

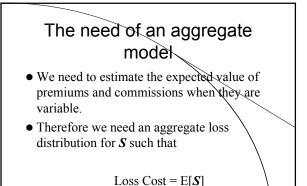
The components of reinsurance pricing (I)

• Expected loss cost

- Experience methods (burning cost, development triangles, etc)
- Exposure methods (benchmark curve from industry or risk specific)
 Mixed methods (combination of experience and exposure methods)
- We do not discuss the methods for estimating the loss cost.

The components of reinsurance pricing (II)

• Premium:


- Fixed rate
 Increase or decrease with losses incurred (loss sensitive)
- Other costs: expenses, commissions
 Fixed % or \$ amount
 - Fixed 78 of 3 and
 Loss dependent
- Profit margin: fixed load or through modelling of cash flows.

Loss sensitive features			
Feature	Variable component	Description	
Margin plus/ Swing rating	Premium	Premium adjusts with losses incurred times a load, subject to a minimum and a maximum.	
Profit commission	Commission/ Expenses	Profit is shared with cedapt after a load for reinsurer's expenses.	
Loss Corridor	Losses	Cedant retains part of losses attaching at pre-determined value of LR.	
Reinstatement	Premium and Loss	Limits the number of total losses. Extra premium is received to reinstate the layer.	
Annual Aggregate Deductible (AAD)	Losses	Cedant retains the first D losses in aggregate.	

The need of an aggregate model

- If *S* represents the aggregate losses to the layer, then Loss Cost = E[*S*] = E[*X*]E[*N*].
- When premium and expenses vary with losses they become random variables (functions of the aggregate losses *S*).
- In general Jensen's inequality holds:

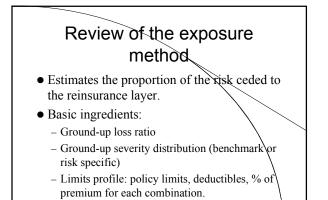
 $f(E[S]) \neq E[f(S)]$

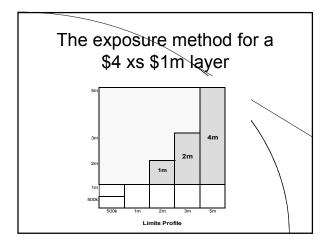
Method 1: Parametric distribution

- Fit a parametric distribution (lognormal, gamma, etc.) using the method of moments.
- E[*S*] given by the loss cost.
- Var(*S*) estimated assuming a Poisson of Negative Binomial distribution for frequency.
- Estimate the parameters.

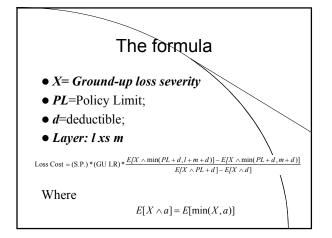
Method 1: Parametric distribution

- Very easy to implement and understand.
- It ignores the probability of having zero losses to the layer (not realistic for some lines of business).
- Does not separate frequency and severity distributions.
- Does not account for mixtures of policy limits and deductibles. (E.g. \$1m policy limit with no deductible or with \$10m deductible).

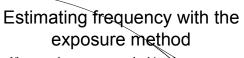

- Select an appropriate severity distribution for the line of business. Industry benchmark (ISO) or account specific. Calculate $\mathbb{E}[X]$.
- Choose a frequency distribution (Poisson or Negative Binomial). Estimate the parameters.
- For Poisson: $\lambda = E[N] = \frac{\text{Loss Cost}}{E[X]}$

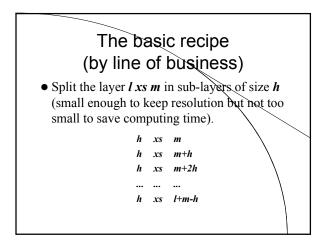

Method 2: benchmark severity distribution

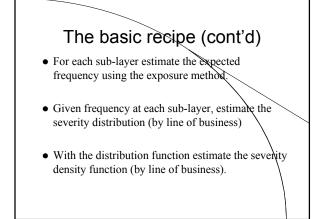
- Compute aggregate losses (Panjer recursion, Fourier Transforms, etc.) See Appendix A
- Improvement over Method 1: allows for probability of zero and at layer limit.
- When different policy limits are covered the severity might be overestimated since not every claim might reach the full layer limit.


Method 3: Exposure based severity curve

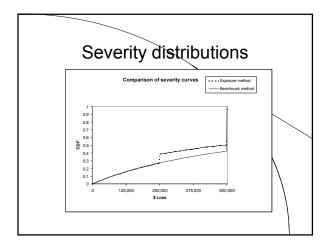
- Objective: estimate a "blended" severity distribution that:
 - Takes into account all combinations of policy limits and deductibles written by cedant.
 - Allows for multiple lines of business.
- How? : Using the exposure rating method.
- Given this severity, the frequency distribution is estimated as in Method 2.







- If we use the exposure method in a layer \$1 xs m, it can be shown that the result is the expected frequency in excess of m.
- Given frequency at various attachments the distribution function can be estimated. All math is explained in the paper.
- This is the key result in developing our "blended severity".

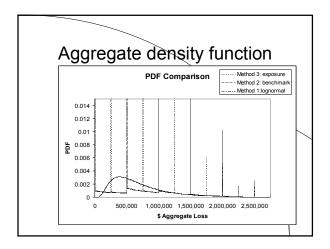


- Mix all the density functions by LOB weighted by expected frequency to the layer. (Assumes independence between lines)
- All the mathematical details are explained in the paper.
- Result: a "blended" severity curve that takes into account all the policy limit combinations and mixture of lines of business.

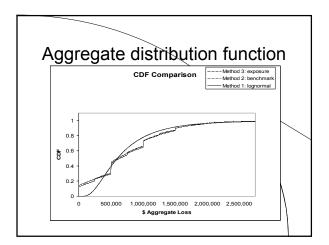
The basic recipe (cont'd) • With the "blended severity" calculate E[X] and $E[N] = \frac{\text{Loss Cost}}{\text{Cost}}$ then E[X]• Fit a frequency distribution (Poisson or Negative Binomial). • Compute aggregate losses (Panjer recursion, Fourier Transforms, etc.). Estimate the expected value of all loss sensitive features.

lial	oility \$	500k x	is \$50	JK
	Law	yers	Eð	- Jz
Deductible	\$10,000	\$25,000	\$50,000	\$50,000
Limit	\$750,000	\$1,000,000	\$1,500,000	\$2,000,0
Premium	\$1,000,000	\$2,000,000	\$2,000,000	\$3,000,00
FGU LR	65%	65%	75%	75%





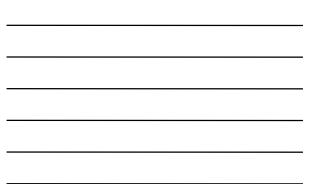
Assumptions and computation


- Using the expected implied frequency and a variance multiplier of 2 (see Appendix B) we fitted a Negative Binomial distribution.
- Using the severity and frequency distribution we computed the aggregate distribution using Panjer's recursive algorithms.

	ost, seve requenc	•	_
Expected Loss Cost	\$750),000	
Method 2: benchmark	Severity	\$373,134	
severity	Frequency	2.01	$\left \right\rangle$
Method 3: exposure	Severity	\$351,063	
severity	Frequency	2.14	

Calculating the expected value of the treaty features

- For each output of the aggregate losses (0, 1000, 2000,...,100000) defined by the sublayers calculate the value of the premium, profit commission, etc.
- With the corresponding probability function calculate the expected value of the feature.


If
$$Y = f(S) \Rightarrow P(Y = y) = P(S = s)$$

Treaty features

- Subject premium: \$7.2m
- Margin plus rated: 7% minimum, 12.5% provisional and 18% maximum. Loss load 107.5%.
- Profit commission: 15% after 20% for reinsurer's expenses.
- Brokerage: 10% on provisional.

	Expected results
	\$500k xs \$500k
_	

	Method 1: lognormal		Method 2 benchmark curve		Method 3: exposure method	
	Amount	% Prem.	Amount	% Prem.	Amount	% Prem.
Prov. Prem.	900,000		900,000		900,000	
Margin plus	222,739		167,989		174,238	
Tot. prem.	1,122,739	100%	1,068,041	100%	1,074,238	100%
Losses	750,000	66.8%	750,000	70.23%	750,000	69.82%
PC	25,659	2.29%	32,930	3.07%	32,062	2.98%
Brokerage	90,000	8.02%	90,000	8.43%	90,000	8.38%
Marg. CR	865,659	77.1%	872,930	81.73%	872,062	81.18%

- Key difference is the probability of zero losses. The parametric curves do not allow for this.
- If probability of zero losses is high, expected premium is lower and PC is higher.
- Practical relevance for high layers (or CAT layer) that have low frequency.

Comments (cont'd)

• Communicating the results to underwriters: no need to understand the mathematical details (severity, frequency, Panjer's recursion, etc.) but rather to communicate the relevance of the model in pricing and profitability.

Practical considerations

- How to choose the size of the sub-layers?
- How to include expenses ALAE?
- When does it fail?: theoretically it always works but:
 - For high frequency layers the resulting aggregate distribution is approximately Normal (CLT).
 - The lognormal might be more reasonable in this case:
 - we need skewness and thicker tail.

Further aspects to consider

- How to allow for correlations and dependencies between lines of business ceding to the same treaty?
- How to use this technique to assess profitability for multi-layer treaties? (Strong dependence between layers)