

The Actuarial Profession making financial sense of the future

### PREDICTIVE MODELLING FOR COMMERCIAL INSURANCE

General Insurance Pricing Seminar 13 June 2008 London James Guszcza, FCAS, MAAA jguszcza@deloitte.com



#### The Actuarial Profession making financial sense of the future

#### **General Themes**

# Predictive modelling: 3 Levels of Discussion

#### Strategy

- Profitable Growth
- Right-pricing
- Improved retention ...

#### Methodology

- Model design (actuarial)
- Modelling process (modern machine learning POV)

#### Technique

GLM vs classification trees vs neural networks …

Copyright  $\ensuremath{{\odot}}$  2008 Deloitte Development LLC. All rights reserved.

# Methodology vs Technique

- Technique is only one facet of overall methodology.
- It's not enough to be statisticians we must be actuarial statisticians.
- How does predictive modelling need actuarial science?
  - Variable creation
  - Model design
  - Model validation
- How does actuarial science need predictive modelling?
  - Advances in computing, modelling techniques
  - Ideas from other fields can be applied to insurance problems

Copyright © 2008 Deloitte Development LLC. All rights reserved.

# Semantics: Data Mining vs Predictive Modelling

- Data Mining: "knowledge discovery", often in large industrial databases – "KDD"
  - Data exploration techniques (some brute force)
  - Data visualization
  - e.g. discover strength of credit variables
- Predictive Modelling: Application statistical techniques (like GLM) after knowledge discovery phase is completed.
  - Quantify & synthesize relationships found during KDD phase
  - e.g. build a credit model

# Aside: A Famous Example of KDD in Insurance

- Mid-90's: insurers discovered a strikingly powerful relationship between personal credit score and personal motor / homeowners claim propensity.
- The reason "why" was (is?) mysterious.
- The discovery and the business benefit did not hinge on particularly advanced statistical techniques.
- A dramatic illustration of the business value of the data mining / KDD paradigm.
- KDD is "fact-finding".

Copyright © 2008 Deloitte Development LLC. All rights reserved.

# Commercial Insurance vs Personal Insurance

- Personal insurance modelling is a "nice" statistical problem.
  - Many data points
  - Straightforward exposure base (car-year)
  - Many well understood pricing factors
  - In the UK's liberal market especially, prices can be determined scientifically
    - GLM-based loss cost modelling
    - Elasticity modelling, price optimisation
    - Controlled pricing experiments

# Commercial Insurance vs Personal Insurance

- Commercial insurance modelling is a "messy" statistical problem.
  - Fewer data points especially for new business
  - Often lower frequency / higher severity
  - Heterogeneous risks
    - The corner bakery vs the suburban über-market
  - Complex exposure bases (sales, payroll, feet<sup>2</sup>)
  - Messy data
  - Risk selection/pricing often a "free for all"
  - Underwriter Subjectivity



#### The Actuarial Profession making financial sense of the future

#### Strategy: Why Undertake a Modelling Project?

#### The Parable of Moneyball (Or: How Underwriting is Like Baseball)

- In 1999 Billy Beane (manager of the Oakland Athletics) found a novel use of data mining.
  - A's not a wealthy team: ranked 12th (out of 14) in payroll
  - How could the A's compete with the rich teams?
- Beane hired a junior statistician (Paul dePodesta) to analyze statistics advocated by baseball guru Bill James.
- Using predictive analytics, Beane was able to hire excellent players undervalued by the market.
  - A year after Beane took over, the A's ranked 2nd!

### The Implication

- Beane quantified how well a player would do.
  - Not perfectly, just better than his peers
  - He realized that statistical regularities are more reliable than baseball scouts' subjective, expert judgments.
- Implication:
  - Be on the lookout for fields where an expert is required to reach a decision based on judgmentally synthesizing quantifiable information across many dimensions.
  - (Does this sound like commercial insurance underwriting?)
  - Maybe a predictive model can beat the human expert.

# **Mental Accounting**

Take a guess: which is a worse EL risk?... and by how much?

| Flower shop                             | <u>Pub</u>                               |
|-----------------------------------------|------------------------------------------|
| •4 employees                            | <ul> <li>10 employees</li> </ul>         |
| <ul> <li>5 year-old business</li> </ul> | <ul> <li>15 year-old business</li> </ul> |
| •2 EL claims in past 5 years            | •Most recent EL claim: 4 years ago       |
| •Credit: 70 <sup>th</sup> %ile          | •Credit: 90 <sup>th</sup> %ile           |

 Unlike a human decision-maker, a predictive algorithm "knows" how much weight to give each consideration.

- Just as the A's used models to select players, commercial insurers use models to select and price risks.
- Humans are "predictably irrational" ...
  - ... but models don't engage in "creative mental accounting".

Copyright  $\circledast$  2008 Deloitte Development LLC. All rights reserved.

# **Keeping Score**

| Billy Beane           | CEO who wants to run the next Progressive Insurance |
|-----------------------|-----------------------------------------------------|
| Beane's Scouts        | Commercial Insurance<br>Underwriters                |
| Potential Team Member | Potential Policyholder                              |
| Bill James' stats     | Innovative collection of predictive variables       |
|                       |                                                     |

Billy Bean's Super Cruncher You and me

Copyright  $\odot$  2008 Deloitte Development LLC. All rights reserved.

#### The Moral of Our Parable

- Billy Beane has arguably transformed US professional sports by introducing the strategic use of predictive analytics to baseball.
  - The way Beane crunched his numbers was determined by his business strategy:
  - Exploit an inefficient and subjective market for baseball players.
- Similarly in the commercial insurance domain:
  - Start off by trying to understand the business/strategic context.
  - Allow the modelling strategy to conform to the business strategy, not vice versa.

### **Competing on Analytics**

- In "Competing on Analytics", Tom Davenport defines:
  - "An analytic competitor [is] an organization that uses analytics extensively and systematically to outthink and out-execute the competition."
  - Think of predictive modelling as a strategic capacity... not just another actuarial tool.
- The most valuable modelling projects are an integral part of a company's core strategy.



Copyright © 2008 Deloitte Development LLC. All rights reserved.

### More Business Considerations

- Davenport: truly analytic competitors promulgate an "analytic" and "fact-based" culture from the top down.
  - A related point: **culture change** is often a critical part of implementing a predictive model.
  - A model can be worse than nothing if it is implemented improperly and/or if critical users do not buy into it.
- Building models is only a one phase of a "predictive modelling" project.
  - Planning, data scrubbing, project management, IT implementation, business implementation often dwarf the modelling part of the project.
  - Modelling is the fun part, not the hard part!
  - Highly multi-disciplinary process.



The Actuarial Profession making financial sense of the future

#### Methodology: Integrating Concepts from Statistics, Actuarial Science, Machine Learning

### **Concepts from Modern Statistics**

- Generalized Linear Models
- Goodness-of-fit measures R<sup>2</sup>, AIC, BIC, …
- Nested models, analysis of deviance, *F*-tests, ...
- Graphical analysis of model fit
- Graphical residual analysis
- Variance estimators
- Bayesian credibility
- Bootstrapping, simulation

(...you know the drill)

# But these doesn't exhaust modern "predictive modelling"

Copyright  $\otimes$  2008 Deloitte Development LLC. All rights reserved.

### **Concepts from Modern Machine Learning**

- Data Mining and KDD
  - Brute-force search techniques
- Scoring engines
  - A "predictive model" by any other name
- Lift Curves
  - Operationally meaningful measure of "predictive power"
- Out-of-sample model tests, cross-validation
  - Ideally yield unbiased estimates of "predictive power"
  - Alternative to AIC, BIC

Copyright  $\ensuremath{\mathbb{C}}$  2008 Deloitte Development LLC. All rights reserved.

### **Scoring Engines**

 Scoring engine: (non)linear function of multiple predictors:

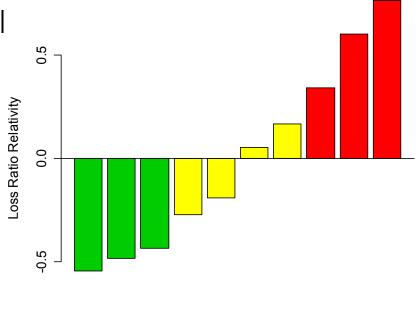
score = 
$$f(X_1, X_2, ..., X_N)$$

- Used for segmentation.
- The  $X_1, X_2, \dots, X_N$  are as important as the f()
  - Major reason why actuarial expertise is necessary.
- A large part of the modelling process consists of variable creation and selection
  - Often possible to generate 100's of variables
  - Steepest part of the learning curve
  - Data scrubbing / variable creation is time-consuming

#### Model Evaluation – the Lift Curve

- Sort data by model score
- Break the dataset into 10 equal pieces
  - Best "decile": lowest score → lowest LR
  - Worst "decile": highest score → highest LR
  - Difference: "Lift"
- Lift = segmentation power
- Lift → ROI of the modelling project





model decile

### **Out-of-Sample Model Validation**

- Randomly divide data into 3 pieces
  - Training data, Test data, Validation data
- Use **Training** data to fit models
- Score the Test data to create a lift curve
  - Perform the train/test steps iteratively until you have a model you're happy with
  - Test data is implicitly used in building the final model
    - → test lift is overly "optimistic"
  - During this iterative phase, validation data is set aside in a "lock box"
- Once model has been finalized, score the Validation data and produce a lift curve
  - Unbiased estimate of future performance

Copyright  $\ensuremath{\mathbb{C}}$  2008 Deloitte Development LLC. All rights reserved.

### Credit Scoring is a Classic Example

- All four of our machine learning concepts apply to Credit Scoring.
  - Knowledge discovery in databases (KDD)
  - Scoring engine
  - Lift Curve evaluation  $\rightarrow$  translates to LR improvement  $\rightarrow$  ROI
  - Blind-test validation
- Credit scoring has been the insurance industry's segue into the modern synthesis of classical statistics with machine learning concepts.
  - Very useful paradigm in the context of commercial insurance modelling.

### **Concepts from Actuarial Science**

- Overall design of model / analysis
  - What are we trying to predict? At what level?
- Predictive variable creation
  - Calls on subject-matter expertise of insurance
- Target variable creation
  - Loss development and trending
  - Whether/how to use premium
  - Deductibles, claim/claimant level, etc ...
  - Considerations of time periods
- Analysis file creation
  - "Level" of the analysis risk, policy, account, …
  - Inclusions / exclusions

### What are we Trying to Predict?

- Pricing:
- Underwriting:
- Premium audit:
- Retention models
- Cross-sell models
- Elasticity models
- Agent/agency profitability
- Target marketing
- Fraud detection
- Again... the modelling strategy should follow the business strategy.
  - No one-size-fits-all answer

Pure Premium Profitability Additional / returned premium

### Variable Creation

- Research possible data sources
- Extract/purchase data
- Check data for quality (QA)
  - Messy! (we are still toiling deep in the data mines)
- Create Predictive and Target Variables
  - Opportunity to quantify tribal wisdom
  - ...and come up with new ideas
  - Can be a <u>very</u> big task!
- Steepest part of the learning curve

### **Types of Predictive Variables**

#### Behavioral

Prior claims, bill-paying, credit …

#### Policyholder

- Business class, age, # employees …
- Policy specifics
  - Number of buildings, Construction Type ....
- Territorial
  - Geo-demographic, economic, weather ...

Copyright  $\ensuremath{\mathbb{C}}$  2008 Deloitte Development LLC. All rights reserved.

### Data Exploration & Variable Transformation

- 1-way analyses of predictive variables
  - Weed out weak / redundant variables
- Correlation study of predictive variables
  - Avoid multicollineariliy further weeding out
- Exploratory Data Analysis (EDA)
  - Advanced techniques can be helpful
  - Data Visualization very helpful here
- Use EDA to cap / transform predictive variables
  - Extreme values, missing values, etc

Copyright © 2008 Deloitte Development LLC. All rights reserved.

# **Modeling Process**

- 1. Finalize set of transformed predictive variables
- 2. Iterative training / testing of candidate models
  - Build candidate models on "training data"
  - Evaluate on "test data"
  - Many things to tweak
    - Different target variables
    - Different predictive variables
    - Different modelling techniques
    - # NN nodes, hidden layers; tree splitting rules; tuning parameters ...
- 3. Select & validate final model
  - Use as-yet untouched validation data

Copyright © 2008 Deloitte Development LLC. All rights reserved.

# Some Pragmatic Considerations

- Do signs / magnitudes of parameters make sense? Statistically significant?
- Is the model biased for/against certain types of policies?
   Regions? Policy sizes? Business classes? ...
  - If so, is that an appropriate thing, or not?
- Predictive power holds up for larger policies?
- Continuity
  - Are there small changes in input values resulting in large score swings?
  - Could an agent or underwriter "game" the model?

Copyright  $\ensuremath{\mathbb{C}}$  2008 Deloitte Development LLC. All rights reserved.

# Model Analysis & Implementation

- Perform model analytics
  - Necessary for client to gain comfort with the model
- Calibrate Models
  - Create user-friendly "scale" client dictates
- Implement models
  - **Technical**: IT skills are critical here
  - Business: Culture change can be critical
- Monitor performance
  - Distribution of scores over time, predictiveness, usage of model...
  - Plan model maintenance

Copyright  $\ensuremath{\mathbb{C}}$  2008 Deloitte Development LLC. All rights reserved.



The Actuarial Profession making financial sense of the future

#### Technique: Regressions and its Relations

Artificial Neural Networks MARS CART

### **Regression and its Relations**

- GLM: relaxes some regression assumptions
  - Assume linearity on link function scale
  - Variance is modeled as a function of expected value

#### MARS & Neural Networks

- Clever ways of automatically transforming and interacting input variables
- Why: sometimes the "true" relationships aren't linear
- Universal approximators: model any functional form

#### CART is simplified MARS

# Uses of "Advanced" Techniques

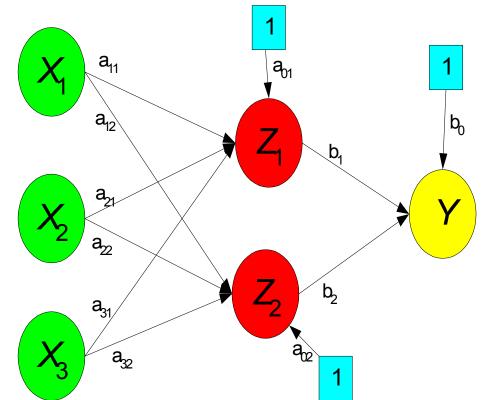
- Alternatives to GLM models
- Provide benchmarks for GLM models
- Exploratory data analysis (especially CART)
- Variable selection
- Detection of interaction terms

#### Detection of optimal variable transformations

Copyright © 2008 Deloitte Development LLC. All rights reserved.

# Neural Networks: Architecture

- A neural net models Y as a complicated non-linear function of X.
- Lingo
  - Green: "input layer"
  - Red: "hidden layer"
  - Yellow: "output layer"
- The {a, b} numbers are "weights" to be estimated.
- The network *architecture* and the *weights* constitute the model.



# Neural Networks: Functional Form

$$Z_{1} = \frac{1}{1 + e^{a_{01} + b_{11}x_{1} + b_{21}x_{2} + b_{31}x_{3}}}$$

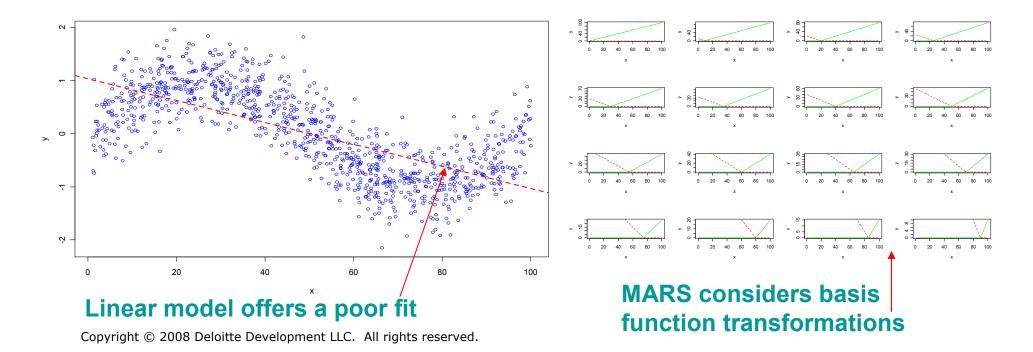
$$Z_{2} = \frac{1}{1 + e^{a_{02} + b_{12}x_{1} + b_{22}x_{2} + b_{32}x_{3}}}$$

$$Y = \frac{1}{1 + e^{b_{0} + b_{1}z_{1} + b_{2}z_{2}}}$$
• These look like logit models.  
• NN is thus related to GLM.

Copyright  $\circledast$  2008 Deloitte Development LLC. All rights reserved.

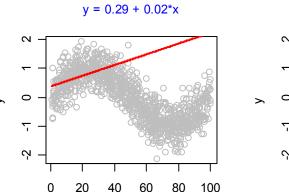
# MARS

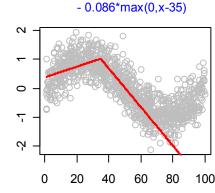
- Multivariate Adaptive Regression Splines
- Automatically searches a space of "basis functions" for the right combination to model complex, multi-dimensional, non-linear patterns.
- Basis functions look like "hockey sticks"
- MARS model is a linear model of hockey sticks and interactions of hockey sticks.
- Cross-validation is built into the core MARS algorithm.



# MARS Result

- MARS performs a stepwise search and the prunes back.
  - Cross-validation is used to determine optimally complex model.





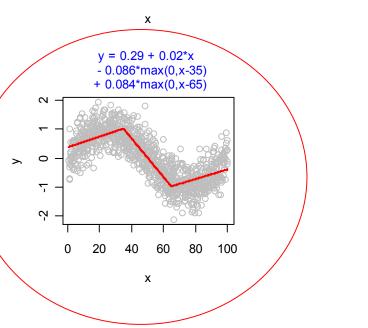
х

y = 0.29 + 0.02 x

• The final MARS model is:

 $y^{*} = 0.29 + 0.02^{*}x$ 

- 0.086\*max(0,x-35) ~
- + 0.084\*max(0,x-65)
- This is a GLM model!
  - A more complex example would have multiple variables and interactions.



Copyright © 2008 Deloitte Development LLC. All rights reserved.

# **CART: Recursive Partitioning**

- Classification And Regression Trees
- Key idea: recursive partitioning
  - Take all of the data.
  - Consider *all* possible values of *all* variables.
  - Select the variable/value (X=t<sub>1</sub>) that produces the greatest "separation" in the target.
  - (X=t<sub>1</sub>) is called a "split".
  - If X < t<sub>1</sub> then send the data to the "left"; otherwise, send data point to the "right".
  - Now repeat same process on these two "nodes".
- You get a tree-structured model.
- As with MARS, cross-validation is used to "prune back".

# **Commercial Insurance Example**

Suppose you have 3 variables:

 # vehicles:
 {1,2,3...10+}

 Age category:
 {1,2,3...6}

 Liability-only:
 {0,1}

• At each iteration, CART tests all 15 splits.

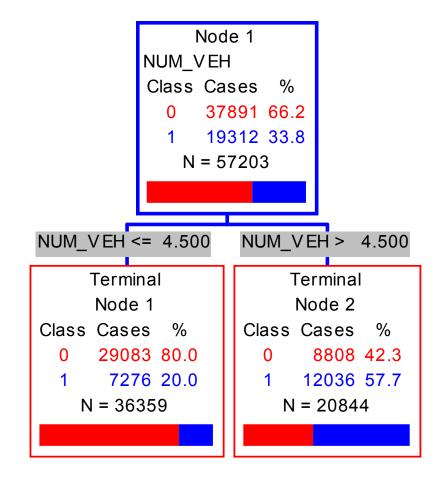
(#veh<2), (#veh<3),..., (#veh<10) (age<2),..., (age<6) (lia<1)

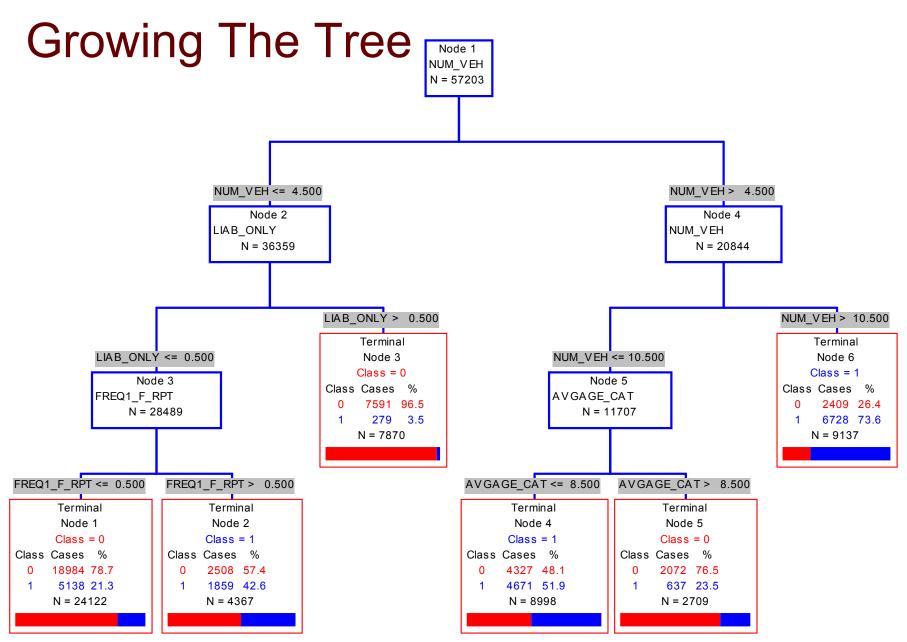
- Select split resulting in greatest increase in *purity*.
  - Perfect purity: each split has either all claims or all no-claims.
  - Perfect impurity: each split has same proportion of claims as overall population.
- Then iterate grow the tree out... then prune back

# Example of a Split

- Commercial Auto Dataset
  - 57,000 policies
  - 34% claim frequency
- Predict likelihood of claim
  - Classification Tree using Gini splitting rule
- First split:
  - Policies with ≥5 vehicles have
     58% claim frequency
  - Else 20%
  - Big increase in purity

Copyright  $\ensuremath{\mathbb{C}}$  2008 Deloitte Development LLC. All rights reserved.





Copyright © 2008 Deloitte Development LLC. All rights reserved.

# Bringing it All Back Home

- Remember that a MARS model is a GLM model fit on basisfunction-transformed variables.
  - ... as well as interactions thereof
- A CART model is like a MARS model in which the "hockey stick" basis functions are replaced with {0,1} step functions.
  - "tree-structured regression"
- Thus like MARS and NNET models CART models are relatives of regression models.
  - "Only connect." E.M. Forster

#### References

#### For Beginners:

#### Data Mining Techniques --Michael Berry & Gordon Linhoff

For Mavens:

#### The Elements of Statistical Learning

--Jerome Friedman, Trevor Hastie, Robert Tibshirani

Copyright  $\ensuremath{\textcircled{O}}$  2008 Deloitte Development LLC. All rights reserved.



The Actuarial Profession making financial sense of the future

### PREDICTIVE MODELLING FOR COMMERCIAL INSURANCE

General Insurance Pricing Seminar 13 June 2008 London James Guszcza, FCAS, MAAA jguszcza@deloitte.com