend in the residuals.

The plot of residuals against fitted value (or, depending on the scale, the log of the fitted
value) is particularly useful to assess whether the variance assumptions are correct. Since
the variance will often depend on the magnitude of the fitted value, a funnel pattern in the
residuals by fitted value suggests that the variance assumptions are incorrect. For claims
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Figure 9: Residual scatter plot simulation 2
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reserving problems, the magnitude of the payments will also be strongly correlated with
development year, so scatterplots by development period may also be useful in testing
variance assumptions.

5.1.2 One-way Summary Plots of Actual and Fitted Values

Residual scatterplots are powerful tools, testing both model fit and the distributional
assumptions globally and locally. However, while building a model, it may be helpful to
consider the model fit in isolation through the comparison of summaries of actual and
fitted values. This removes the distraction of the dispersion of residuals.

Figure 10 plots, for each payment year:

• The sum of actual payments in that year
• The sum of expected payments in that year based on the fitted model
• Actual/fitted values on the secondary axis.

The comparison of actual and fitted values fluctuates around 100% for data set 1, which
has been correctly modelled. However, data set 2 shows systematic differences between
actual and fitted values providing evidence of a missing payment year trend.

The pattern of the actual/fitted series in Figure 10 and Figure 11 mirrors that of the
mean series in Figure 8 for the payment year scatterplot (bottom left hand graph) so
some modellers may choose to rely on residual plots alone. Using actual vs fitted plots in
addition to residual plots is a matter of personal preference. However, an advantage of
the actual vs fitted plots is that they include the magnitude of the payments involved so
the modeller can pay particular attention to the fit of the model where payment levels are
high.

Note: The accident and development year graphs are not shown since all ratios are 100%.
This is a direct consequence of fitting a model with parameters for all accident and
development periods with an ODP distribution since the estimation process ensures that
the marginal totals are equal. This is true for simulated data set 2, even though the model
is inadequate.

5.1.3 Heat Maps

For the claims reserving problem it is particularly useful to consider a triangular heat
map of the actual/fitted values (or, equivalently, the standardised residuals) since this
may assist in identifying areas of poor fit where there may be calendar period trends or
interactions between accident and development periods.

Figure 12, Figure 13 show heat maps for actual/fitted values by accident and development
year and by accident and payment year for data set 1 which has been correctly modelled.
The actual/fitted percentages have been colour coded so that low values are blue, values
around 100% are white and large values (i.e. where actual exceeds fitted) are red. In
a well-fitting model we would expect a random scattering of colour with no discernible
pattern and this is indeed the case.
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Figure 10: Correct model fitted

Figure 11: Unmodelled payment year trend
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Figure 12: Accident/development year triangle for data set 1

Figure 13: Accident/payment year triangle for data set 1

Figure 14 and Figure 15 present the same heat maps for data set 2 where there is an
unmodelled payment year trend. There are systematic patterns visible in both triangles -
early and late payment years tend to have higher actual values greater than fitted values,
while mid-term payment years tend to have higher fitted values.

For data set 2, we already know from the residual and one-way summary plots of actual
vs fitted that there are unmodelled payment year trends so in this case the heat map
may not add new information. However, heat maps are particularly useful at identifying
interactions. For example, a payment pattern change impacting some accident years but
not others would generate a systematic pattern in a heat map. Taylor and McGuire
(Taylor and McGuire 2015) contains an example of using a heat map to identify and
suitably model an interaction in an ODP model.

Figure 14: Accident/development year triangle for data 2
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Figure 15: Accident/payment year triangle for data set 2

5.2 Model Specific Tests

5.2.1 Mack Model Assumptions

Recall the three assumptions of the Mack model from section Mack’s Model:

1. For each j = 1, . . . , n − 1 there are development factors fj such that
E[Ci,j+1|Ci1, . . . , Cij] = Cijfj;

2. Origin periods are independent i.e. for each s 6= t ,
{Cs1, . . . , Csn} , {Ct1, . . . , Ctn} , are independent.

3. For each j = 1, . . . , n−1 there are parameters σ2
j such that V ar[Ci,j+1|Ci,1, . . . , Cij] =

Cijσ
2
j .

When using the Mack model, each of these assumptions should be tested to ensure that
they are appropriate for the data set in question.

5.2.2 Development Factors Test

(Mack 1997) shows that (1) implies that the sequential development factors Cij/Ci.j−1 and
Ci,j+1/Cij are not correlated. He uses this fact to develop a test for whether the model
should be applied, taking the following points into consideration:

• Development factors in adjacent development periods will generally not be identically
distributed - they will usually have different means and different levels of variability.
Therefore a non-parametric statistic such as the Spearman rank correlation should
be used.

• On pragmatic grounds, isolated cases of correlations between successive development
factors may not negate the use of the Mack model. However, widespread correlations
in the data set are problematic. Thus, he develops a test over the entire data set.
Note this is also desirable from statistical grounds - it is undesirable to compare
every set of adjacent development factors since, even with no correlations present,
some are likely to return significant values due to chance.
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A brief overview of this test is given below; full details may be sourced from Appendix G
in (Mack 1997).

• First take the development factors in development period j and j − 1 and remove
any in j that do not have a matching factor for that accident period in development
period j − 1 (and vice versa - remove any in j − 1 that do not have a match in j).

• Rank the factors separately for j and j − 1.

• Calculate the Spearman correlation coefficient as Tj = 1 − 6
∑I−j

i=1
(rij−sij)2

(I−j)3
−I+j

where

– I the number of accident periods (= n in the specification of the Mack model
for a regular reserving triangle).

– J the number of development periods (= n in the specification of the Mack
model for a regular reserving triangle).

– rij is the rank for the development factor in accident period i, development
period j

– sij is the rank for the development factor in accident period i, development
period j − 1

• Combine all the calculated coefficients into one statistic as T =
∑I−2

j=2
I−j−1

(I−2)(I−3)/2
Tj

• It may be shown that E[T ] = 0 and Var(T ) = 1
(I−2)(I−3)/2

• Mack then proposes using a normal distribution at the 50% confidence level as a
suitable test for the appropriateness of using the Mack model.

5.2.3 Independence of Accident Years

The main cause of correlations between accident years are calendar year effects which
arise in data for many reasons (e.g. a court case setting a precedent for awarded damages,
changes to the claims handling department affecting all claims from a particular point in
time onwards etc.).

The graphical model diagnostics described above in section Residual Diagonstics are likely
to indicate if a calendar period trend is present and are straightforward to implement.
Additionally for the Mack model, [Ma97] develops a test for the independence of accident
years, as described in Appendix H to that paper.

The idea underpinning this test is that, in the presence of a non-constant calendar year
trend, diagonals of development factors will tend to have either larger or smaller than
usual development factors. Thus, Mack proposes carrying out the following procedure:

• For each development period j (i.e. column of the data set), order the development
factors and separate them into a set of small factors (“SF”) and large factors (“LF”)
using the median of the development factors in that development period.

• For each diagonal, count the number of large and small factors.
• Under the null hypothesis of independent accident periods, development factors

should be equally spread between small and large factors (subject to sampling
variability). Therefore a binomial distribution with probability p and n = number
of entries in the diagonal may be used to assess the significance of the number of
large and small factors.

Refer to Appendix H of (Mack 1997) for full details.
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5.2.4 Mack Sigma

The sigma (or alpha) squared variance parameters are derived from the data and are
proportional to the prediction error for each origin period. The behaviour of these
parameters can be investigated as a way of checking that the data satisfies the Chain
Ladder assumptions. These parameters reduce to zero with increasing origin age - this
makes intuitive sense as older origin periods are expected to have a more certain outcome,
and the development factors themselves run off to one as we have no tail factor in the
basic Chain Ladder model. Graphing the progression of these variance parameters against
the development period should produce a shape akin to an exponential decay to zero:

• Kinks in this chart point to particularly large or small development factors (which
will both produce large squared differences and thus large variance parameters).
There may be some large losses; and

• In addition, large kinks in the chart may also point to data that doesn’t quite
satisfy the Chain Ladder assumptions (e.g. the origin years generally have the same
underlying pattern).

The variance parameters operate multiplicatively - an interesting result of this is that
the Mack prediction error from applying the Mack method to a quarterly triangle will
be greater than that from an annual triangle. From a statistical point of view, we
are estimating four times as many development factors (and thus four times as many
parameters) for each origin period, and hence this contributes to a higher estimation
variance.

5.2.5 ODP Model

5.2.5.1 ODP Distribution

Strictly speaking, if using an ODP model, the ODP assumptions should be checked - i.e. is
the ODP model a good representation of the data. One powerful way of validating the
ODP distribution is to use a Probability-Probability (“P-P”) plot. The description below
of a P-P plot for stochastic reserving problems is taken from Taylor and McGuire (Taylor
and McGuire 2015).

In general, a P-P plot is a graphical method for comparing two probability distributions,
and plots two cumulative distribution functions (“cdf”s) against each other. Given an
input, u, the plotted points are (F (u), G(u)) , where F and G represent the cdfs being
compared. Thus, the range of the plot is the unit square [0, 1] × [0, 1]. Each plotted point
represented the probability of being ≤ u under the distributions F and G respectively.

In a GLM application, one distribution will correspond to the selected error distribution
(e.g. ODP for the ODP model) and will be referred to as the “theoretical” distribution.
The values of the theoretical distribution are calculated assuming the ODP assumptions
are correct. The other distribution will correspond to the modelled data (the “empirical”
distribution) and is simply an ordered series (by the theoretical probability) of the actual
data. In effect, the empirical distribution points are simply m equally spaced points in
[0, 1] where m is the total number of observations in the data set.
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If the model fits well, the P-P plot should be an approximately straight line of the
form y = x. Significant deviations from the straight line indicate problems with the
distributional assumptions.

The next two figures show Poisson P-P plots for a correctly specified distribution (Figure
16 and an incorrectly specified one (Figure 17. The distribution in the second figure is
heavier tailed than a Poisson distribution (in this situation, a Tweedie distribution might
be useful). More details on P-P plots may be found in the statistical literature.

Figure 16: Plot with correctly specified distribution

5.2.5.2 ODP Dispersion Parameter

In the definition of the ODP model given previously, the same value of the scale parameter
is used throughout the triangle. However, it is possible and sometimes desirable to use
a separate scale parameter for each development period. This is worth considering if
residuals appear to be much more spread out at some development periods than others,
which indicates a breakdown in the assumption that the scale parameter is constant
throughout the triangle (such residuals are said to be heteroscedastic as discussed in
section Residual Scatterplot). Scale parameters that have been allowed to vary in this way
are often lower for the first few development periods while expected incremental claims
are large, reach a peak as incremental claims level off but there is still some volatility, and
then decrease again at old ages where the volatility drops off.

Residual scatter plots are helpful to test for the constancy of the scale parameter. Scatter
plots by development period and also by the fitted value (or log of the fitted value) should
be carefully examined. Any systematic pattern in the variability, but not the mean) of
these residuals may indicate that a constant scale parameter is not acceptable (or that
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Figure 17: Plot with incorrectly specified distribution

the selected weights for varying the scale parameter are inadequate). For example, if the
variance by development period increases at a faster rate than the mean, then the residuals
will exhibit a funnel pattern, with a larger spread for higher development periods.

5.2.6 Burnhuetter-Ferguson Model

There are no specific additional diagnostics plots for the BF with underlying ODP model
as presented in this paper. In general this model is used for lines of business which are
long-tailed or volatile or both. The actuary should have due consideration for whether
the results from the BF model are reasonable. It may be helpful to refer to industry data
if available.

5.3 What to Do if Validation Fails

If a model fails any of the above tests, then the modeller should consider revising the
model to improve the fit. The particular action taken depends on the way in which the
validation fails. A number of examples are given below.

Outliers in residual plots

Firstly, have the residual plots identified any outliers. If there are outliers, should they
be removed? Or if outliers have been removed, should they be put back in? Are there
any other oddities in the data that should be investigated further? Refer back to section
Treatment of Outliers for some further discussion.

Distributional assumptions
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If the goodness of fit appears satisfactory (e.g. actual vs expected looks good, no particular
bias in the mean of the residuals) but the residuals exhibit heteroscedascity (e.g. the
residuals have a fanning pattern by development period) or the P-P plot deviates materially
from a straight line then some revision to the distributional assumptions should be
considered.

A varying scale parameter by development period may solve the problem. Alternatively,
if fitting a model using GLM software, the modeller could consider using a different
distribution. For example, if fitting an ODP with no constant scale parameter, then
the ODP assumption implies that the variance of an observation is proportional to its
mean. If a Gamma distribution were used instead, then the standard deviation would be
proportional to the square of the mean. A heavier tailed distribution like the Gamma (or
other Tweedie member with p>1) may often be more appropriate for insurance data.

Goodness of fit

If a deficiency is detected in the goodness of fit diagnostics (e.g. in the heat map, or
residuals or actual vs expected), then the modeller needs to address this area of poor
fit. The action taken depends on the source of the different experience. For example,
if a small portion of the triangle has unusual experience that is believed to derive from
something temporary (e.g. a slowdown in claim finalisations for a few months due to a
systems change), then this experience may be excluded from the model.

However, if the change is expected to be permanent, then it should be explicitly modelled.
For example, if, in the most recent years, court awards for some injuries have increased,
then, if fitting a Mack Chain Ladder model, it may be necessary to only use the most
recent experience when estimating development factors for use in projection.

If adjustments are necessary to ensure a well-fitting model then it is important to exercise
due care in the application of any bootstrapping procedure. As discussed in section
Estimating Reserve Distribution, proper use of the bootstrap requires i.i.d residuals.
Consider a 10 year triangle with changed experience in the most recent 3 years so that
future development factors are estimated using only the most recent 3 years of data.
A simple application of the bootstrap where development factors are estimated on all
data would fail the Chain Ladder tests above and would lead to poorly fitting residuals
and therefore, an unreliable estimate of variability. So too would applying the estimated
development factors to data more than three years old. In this case, two sets of development
factors are required: one set for years 1 to 7 and the second set for years 8 to 10. The
modeller would then need to check that variability levels are similar between the older
data and the newer data before running a bootstrapping procedure.

Finally, if the adjustments above do not lead to an acceptable model, it may be necessary
to consider alternative models and approaches such as those discussed in section Other
Models.
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Chapter 6

Estimating the Reserve Distribution

In section Model Validation, we referred to analytical formulae for calculating MSEP for
the Mack and stochastic BF models. In this section we discuss the estimation of parameter
and process error using bootstrapping and Monte Carlo simulation. We open by discussing
each of these in general terms which may, in principle, be applied to any reserving model.
We conclude the section by discussing the implementation of these procedures for the
three models under consideration in this paper.

6.1 Parameter Error - Bootstrapping

As we have seen in section Sources of Uncertainty, the parameter error is the error due
to the fact that the parameters of the fitted model are estimated and are thus uncertain.
Ideally, in order to estimate this uncertainty, we need other samples from the same
population, which are often (always, in the reserving case) not available. In order to
overcome this issue, a common approach used in statistics is the bootstrapping technique
(Efron 1979), which creates pseudo samples (or data sets) from the original data using
re-sampling. The re-fitted model for each of these data sets effectively results in many
different parameter estimates, thereby allowing the estimation of parameter uncertainty.

We describe two bootstrapping techniques here::

• Semi-parametric bootstrap: also known as re-sampling, where i.i.d. variables
are re-sampled to obtain an approximation of the underlying distribution. This is
the most commonly used form of bootstrap in stochastic reserving.

• Parametric bootstrap: when the distribution is known, i.e. a parametric model
is fitted to the data and samples of the parameters are directly drawn from this
model.

A re-sampling approach suitable for use with aggregate data triangles was described
by Efron (Efron 1979) in his discussion of bootstrapping for a regression model. When
using re-sampling, it is important to ensure that the variables that are re-sampled are
independent and identically distributed (i.i.d.). Data points in a claim triangle will almost
certainly not be i.i.d., so these amounts must first be transformed to meet this requirement.
The common practice for stochastic reserving is to calculate residuals for the model which,
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after standardisation, should be i.i.d. These residuals are then sampled (usually with
replacement), with one standardised residual attaching to each past cell. The residuals
are then unstandardised (ie multiplied by the estimated variance of the residuals in that
cell, which would normally be estimated by development period) and added back to the
fitted values in each cell to produce pseudo triangle data from which parameters may be
estimated by refitting the model.

Parametric bootstrapping is useful in cases where a full statistical model has been fitted
such as a GLM. One possible method for parametric bootstrapping is to recognise that
under certain conditions usually satisfied by a GLM, the resulting parameter estimates are
asymptotically multivariate normal. Therefore, pseudo parameter values may be directly
sampled from this distribution, producing a new set of parameters for each bootstrap
iteration, from which fitted and projected values may be calculated. This procedure is
computationally much less demanding than the semi-parametric bootstrap and worth
considering if a formal GLM structure has been used for the stochastic reserving exercise.
This approach is discussed by Taylor and McGuire (Taylor and McGuire 2015) and readers
are referred there for further details.

A typical bootstrap cycle operates in the following manner:

• Generate a pseudo dataset using a parametric/semi-parametric bootstrap

– For the semi-parametric bootstrap, the residuals are re-sampled and then
combined with the fitted values to form a pseudo data set. The model is then
fitted to produce a set of pseudo parameters.

– For the parametric bootstrap, a sample of model parameters is drawn from a
multivariate normal distribution, producing a set of pseudo parameters.

• Forecast the reserve using the pseudo parameters.
• Start a new cycle.

The variance of the resulting reserves from each sampled data set provides an estimate of
the parameter error in the reserves.

6.2 Process Error

There are two common approaches to estimating process error (ie the error related to the
uncertainty of the process itself) following a bootstrap procedure - residual re-sampling
and Monte Carlo simulation.

6.2.1 Residual Resampling

Process error may be incorporated by a further re-sampling of the standardised residuals,
in a manner identical to that of the semi-parametric bootstrap, except that the residuals
(after being multiplied via the assumed standard deviation) are added to the future
forecast values of the data triangle rather than to past values.

This version of the bootstrap is described in many places in the literature, e.g. Taylor
(Taylor 2000). One of its strengths is that it does not require the exact form of the
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distribution to be specified. For this reason, the semi-parametric bootstrap combined
with residual re-sampling for process error estimation is usually called non-parametric

bootstrapping. It is useful in situations where a parametric distribution such as an
ODP may not be a particularly good fit to the data and is frequently used in practice.

6.2.2 Monte Carlo Simulation

An alternative to using residual re-sampling to estimate process error is to sample directly
from the distribution of the forecast value (refer back to Figure 6). This requires the
following assumptions:

• The distributional form of the forecast value
• The parameters of this distribution - usually, specification of the mean and variance

is sufficient to determine these.

This is actually Monto Carlo simulation - a procedure used to find the distribution of
an unknown (i.e. not derivable analytically, or difficult to derive) probabilistic quantity
function of simpler - and so suitable to be simulated - random variables. Due to the number
of simulations involved, Monte Carlo methods are usually computationally intensive, but
improvements in processing power in recent years have mitigated this disadvantage and
made these methods increasingly popular.

There are two main advantages of using a Monte Carlo method instead of an analytical
formula:

• It is usually simpler to implement (analytical formulas can be complex or even
impossible to derive); and

• It returns as output the full distribution, whereas analytical formulas usually only
give the first two moments.

The main disadvantage of these methods, as noted above, is the computationally intensive
nature of the method, but this has been largely mitigated by increased processing power
over recent years.

The Monte Carlo method is fairly simple to implement for stochastic reserving.

In general, a simulation cycle (i.e. to obtain one reserve simulation) proceeds as follows:

• Generate a simulated value for every random variable in the process (e.g. every
projected future cell in a data triangle);

• Derive a reserve from the simulated values given above (e.g. sum over all simulated
values of future cells); and

• Start a new cycle.

The resulting volatility from all the simulated reserves from this simulation cycle yields
an estimate of the process error.
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6.3 Simulation Cycle - Parameter and Process Error

The processes described in section Estimating the Reserve Uncertainty may be combined
to produce a simulation cycle for stochastic reserving yielding estimates of reserves that
include both parameter and process error. In order to do this, the bootstrap cycle is
embedded into the simulation cycle, giving a general stochastic reserving simulation

cycle , as follows:

1. If using a semi-parametric bootstrap, generate a pseudo dataset by re-sampling
residuals and combining with fitted values to form a pseudo data set.

2. Inclusion of parameter error:

• Semi-parametric bootstrap: Fit the model to find the parameter estimates.
• Parametric bootstrap: the simulation cycle starts at this step - generate a

sample of the parameters from a multivariate normal distribution based on the
mean and covariances of these parameters that are produced by a GLM

3. Generate the unknown future part of the triangle from the parameter estimates
derived at the previous step;

4. Inclusion of process error: use either residual re-sampling or simulation as appropri-
ate.

• Residual re-sampling: re-sample the model residuals and combine with the
forecast values.

• Simulation: Simulate each cell of the future part of the triangle to incorporate
process error

5. Derive the total reserves from the generated data;
6. Start another cycle.

The reserves from each simulation cycle form a distribution which includes both param-

eter and process errors.

This process underlies the estimation of the ultimate view of reserve risk for each of the
models discussed in this paper, as will be seen in the next section.

6.4 Ultimate View Simulation

We now discuss the specifics of the estimation of the ultimate view of reserve risk for each
of the three models considered in this paper. The main reference for this is England and
Verrall (England and Verrall 2002), which considers a variety of different methods.

6.4.1 Mack

As discussed in England and Verrall (England and Verrall 2002)1, the assumptions (and
results) of the Mack model are very similar to the normal approximation of the negative
binomial model. The assumptions are as follows:

1Section 2.6 - Mack’s model
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• The over-dispersed negative binomial model assumes that the incremental payments
Pij have the following distribution:

Pij ∼ ODNB
(

µ = (λj−1) Ci,j−1, σ2 = φλj (λj − 1) Ci,j−1

)

, where λj is equivalent to the standard volume all Chain Ladder factor fj from
development year j − 1 to j. Additionally, there is an unknown dispersion parameter
φ forming part of the variance, which makes the distribution “over-dispersed”;

• Noting that Cij = Ci,j−1 +Pi,j, and assuming that in this (recursive) approach Ci,j−1

is known, we can rewrite the above as:

Cij ∼ ODNB
(

µ = fj Ci,j−1, σ2 = φ λj fj (fj−1 − 1) Ci,j−1

)

However, the ODNB assumption is not generally used in practice. As proven by Mack
and Verrall (Mack and Verrall 2000), since the negative binomial model is derived from
the Poisson model, the predictive distributions are essentially the same and give identical
predicted values. Furthermore, if fj < 12 the variance of the model above is negative
and the ODNB model breaks down. To overcome this, we require a distribution whose
support is not restricted to the positive real domain. The Normal distribution is a suitable
candidate. Therefore, we can replace the ODNB assumption with a Normal approximation,
retaining the same mean and variance, as much as is possible for the variance, i.e. we
would expect the variance to be proportional to Ci,j−1 with a constant of proportionality
depending on j.

Thus the Normal approximation is given below:

Ci,j ∼ N
(

µ = fj Ci,j−1, σ2 = φj Ci,j−1

)

Comparing this formula to Mack’s assumptions:

E[Ci,j|Ci,j−1] = fj Ci,j−1,

Var[Ci,j|Ci,j−1] = σ2
j Ci,j−1,

we observe that they are very similar (apart the Normal distribution assumption): the
unknown scale parameters φj are simply replace by the σ2

j of the Mack model. In fact,
their parameter estimates are essentially the same (see section 7.6 of (England and Verrall
2002)), fitting a properly parametrised GLM model on the development factors (see section
7.4 of (England and Verrall 2002)) and considering similar bias corrections.

Summarising all the results above, a simulation cycle for the Mack method is comprised
of the following steps:

1. Store the observed cumulative triangle Cij as weights ωij;
2. Fit Mack analytical model to derive the model parameters (fj, σ2

j )Mack for 0 < j ≤ n;
3. Using either a parametric or a semi-parametric bootstrap on the known triangle,

generate a set of pseudo development factors F B
ij from the parameters estimated at

the previous step;

2Which implies that the sum of the incremental payments in the column j is negative
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4. Derive the bootstrapped model parameters (fB
j , σ2

j = φB
J ) from the pseudo develop-

ment factors F B
ij using ωij as weights;

5. Using the above bootstrapped parameters, derive the cumulative payments for the
future triangle, adding the process error via generating a random number from
the Normal distribution: Ci,j ∼ N

(

µ = fB
j Ci,j−1, σ2 = φB

j Ci,j−1

)

. Alternatively
process error may be incorporated by a further re-sampling of residuals;

6. Once the future cumulative claims have been derived, derive both the reserve Rs
j for

the origin year i and the total reserve Rs
T OT simulation cycle s.

Given a sufficient number of simulations, we may use the mean and variance of the
simulated reserves to estimate the overall uncertainty. Note that the latter will include
both parameter and process error due to respectively step 3 and 5.

6.4.2 Over-dispersed Poisson

The ODP is a somewhat simpler model than Mack, since - as we have seen earlier - a
GLM can be directly parametrised on the incremental claims, which are assumed to be:

Pij ∼ ODP
(

µ = mij, σ2 = φ mij

)

,

where - as we have previously seen log(mij) = ηij = αi + βj , i.e. the expected incremental
payment is a function of both the origin period and the development period factors.

For the ODP model, a simulation cycle is as follows:

1. Fit a GLM3 as specified in the section Over-dispersed Poisson Model on the Pij to
derive the estimate (α1, . . . , αn, β1, . . . , βn, φ) of the GLM parameters;

2. Parameter error:

• If using a semi-parametric bootstrap then generate a set of pseudo incremental
payments P k,B

ij and Fit another GLM on the pseudo payments P k,B
ij , to derive

a bootstrapped estimate (αB
1 , . . . , αB

n , βB
1 , . . . , βB

n , φB) of the GLM parameters;
• If using a parametric bootstrap, sample the GLM parameters directly to obtain

the bootstrapped estimate of the parameters.

3. Using the bootstrapped parameters above, derive the future triangle payments
introducing the process error by either:

• generating a random number from the ODP distribution4 : P u,B
ij ∼

ODP
(

µ = mB
ij, σ2 = φB mB

i,j

)

; or
• Re-sample the residuals and apply to the forecast payments

4. Once the future unknown payments have been simulated, derive both the reserve
Rs

i for each origin year i and the total reserve Rs
T OT for the simulation cycle s.

As for the Mack case, the mean and variance of the resulting distribution of simulated
reserves estimate the best estimate and reserve uncertainty.

3Note that according to the Verrall result, instead of fitting a GLM it is possible to fit directly a
Volume All DFM to speed up the estimation process during a semi-parametric bootstrap. There, we
would recommend avoiding other development factor selection rules other than Volume All, if possible.

4Note that, as simulating an ODP is not a straightforward task, a Gamma function is often used
instead, formulated to have similar properties, as as P

u,B
i,j ∼ Gamma(µ = mB

i,j , σ2 = φBmB
i,j). This is

slightly forced, as a Gamma function should have σ2 = φm2 instead of σ2 = φm.
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6.4.3 Stochastic Burnhuetter-Ferguson

The process of simulating the stochastic BF model of Alai, Merz, and Wüthrich has not
been covered in the literature. The following is therefore our own preliminary thoughts
on how this could be done. We have included these suggestions in this paper to act as a
springboard to future discussion on the appropriate use of the stochastic BF. The use
of numerical bootstrapping and simulation methods for the stochastic BF and for the
estimation of the one year reserve risk in particular is a subject of ongoing work for the
working party.

As described in section 4.3, Alai, Merz and Wüthrich’s stochastic BF model is based
on the ODP model. The first few steps for simulating from this stochastic BF model
will therefore be the same as the first few steps for simulating from the ODP model (as
described in section Monte Carlo Simulation).

In addition, we need the following two items (as seen in section A Stochastic Burnhuetter-
Ferguson Model):

1. The a priori estimates of the ultimate claims Ui for each accident year i; and
2. The a priori estimates of the standard deviations of the prior estimates of the

ultimate claims for each accident year i.

The estimates of the ultimate claims are usually readily available (as they would have
been used in the deterministic BF calculations and so would be available from the pricing
or reserving departments). However estimating their standard deviation is considerably
more difficult. One possible simplifying assumption is to fix a single CoV5 for all origin
years and to calculate the standard deviations accordingly (by multiplying the CoV by
the a priori estimate of ultimate claims). It would be natural to estimate this CoV using
expert knowledge or looking at the uncertainty of the historical ULR per accident year.

A simulation cycle for Alai, Merz and Wüthrich’s stochastic BF model might proceed as
follows:

1. Simulate parameter error exactly as for the ODP, described above in steps 1 and
2 of section Over-dispersed Poisson. From the simulated parameters calculate the
pseudo incremental development pattern.

2. For every origin year i, simulate6 a random a priori ultimate, with mean Ui and
standard deviation given by CoV · Ui.

3. Simulate the future incremental paid amounts in exactly the same way as for the
ODP model, except that the mean and variance will be calculated using the pseudo
incremental development pattern and the simulated prior estimate of the ultimate
claims, and so will be given by the formulae E[Pij] = yi νi and Var[Pij] = φ yi νi

where yi is the pseudo incremental development proportion7 simulated in step 1
above, and νi is the a priori ultimate simulated in step 2 above.

4. The simulated reserve for each origin period is then just the sum of the future
incremental claims payments, and the BF ultimate claims and the simulated reserve

5Coefficient of Variation
6Log-normal or gamma would be natural choices, in order to avoid negative ultimates
7In other words, it is the ratio between and its relative accident year ultimate.
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plus the latest simulated cumulative claims amount. The total reserve is then the
sum of the reserves for each origin year i.

As for the previous models, the mean and variance of the resulting distribution of simulated
reserves give the best estimate reserve and the uncertainty of the best estimate.

6.4.4 Reserves at High Probabilities of Adequacy

It is important to add a cautionary note for any users who intend to use any method
for estimating reserves at high levels of adequacy (typically over 90%). Bootstrapping
results (or indeed, a log normal distribution or similar for cases where model validation
fails) become less reliable for the more extreme percentiles. In bootstrapping, this may
be partially mitigated by running a large number of bootstraps - confidence in results
from 1,000 or 10,000 bootstraps is far greater than that from 100. However, even with a
large number of bootstrap simulations, caution must be exercised in determining high
probabilities of adequacy as the chances of external events impacting the reserves is
far greater when considering a 99% probability of adequacy versus a 75% probability.
Therefore, we would recommend that due consideration be given to model error (section
Sources of Uncertainty).
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Chapter 7

Numerical Examples

We now apply the methods discussed in this paper to some real-life data sets to help
illustrate their use in practice. It is worth noting, however, that the working party
currently has a work stream to implement these and other examples in R, which will, once
complete, considerably extend the detail on these numerical examples.

7.1 Example 1

The first dataset is taken from (Alai, Merz, and Wüthrich 2009) and (Alai, Merz, and
Wüthrich 2010). This is a reasonably well-behaved claims triangle, with a relatively short
tail, and no unusual features immediately apparent. The data is presented below in Figure
18 as a triangle of incremental claim amounts.

Figure 18: Example data set 1

Notes:

1. Accident (or origin) years were labelled as 0,1,2,. . . in the original paper.
2. All values in this and subsequent tables are in ‘000s
3. A cumulative CSV file is available on-line.
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7.1.1 Analysis of Data Set 1

Given the nature of the data, the Mack or ODP models are a reasonable starting point.
The central estimates for both models may be calculated by applying the chain ladder
algorithm. The resulting forecast incremental payments, ultimate amounts per year and
reserves are shown in Figure 19 and Figure 20.

Figure 19: Chain-ladder payment projections for example data set 1

Figure 20: Chain-ladder reserve estimates for example data set 1

Before doing any further analysis, it is important to first validate the model.

For the Mack model the three specific Mack tests are carried out: the development factors
correlation test, the independence of accident years and a plot of the σ2 parameters
(section Mack Model Assumptions). The first two tests are implemented in the spreadsheet
attached to this paper (Stochastic Reserving Tool v1.3 DATASET1.xlsb; refer to the
“Executive Summary” tab for the results of these tests). According to these tests, the
independence of accident years is satisfied (i.e. there are no apparent calendar year trends)
but the development factors fail the correlation test. The σ2 parameters may be calculated
according to the formula in section Analytic Calculation of MSEP and the logs of these
values are plotted in Figure 21 Exponential decay translates to linear decay of the log
values. There is a slight kink in the σ2 values at development year 4 which may indicate
problems with the assumptions.
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Figure 21: Log Mack σ2 Parameters

On the basis of these tests, there may be some question marks over the applicability of
the Mack model and it is worthwhile exploring alternatives.

While the ODP model has the same central estimates as the Mack, its distributional
estimates are different. The residual scatter plots, actual/expected plots (calendar year
only) and heat maps are shown in Figure 22 and Figure 23. The residuals (standardised
Pearson residuals) are calculated by fitting the ODP model as a GLM - this may be done
in statistical packages such as R or SAS.

Although not perfect, the residual scatter plots do not reveal any serious problems with
the model. There may be a suggestion of a trend in early calendar years, but data is
limited here so the apparent trend is not of huge concern. The actual/fitted heat maps
also appear acceptable.

Finally, the P-P (probability-probability) plot for the ODP distribution is shown in Figure
24. This graph is more coarse those that shown in Figure 10 and Figure 17 due to
smaller amounts of data. It does suggest that the actual data distribution is not quite as
heavy-tailed as an ODP distribution. However, given the small amounts of data, and the
market practice view to generally stay on the side of conservatism, the ODP distribution
may be accepted on pragmatic grounds.

On the basis of the above model diagnostics, the ODP model seems preferable to Mack.
As this is a short-tailed data set with reasonably stable behaviour at early development
years, use of the BF method does not seem warranted, at least not initially.

The next stage is to bootstrap the ODP model to estimate parameter and process error.
This may be implemented using custom-built actuarial software or in statistical packages.
As discussed in section Estimating the Reserve Distribution, there are a number of ways of
doing this - parametric, semi-parametric or non-parametric bootstrapping may all be used.
Here we have used a semi-parametric bootstrap, overlaid with Monte Carlo simulation of
process error, run using the ChainLadder package in R. The results are shown in Figure
25 below while Figure 26 presents some of the information graphically.

Notes:

1. Ultimate CoV is defined as
√

MSEP/Ultimate. Reserve CoV is defined as√
MSEP/Reserve

2. The table shows the breakdown of MSEP into parameter and process error
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Figure 22: ODP diagnostic plots
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Figure 23: Actual/fitted heat maps for data set 1

Figure 24: P-P plot for the ODP model
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Figure 25: Bootstrapping results for the ODP model (in thousands)

Figure 26: Sources of error for the ODP bootsrapping results
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In the above table and graphs the following can be seen:

• The MSEP decreases as accident (origin) periods get older. Consequently, the
related quantities (the two CoVs, parameter error and process error) also decrease.

• The process error contributes a larger proportion to the total error in the middle-aged
origin periods (peaking for origin period 2012), and a smaller proportion to the older
and most recent origin periods.

• The parameter and process errors make significant contributions for all accident
periods, though the weighting between them varies.

• The progression of the CoVs (both ultimate and reserve) is relatively smooth, with
reasonable looking values for the most recent accident year. This supports the belief
that a method like the BF is not required for this data set. Contrast this to the
behaviour of the CoVs for example data set 2 below.

• Overall, the ODP bootstrap suggests a reserve CoV of 7.1%.

Of course, the bootstrap returns more than just the MSEP and CoV - it returns a full
distribution including parameter and process error - see Figure 27 for an example of such
output.

Figure 27: Distribution of the outstanding claims reserves

7.1.2 Comparison with Mack Results

The model validation section raised some question marks over the use of the Mack model
for this data set. However, for illustrative purposes, it may be interesting to compare the
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ODP and Mack model analytic results. While both models give the same central estimate,
they are different models, built on a different set of assumptions. Therefore we would
expect the Mack results to reflect this, returning different variability estimates.

Figure 28: Analytic results for Mack’s model

Figure 29: Comparison of reserve CoV

Figure 28 presents the analytic results for Mack’s model while Figure 29 compares the
reserve CoVs by accident (origin) year. For older accident years, the MSEP is much larger
for the ODP model than it is for Mack, however this fact is immaterial, as the underlying
reserve is very small; this is clearly illustrated in Figure 29. In more recent years, the
MSEPs are similar or even higher (the most recent year). The relative contributions of
parameter and process error are quite different similar between the two models, with
process error being the dominant source of error. Overall Mack model suggests slightly
higher uncertainty results, ending up with a 7.7% total CoV vs ODP’s 7.1% and the
models look fairly aligned as soon as reserves start to be material.
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7.1.3 An Alternative View - the BF Model

(Alai, Merz, and Wüthrich 2009) also includes prior estimates of the ultimate claims cost
per year as well as assumed CoVs (5% for all years). It may be helpful to consider the
estimates that result from the BF model as an alternative view of the outstanding claims
liability.

Figure 30: BF reserve estimates for data set 1

The reserve estimates are shown in Figure 30. The results for all accident years are higher
than the chain ladder estimates and overall, the reserve estimate is 22% higher. Figure 31
shows the results of applying the analytic formulae from (Alai, Merz, and Wüthrich 2010)
for the stochastic BF while Figure 32 compares the RMSEP from both methods.

Figure 31: Analytic results for the BF model

The root MSEP is similar between both methods, though the BF does return somewhat
higher estimates for more recent accident years. However, these are coupled with somewhat
higher reserve estimates, so that the reserve CoVs are generally lower for the BF model.
In total the reserve CoV for BF is 6.4% compared with 7.1% for the ODP model. This
reflects the influence of the prior assumptions with their relatively low (5%) CoV.
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Figure 32: Comparison of BF and ODP RMSEP

The choice of which model (BF or ODP) to use for stochastic reserving purposes depends
on the actuary’s judgement as to which is the most appropriate. If one model is closer to
that used to determine the central estimate, then this model would likely be the preferred
choice for uncertainty estimation.

Once the process and parameter error have been determined, the actuary then needs to
consider whether explicit allowance should be made for model error (section Sources of
Uncertainty). If such allowance is made then the model error variability would normally
be combined with that from the parameter and process error and a judgementally selected
distribution (e.g. a log normal) to produce a distribution of outstanding claims. If no
allowance is required for model error, then the distribution that results from the process
and parameter error may be used directly.

7.2 Example 2

The second illustrative data set is taken from Table 6 of (Liu and Verrall 2008) and is an
aggregate data set from Lloyd’s syndicates. In (Liu and Verrall 2008) Table 6 presents the
paid data, and Table 7 the corresponding incurred data. This claims triangle is much more
volatile than the first, and clearly has a long-tail. Consequently, it makes an interesting
contrast to the first data set and is the type of business for which one might consider the
Bornhuetter-Ferguson method. The data are shown in Figure 33 as incremental claim
amounts. A cumulative CSV file is available on-line.

7.2.1 Example data set 2

Note: accident (or origin) years have been re-labelled as 2005, 2006,. . .

62

https://github.com/mages/PSRWP/blob/master/inst/CSV/PSRWP2.csv


Figure 33: Example data set 2

7.2.2 Analysis of Data Set 2

We first consider the use of the Mack and ODP models for this data, though we might
expect that the long-tailed nature of this class might mean that these models are unsuitable
for use. The forecast incremental payments for both these models, ultimate amounts per
year and reserves are shown in Figure 34 and Figure 35.

Figure 34: Chain-ladder payment projections for example data set 2

The Mack model passes both the development factors correlation test and the independence
of accident years (refer to the tab “Executive Summary” in the spreadsheet attached to
this paper, Stochastic Reserving Tool v1.3 DATASET2.xlsb). However the plot of the
log of the σ2 values does raise some concerns given that the progression is very much
non-linear.

Residual scatter plots and actual vs expected by calendar year for the ODP model are
shown in Figure 37.

The calendar year plot causes some concern as it appears that there may be a missing
calendar year trend. A heat map of actual/fitted by accident and development year
(Figure 38) suggests there may be a missing interaction - development year 0 has been
consistently low for 2010 to 2013.

Consequently, doubts are cast over the applicability of both the Mack and ODP models
(using their standard regression structure ending up with the same estimates as the Chain
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Figure 35: Chain-ladder reserve estimates for example data set 2

Figure 36: Log(Mack σ2) parameters
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Figure 37: ODP diagnostic plots

Figure 38: Actual fitted heat maps for data set 2
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Ladder model - note that the regression structure can be changed within the same models1.
This is supported by the estimates of CoV. As may be seen from Figure 39, these are
high for all accident years and particularly so for the most recent accident year. Given
the nature of the data there are high levels of uncertainty associated with the reserve
estimates from these models so the results are merely reflecting this. From a practical
point of view, however, such levels of uncertainty render results unusable so we must look
to other possible models.

Figure 39: Mack and ODP coefficients of variation for data set 2

A natural model to turn to in situations like this is the Bornhuetter-Ferguson model (section
A Stochastic Bornhuetter-Ferguson Model) which takes into account prior information
(e.g. pricing loss ratios) on the expected ultimate cost of an accident year. As [LV08] do
not provide any information on prior estimates of accident year costs, or the variability of
such estimates, we have made some broad-brush assumptions for these, assuming a prior
cost of 20,000 for each year, with the CoV of 15%.

The BF reserve estimates that result are shown in Figure 40, with the chain ladder
reserve estimate (i.e. that which results from both the Mack and ODP models) shown for
comparison. We see that the BF results by accident year appear more reasonable and
progress in a smoother fashion.

We use the analytic formulae from (Alai, Merz, and Wüthrich 2010) to calculate the
parameter error, process error, prior estimate error, and the total MSEP. The results are
shown in Figure 41 while the sources of error are shown graphically in Figure 42. Figure
42 also includes the Mack ultimate CoVs for comparison purposes.

The CoVs by accident year appear much more reasonable than those resulting from the
Mack and ODP models. Overall the reserve variability is estimated as 11.9%, compared
with 40% (ODP) and 64% (Mack).

The breakdown of RMSEP by parameter, process and prior error behaves as might be
expected. Process error makes a significant contribution over all accident years. However
parameter and prior errors make different contributions depending on the age of the

1The function TweedieReserve of the ChainLadder R package can handle different regression structures.
Please refer to (Gigante and Sigalotti 2005) and (Gesmann et al. 2015) for further information.
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Figure 40: BF reserve estimates for data set 2

Figure 41: Analytic results for the BF model
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accident year; for older accident years, the parameter error makes a larger contribution
since a greater weight is attached to the chain ladder estimates. For more recent years,
the prior error dominates.

Figure 42: Source of error for the BF analytic results

Armed with these results, the actuary should then consider whether an additional loading
for model error is required. This is particularly important for long-tailed classes where
there is often a greater change of environmental changes impacting future claims cost.
The same comments as made at the end of section Analysis of Data Set 1 apply - if the
actuary considers that no further allowance is required for model error, then the model
outputs may be used. If a further allowance is made, then standard practice would be to
adjust the reserve CoV accordingly and combine this with a parametric distribution such
as the log normal to produce the distribution of outstanding claims.
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Chapter 8

Conclusion

The aim of this paper has been to present an introduction to reserve uncertainty estimation
using bootstrapping with a focus on three commonly used models in general actuarial
practice. It is intended to serve as a guide to the well-established literature on two of these
models, the Mack model and Over-Dispersed Poisson model. The third model considered
is the Bornhuetter-Ferguson model. Although widely used in practice, the stochastic
version and methodology for bootstrapping is less well studied. Given its popularity, we
have presented some of our thoughts on how bootstrapping might be carried out, but we
note that this area is likely to develop further over coming years.

The Pragmatic Stochastic Reserving Working Party is currently engaged in some work-
streams which are intended to complement and supplement the material presented here.
These are:

• A practical implementation work-stream: We recognise that having practical hands-
on tools to implement the methods here is important to practitioners. Although we
have provided an excel template for bootstrapping the Mack model, implementation
of these methods is usually more easily carried out in a statistical environment. To
that end we have established a work-stream to consider the use of R (a free statistical
package) for stochastic reserving. We intend to produce R tools to implement the
methods described here. In particular this includes the further research into the use
of bootstrapping for the stochastic BF model.

• A one-year view of risk: as discussed in section Ultimate vs One-Year View of Risk,
the one-year view of risk is of considerable interest due to Solvency II requirements.
We are currently researching different approaches to this problem.

Looking forward, the Working Party intends to maintain a dynamic version of this
document so that it may be updated as new knowledge and experience arises. To that
end we welcome feedback on anything covered in this paper, or on any related topics.
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Chapter 9

Glossary

For convenience, a list of common acronyms or abbreviations used in the paper is presented
here.

• ABE: actuarial best estimate
• AY: accident year
• BF: Bornhuetter-Ferguson model
• CL: chain ladder
• CDR: claim development result
• CoV: coefficient of variation
• CY: calendar year (sometimes referred to as payment year)
• DY: development year
• GLM: generalised linear model
• IBNR: incurred but not reported
• IBNER: incurred but not enough reported
• LoB: line of business
• Mack: usually refers to the Mack model
• MSEP: mean square error of prediction
• ODNB: over-dispersed negative binomial distribution
• ODP: usually refers to the Over-dispersed Poisson model, but may occasionally refer

to the over-dispersed Poisson probability distribution.
• P-P plot: probability-probability plot
• RMSEP: root mean square error of prediction (ie the square root of the MSEP)
• SBE: stochastic best estimate (usually the central estimate or mean)
• SCR: solvency capital requirement
• Stochastic BF: a stochastic version of the Bornhuetter-Ferguson model
• UY: underwriting year
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