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ABSTRACT 
 

   This paper develops a unified theory for the pricing of capital market assets that is 
consistent across all classes of assets: equities, bonds, currencies and derivatives. 
   A forward-looking approach to the determination of the Risk Premium is first 
postulated and an appropriate simple mathematical model is developed. This provides 
insight into both the mathematical form of the Risk Premium and the importance of 
investor risk behaviour as an element in its formulation. 
   The techniques of stochastic calculus are then utilised to derive an option pricing 
model which explicitly allows for the inclusion of the Risk Premium in the form 
derived.  
   Initial empirical testing with US equity-index option data indicates that the model is 
extremely robust. Of significant interest is that, as a result of solving to find the 
appropriate Risk Premium, the “volatility smile” is virtually eliminated. 
    Although only equities and derivatives are included in this paper, the theory has 
also been extended to the development of bond and currency valuation models. The 
bond model provides a means to estimate the Term Premium inherent in the yield 
structure, thus enabling the true underlying term structure of interest rates to be 
extracted from market data. The Currency model also offers valuable insight into the 
dynamics of exchange rate movements. 
   Also of key importance is that the Put Principle applies to individual assets and 
groups of assets. It therefore provides a direct challenge to the concepts underlying 
much of modern portfolio theory. 
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1.   INTRODUCTION 
 
1.1 Background 
 
  1.1.1 The purpose of this paper is to provide an alternative model for the pricing of 
investment assets. Conceived initially as an alternative approach to estimating equity 
Risk premia, it has been developed into a much broader investment theory which 
covers equities, options, currencies and bonds. Only the first two of these are covered 
in this paper, with a subsequent paper dealing with currency and bond assets. 
  1.1.2 Traditional approaches to the estimation of Risk Premia have been based 
primarily on ex post analyses of return series in order to identify the relative excess 
returns earned by the different asset classes or sub-classes. This approach, whilst 
clearly providing insight into the relative magnitude of the returns, does however 
suffer from a number of inherent drawbacks: - 
 

Firstly, it is dependent on the actual time period over which the sampling is 
conducted which can thus introduce a start-point or end-point bias.  
 
Secondly, and of greater importance, it assumes that historic return differences 
provide a true measure of the underlying market risk premia.   

 
 1.1.3   Whilst recently-published research work has sought to overcome some of 
these problems, it has still only proved possible to provide longer-run estimates of the 
likely ranges of risk premia 
 1.1.4   In this paper, an alternative approach is used to estimate the forward-looking 
risk premia which are applied by the market in the formulation of asset prices. The 
derivation is based on the assumption that investors require additional expected 
returns to compensate them for taking on additional levels of perceived risk, and that 
this requirement forms an intrinsic part of the market pricing mechanism. 
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2.   THEORETICAL DEVELOPMENT
 

2.1   Real Downside Risk and “Safety First” 
 
  2.1.1 The theoretical development in this paper is based on the usual simplifying 
assumptions regarding the existence of frictionless markets; the absence of transaction 
costs and tax considerations; and the efficient pricing of information. 
  2.1.2 An additional key assumption is that investors are primarily concerned with 
the risk of failing to earn a required minimum level of return on their investments. In 
this paper, we assume that this hurdle rate is equal to the Risk-free rate of return 
which could be earned on riskless assets by the investors. We define this risk as Real 
Downside Risk and the concern with Real Downside Risk is assumed to have a 
significant role in the pricing of assets purchased by the investors. 
  2.1.3 The concept that investors may be more concerned about Downside Risk was 
first propounded by A D Roy who used the term “Safety First” to describe the attitude 
of such investors.  
  2.1.4 In his paper “Safety First and the Holding of Assets” he argued that, given 
 

i) An expected return on assets of , m
ii) A constant standard deviation of returns of σ , and  
iii) A minimum required return of d ;  

 
then the “Safety First” requirement is equivalent to minimising the probability that the 
expected return from the assets is less than the required return .  m d
 
  2.1.5 He then demonstrated that this requirement, expressed as Pr , is 
equivalent to resolving the expression 

ob( )d m≤

 
( )

Max
m d

σ
−

 (2.1) 

 
  2.1.6 As a means of achieving this, we can rank different portfolios in order of 
attractiveness by setting  

 
( )m d

K
σ
−

= , (2.2) 

where is a constant for each level of attractiveness. K
 
  2.1.7 Re-arranging Equation (2.2), we have  
 .m d K σ= +  (2.3) 
 
  the equation of a straight line whose slope is dependent upon the value of . K
 
  2.1.8 In particular if we assume, as outlined above, that the minimum return 
requirement is the Risk-free rate , then we have  r
 .m r K σ= +  (2.4) 
 
  2.1.9 Thus, the Safety First investor, with such a minimum return objective, would 
require his preferred portfolios to provide a return which is equal to the Risk-free rate 
plus an additional amount which is a function of the riskiness of the portfolio. 
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  2.1.10   Whilst the above analysis provides an interesting insight into the likely 
behaviour of “Safety First” investors, it does not actually provide us with a clear 
enough definition of the likely range of values for .  K
  2.1.11  We can, however, obtain a clearer insight into this aspect by adopting a 
different approach to the problem.  
 
 
2.2  An Alternative Approach 
 
  2.2.1   We first assume that “Safety First” investors are dominant in the market-
place, and hence are effectively the “price-setters” rather than “price-takers” in the 
market.  
 2.2.2 We also assume, as outlined above, that they are primarily concerned with 
minimising their exposure to Real Downside Risk. 
  2.2.3   Since these investors are assumed to be price-setters in the market, we need 
to be able to construct a methodology for pricing assets which is based around their 
risk requirements. 
  2.2.4   As we know that these investors are more concerned with the risk of loss, we 
can see that one approach would be to start by calculating the cost of purchasing Real 
Downside Risk protection. This will clearly be related to the riskiness of the assets, 
and to the time horizon(s) of the investor(s).  
  2.2.5 This cost, or premium, will be equivalent to the cost of purchasing a Put 
option with an expiry date set at the investor’s time horizon, and the strike price equal 
to the forward price of the asset at that time. (i.e. the current spot price accumulated at 
the Risk-free rate of interest). 
  2.2.6 Whilst the purchasing of such downside protection ensures that the Risk-free 
rate of interest is earned on the initial assets, the investor also will require to recover 
the cost of purchasing the Put options from the expected return from those assets. 
  2.2.7 We now make a further temporary stringent assumption (but one that can 
readily be relaxed), that the investors are unwilling to make any allowance for the 
existence of Upside Risk. (i.e. the potential for the volatility of the asset to render 
additional positive returns). 
  2.2.8  In such circumstances, we can see that the required return from the assets will 
be the amount necessary to return the Risk-free rate on the initial assets and to cover 
the cost of the Downside Risk insurance premium. This is because the investors have 
no downside or upside risk. 
  2.2.9  Expressed mathematically, this would require that the following equation be 
satisfied: -  
    E( )t t tA P R− =                                           (2.5) 

Where: 
 Expected return over time t from Asset   tA ( )E t= A  
 Premium rate for downside risk insurance              tP=  
 Risk-free Rate  for period      t tR=    
 
  2.2.10  Rearranging equation (2.5), we have 
 E( )t t tA R P= +  (2.6) 
 
  2.2.11  Thus the expected return is equal to the sum of the Risk-free Rate, plus the 
cost of insuring the Real Downside Risk.  
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  2.2.12  However, as noted above, this equation was based on the assumption that the 
investors made no allowance for the potential for Upside Risk, so we need to weaken 
this assumption to provide a closer reflection of reality. 
 
  2.2.13  We can note that, in the same manner that we can estimate the premium for 
Real Downside Risk using the price of a Put option on the forward price of the asset, 
so we can also estimate a value to be placed on the Real Upside Risk (being the 
potential for an excess return above the Risk-free rate) as the price of a Call option on 
the forward. 
  2.2.14 If we therefore relax our stringent assumption to some degree and now 
assume that the investors will be willing to allow some offset for the Real Upside 
Risk, we can rewrite Equation (2.5) as 
 E( ) .t tt tA P k C R− + =  (2.7) 
 
where  is the cost of the Call option and 1  is a scaling constant.  tC 0k≥ ≥
  2.2.15  Since these theoretical options are only effectively exercisable at expiry, they 
are equivalent to European style options and, consequently.The Put-Call parity 
relationship holds, and the values of the Put and Call options on the forward price are 
identical. We can therefore rewrite equation (2.7) as 
 ( )E( ) 1t t tA R k= + − P  (2.8) 
 

or in more simplified form, replacing ( )1 k−  with  1 0K≥ ≥

 E( ) .t t tA R K P= +  (2.9) 
 
2.2.16 We can also note here that, for a broader sphere of investors, whose 

risk profile might be somewhat different from that of the Safety First investor, it 
would seem quite rational to assume that they too would have an excess return 
requirement which could be represented in the form ( . . )t tj P k C− + , where 1 0 is 
a second scaling constant.  

j≥ ≥

2.2.17 As can readily be seen, such a profile is also encapsulated in Equation 
(2.9), and the bounds of remain the same. This is because the upper bound of 

 represents the extreme case where investors make no allowance for Real 
Upside Risk, whilst the lower bound of  

K
1K =

0K =  represents the Risk Neutral case, 
where investors regard the upside and downside risks as equivalent and therefore have 
a return expectation equal to the Risk-free rate. 
 
 
2.3 Defining the Nature of the Risk Premium 
 
  2.3.1  We have thus developed a possible valuation methodology for pricing risky 
assets, which suggests that the expected return from those assets should be a sum of 
the Risk-free rate plus a constant multiplied by the value of a Put option.  
  2.3.2  Of importance here is the fact that the Put option is specifically defined as 

i) A European-style option, exercisable only at expiry. 
ii) An option on the forward price of the asset 
iii) Having the price for the option payable at the expiry date, since it must be 

paid for from the return earned on the asset. 
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2.3.3  It is interesting at this stage to look closely at the characteristics of such an 
option.  

2.3.4 In Appendix 1, the standard Black-Scholes Call option pricing formula is 
developed, using an expectations approach within a stochastic calculus framework.  
This is a fairly standard approach but the derivation is included both for the sake of 
completeness and because the same technique is employed later in this paper to 
develop an alternative option pricing formula. 

2.3.5 We adapt the standard Black-Scholes equation for the pricing of options on 
stock prices into the form required for pricing options on forwards. Thus the basic 
formula   
  
  (2.10) 1 2. ( ) . . ( )rtC S N d e X N d−= −
  

Where  
2

1
ln( ) ( ½ )S X rd

t
σ

σ
+ +

=
t               (2.11) 

 

And 
2

2
ln( ) ( ½ )S X rd

t
σ

σ
+ −

=
t

)

                            (2.12) 

 
 becomes 

 
  (2.13) 1 2. . . ( ) . (rt rtC e e S N d F N d= −
 
where F  is the forward price; S  is the spot price; and . rtF S e=  by definition.  

(The formula for the Call option has been used here, but as explained above, this is 
identical to the value of the Put option when the options are calculated on the forward 
price). 

2.3.6   We can then write 
 

      
2

1
ln( ) ( ½ )S F rd

t
σ

σ
+ +

=
t  

 
 ½ tσ=  

As ( )ln S rtF = −  

 
 
And, similarly             2 ½d tσ= −  
 
Giving,                . . .[ (½ ) ( ½rt rtP e e S N t N tσ σ= − − )]  
  
So . .[2 (½ ) 1]rtP e F N tσ= −  
  

 .
2

tF σ
π

≈  (2.14) 
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Or, . .
2

rt rtP te e
S

σ
π

≈  (2.15) 

 
(See Brenner & Subrahmanam, FAJ 1988, V44 “A simple formula to compute the 
implied standard deviation”) 
 
  2.3.7  Hence, if we define the Risk Premium over a time horizon T  as  
 * . . rT

T TP K P e=    
Then: 

 * . .
2

rT
T

TP K e σ
π

≈  (2.16) 

 
and equation (2.9) can be written as 

 E( ) . .
2

rT
t t

t

TA R K e σ
π

= +  (2.17) 

 
2.3.8 As we can see, in its approximated form, the equation for the expected return 
on the assets is virtually identical to that proposed by Roy. There are, however, two 
significant differences.  

Firstly, we have now defined this formula as an intrinsic element in the pricing 
of securities, as opposed to it being a tool for selecting assets which meet the 
criteria of the Safety First investor. 

 
Secondly, we have established clear boundaries for the constant, which 
approximate to 0. . 4 0K≥ ≥
 

2.3.9   Additionally, we can note the following result which arises when we use this 
approximation. If we define the expected return of the asset as the drift rate µ , then 
we can write  

 . .
2

rt tt rt K e σµ
π

≈ +  

     So that  

 
1. .
2

rt t rtK e
t

µ
π σ

−
≈  (2.18) 

 
 
  2.3.10  And we can see that the right hand side is identical to the standard definition 
of tλ , the Market Price of Risk for the time period under consideration, thus giving 
us:- 

 
1. .
2

rt
t K eλ

π
≈  (2.19) 

 
 
So that * .t tP tλ σ≈  (2.20) 
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And    E( ) .t t tA R tλ σ= +             (2.21)  
And more generally we can write 
 E( ) .t t tA R λ= +  (2.22) 
  

2.3.11  Thus the expected return on the asset, priced into the market, is equal to the 
Risk-free rate, plus the market price of risk multiplied by the volatility.  

2.3.12 This development of an alternative form for the Risk Premium, one that is 
dependent upon t , rather than , creates a very different perspective on the nature of 
market structures and the manner in which asset prices are formed.  

t

2.3.13 If it is correct, it will enable investors to understand the actual pricing 
mechanism of the markets with a much greater degree of clarity. 

2.3.14 It is intuitively an attractive concept, since it provides a more rational basis 
for the determination of asset prices. For example, if the Risk Premium discounted 
into asset prices for a horizon of a single year is of the order of 4%, then we can see 
that the required Risk Premium for 25 years would be 20%, ( )i.e. 4%. 25 . This 

would appear to be much more rational as, on a prospective basis, it equates to a 
required excess return of less than 1% per annum. 

2.3.15 It can also be noted that this approach creates a more even balance between 
the risk - return profiles of equities and bonds, (since the bond markets also embody a 
Risk Premium, commonly referred to as the Term Premium), thus removing the 
distortions that arise from assuming fixed annual levels for the equity Risk Premium. 

2.3.16 However, in order to be able to utilise this theory, we need to be able to 
analyse existing market prices and structures in order to understand what levels of 
underlying volatility and market price of risk have been assumed in the formulation of 
prices. 

2.3.17 A means of undertaking such analyses and of demonstrating the validity of 
the Put Principle is undertaken in the next section of this paper. 
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3.  AN ALTERNATIVE OPTION PRICING  FORMULA 
3.1 Defining the Approach 

 
3.1.1   The most obvious source of information on the issues of underlying 

volatilities and the market price of risk would appear to be the traded options market. 
There are, however, some significant problems to be overcome.  

3.1.2   As is well-known, analysis of the price structures in the options markets 
reveals that the underlying volatility assumptions are not constant, and vary according 
to strike price and expiry date. This, therefore, does not appear to provide a very 
stable basis upon which to build estimates of risk premia and hence of market prices. 

3.13   The contention of this paper, however, is that there exists a consistent 
theoretical valuation basis which spans all asset classes.  

3.1.4   Thus we postulate that, if an equity risk premium exists within the pricing 
structure of equities, then this must also be reflected in the pricing of the related 
derivatives.  

 3.1.5   This is, of course, at odds with the standard option pricing approach, which 
assumes a risk-neutral framework. It is this risk-neutral assumption, it is contended 
that actually leads to the apparent existence of the volatility “smile”. 

 3.1.6   As discussed in Appendix 1, Black & Scholes found that, using the more 
standard form for the Risk Premium, this term could be eliminated from the final form 
of the partial differential equation which they required to solve. They were thus able 
to infer that this was not a required element, thus leading to the well-established “risk- 
neutral” solution. 

 3.1.7   However, we have determined that we wish to incorporate the Risk Premium 
in the form of a function of t  rather than . This means that there is an additional 
term, other than the stochastic term, which is a function of this variable and this 
causes some additional complications in using the partial differential equation 
approach 

t

3.1.8  A solution can be determined, however, applying stochastic calculus and 
using an expectations-based approach. This applies the same technique as is 
demonstrated in Appendix 1 in the development of the standard Black-Scholes 
equation. 

3.1.9    Subsequent to the development of this formula, it is also demonstrated that 
the revised solution is also consistent with the original Black-Scholes solution to the 
partial differential equation. 
 
 
 

3.2 The Revised Pricing Formula  
 

3.2.1  If, as outlined in Appendix 1, we consider a −P Brownian motion  as 
being representative of the stochastic nature of asset returns. The change in price of an 
asset

tW

tS , allowing for the existence of the risk premium *
tP  in the form now defined, 

with a linear drift rate of , the risk-free rate of interest, can be represented by the 
equation: 

r

 
                              (3.1) *.( . ) . .t t ttdS S r dt dP S dWσ= + + t

where  is the first differential of
 

*
tdP  *

tP . 
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                                                       (3.2) 

o 

       
then  *(log ) . .t ttd S r dt dP dWσ= + +  
 
S *log . .t ttS r t P Wσ= + +  
 
And *exp( . . )t ttS r t P Wσ= + +   (3.3) 

3.2.2   We now calculate the price of a European call option on

 
 

tS , with a strike 
price X , exercisable at time T  with an unknown claim value at that t e of Y . 

3.2.    As described above, we require to transform this 
im

3 −P Brownian m tion tW  o

with drift ( . . )tr t K P+ , into an alternative − Brownian mo  tWtion
∧

 which is a pure 
martingale onstrate that we ca onstruct a self-financing replicating 
portfolio. 

3.2.4   For the construction of the portfolio, we define the value of the riskless bond 

, and dem n c

tB   such that:-   
.r t 

 3.2.5   In order to establish an appropriate m rtingale measure under which we can 

tB e=  
 

a
calculate the expected value of the claim tE , we next eliminate the drift term in the 
asset price equation.  In this case, we disc unt both the asset price and the claim by 
the bond rate, to eliminate the growth due to the risk-free rate, and also by the risk 
premium rate to eliminate this additional source of drift. Hence we define the 
discounted asset function tZ  such that:- 
 1 1. .tZ B K S− −=  (3.4) 

o

t

here 
t t

W
 

*
tP

tK e=  
And the corresponding discounted claim as  

T 1
T T

1. .E B− −= K Y  (3.5) 
3.2.6   As before, we now consider the function   

 (3.6) log( )t tL Z=  
 . tWσ=  
So 
 .t tdL dWσ=  (3.7) 

 applying Ito’s Lemma, we derive the stochastic differential equation for Zt aA s nd
  
 1 2.( . . )dZ Z dW dtσ σ= +  (3.8)2t t t  

 3.2.7   Applying the Cameron-Martin-Girsanov theorem, we can transform the 

− Brownian motion tW  into P − Brownian motion tW
∧

 by introducing a drift of  
1

2
σ  into the original Brownian tion so that     mo

 t. .t tdZ Z d Wσ
∧

=  (3.9) 
 under  is driftless and is a martingale. And hence tZ
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3.2.8     I is also a ecessary condition that the prict n ing is conditional only upon 
the history of the asset up to the present time.  

3.2.9 We therefore define a filtration tF  representing the history of the asset up 
until tim

ine the conditional expectation process Et under measure  and 
su

e t . 
3.2.10 We def
bject to the filtration  tF  such that 

 
 1 1[ . . | ]t tT TE B K Y F− −= E  (3.10) 

hen Et is also a martingale.  

3.2.11   Since is a martingale process with volatility greater than zero, it 
ists 

 
 
T −
 
   tZ  −
follows from the Martingale representation theorem (see Appendix 2) that there ex
an  tF -previsible process, tϕ  such that: 
 dE .t t tdZϕ=  (3.11) 

 3.2.12   We can now seek to create a self financing replicating portfolio to ensure 
th

 

at an arbitrage price exists at all times. 
We define a portfolio ( , )t tϕ ψ  which consists of 
 tϕ Units of the security tS  at time t , and 

Units of the bond tBtψ  
 
Where  tψ  is defined by the equation:-  

.t tE Zϕ= −  

nd

 
1 .t tK ψ−

t

 
A tϕ , tψ  and  are each previsible (i.e., can be determined at the start of each 

 3.2.13   Then the value of the portfolio 

tK
period) and are constant for each period dt .  
 

( ,tV )t tϕ ψ  is given by 
 

V S B
  

. .t t t t tϕ ψ= +  

                          . .( . ).t t t t t t tS K E Z Bϕ ϕ= + −  
       

 
                            . . . . . .t t t t t t t t tK B E S K B Zϕ ϕ= + −  
Or 

t . .t t tV K B E=  (3.12) 
nd    

t

A
( . . )t t t t tdV K B dE E dB= +   

 
Because is a constant for the tick-time  totK  t t dt+ . 
 3.2.14   Substituting, we obtain, 
  

(dV K B= 1. . ( . . ) )t t t t t t t t t tdZ K Z dBϕ ψ ϕ−+ +   
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. . . . . . .t t t t t t t t t tK B dZ K Z dB dBϕ ϕ ψ= + +         
     ( . . . . ) .t t t t t t t tK B dZ K Z dB dBtϕ ψ= + +  
                                         . ( . . ) .t t t t td K B Z dBtϕ ψ= +  
                                          . .t t tdS dBtϕ ψ= +                                 (3.13) 

 in value of the p tfolio is due on

TE

 3.2.15   Thus the change or ly to changes in the value 
of the assets.  In addition, we note that at time T  
   

.V K B .T T T=  
                                                            Y=  

 
3. .16   Hence we have a replicatin e

  

2 g s lf-financing portfolio which ensures that 
th

u

.

ere is an arbitrage price at all times.  
 3.2.17   We are therefore able to calculate the price of the option using an 

expectations approach but under the measure . 
The price of the option is given by 0V  , the val e of the portfolio at time 0 .  
 

 3.2.18   As we have seen above this is given by:- 
1 1

0 0 0 0 0. . . . [ . 0| ]T Y F  TK B E K B B K− −= E
 1 1

0. . [ | ]T TB K Y F− −= E  
Since K0 and  B0 are both defined to be equal to unity at time , we therefore have 

0

0
      

*exp( ). [ 0 | ]rT P Y F− E  (3.V = − T 14) 

 3.2.19   For a European-style call option with strike price of
 

X , the value of the 
l e. The value of the c aim at expiry is only dependent upon the stock price at that tim

claim will therefore be ( )tS X−  if this is positive, and zero otherwise. i.e. 
max( ,0)tS X−  
 

 3.2.20   Hence we merely need to know the marginal distribution of the stock price 
nu der measure  to be able to determine the expectation value of the claim. 

 
3.2.21   If we rewrite the process equation for tS  in terms of the − Brownian 

motion tW
∧

, recalling that we require to eliminate the drift term of  1 2
2

.dtσ  
Equatio 3.2)  therefore becomes n (

     

 1*(lo 2
2g ) . .t t td S dP d W r dtσ= + +

(3
.dtσ

∧

−                          
.15) 

 3.2.22     If we denote the stock price at time zero as S , then we have  

 1* 2
2log log . ( ).t t tS S P W r tσ σ

∧

= + + + −  
1* 2
2.exp(So                                    . ( ).t t tS S P r tσσ

∧

= + + −  W
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Or                

 1*
2[ .exp( )].[exp( . ( ). )]t t t

2S S P W r tσ σ
∧

= + −                      (3.16) 
 

 3.2.23   For ease of manipulation, we can alternatively write:- 

 1*
2[ .exp( )].[exp( . . )]t t t

2S S P rt W tσ σ
∧

= + −       (3.17) 
 

  3.2.24   And, for any random variable Y  which is a normal 2( , )N µ σ  
                                       1 2 2

2[exp( )] exp( )Yθ θµ θ σ= +E                          
For all realθ . 
  

 3.2.25   If, as in Appendix 1, we therefore consider the variable  

 1 2
2( . . )ty W tσ σ

∧

= −   

 Then,                                 1 2
2[exp( )] exp( . )tY tσ σ

∧

= − +E W

T

 
 
                                                                       

 2 4exp( ½ ½ )t tσ σ= − +
3.2.26   Since this is the moment-generating function of a Normal 

, we can see that the marginal distribution of S2 2( ½ , )N Tσ σ− T under the measure 
 is given by  *.exp( )TS P rT+  multiplied by the exponential of a Normal with mean 

 and variance . 2( ½ )Tσ− 2Tσ
3.2.27   If we rewrite Equation (3.17)  in the form  

 *[ .exp( )].[exp( )]t tS S P rt y= +  
So     *ln ln ( )t ty S S P r= − − + t
 
Thus we can write the value V0 as :-            

 
22

2
( ½ )

2
0 2

e ( .e . ). .
2

y tt
t y t

a

V S e X e dy
t

σµ
µ σ

πσ

+∞− −⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦
∫  (3.18) 

 
Where    *ln ln ( )ta X S P rT= − − +

3.2.28   From which, by mathematical manipulation (see Appendix 1), we can 
derive the following equation for the value of the option 
  
  (3.19) 0 1. ( ) . . ( )tV S N d e X N dµ−= − 2

   

Where                                      
2

1
ln( ) ( ½ )S X td

t
µ σ

σ
+ +

=         

                                (3.20) 
       

 
2

2
ln( ) ( ½ )S X td

t
µ σ

σ
+ −

=  (3.21) 
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And                                                 *

tT P rtµ = +  
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3.3  Formula Consistency 
 

3.3.1  Before proceeding to the actual testing of the revised pricing formula, it is 
clearly important that we review the consistency of the Put-principle Option Pricing 
formula (‘POP’) with reference to the theoretical development work pioneered by 
Black-Scholes. 

3.3.2  We note, as an initial point that when K' = 0, the POP equation simplifies to 
the standard Black Scholes valuation model, indicating that the Black-Scholes model 
possibly represents a special case (the Risk-Neutral solution) of a more general 
formula derived above.  

3.3.3 However, we can also review the POP equation to test its consistency with 
the partial differential equation approach that lay behind the Black-Scholes 
development of their pricing formula. 

3.3.4 We can rearrange Equation (3.19) into the form 
 
  (3.22) * *

1 2. ( ) . . ( )rtV S N d e X N d−= −
 Where 
  * *.exp( )tV V P=

 * *.exp( )tS S P=  
And 

 
* 2

1
ln( ) ( ½ )S X rd

t
σ

σ
+ +

=
t

 

 
* 2

2
ln( ) ( ½ )S X rd

t
σ

σ
+ −

=
t

 

 
3.3.5 We can see clearly that Equation (3.22) is merely the Black-Scholes formula 

applied to the asset *S  rather than the asset S .   
3.3.6 We also note that, at any time that we know the price of asset  S , we also 

know the price of asset *S , since *exp( )tP  is merely a function of the volatility; the 
time to expiry; and the market price of risk. All of these are known (or assumed to be 
constants in the case of volatility and the market price of risk). 

3.3.7 We can therefore deduce that  Equation (3.22) is consistent with the Black-
Scholes partial differential equation 

3.3.8 It therefore follows, that the POP equation (3.19) is also consistent and that, 
since we can construct a hedge portfolio from  and *V *S , then we can also construct 
a hedge portfolio for V  and S . 

3.3.9 We can demonstrate that this is the case, by first considering the hedge 
portfolio , comprising a unit of the option  and an amount  of the 
underlying asset 

*Π *V −∆
*S , so that  

  (3.23) * * .V SΠ = − ∆ *

*S
The jump in value in one time-tick is then given by 
  (3.24) * * .d dV dΠ = − ∆
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3.3.10 If we define a new portfolio Π , such that * exp( )t
*PΠ = Π , then we can 

write Equation (3.23) as  
 * *.exp( ) .exp( ) . .exp( )t t

*
tP V P S PΠ = − ∆  (3.25) 

Giving 
 .V SΠ = − ∆  (3.26) 
Since we can divide both sides by *exp( )tP  
 

3.3.11 We can also rewrite Equation (3.24) as  
  (3.27) * *( .exp( )) ( .exp( )) . ( .exp( ))t td P d V P d S PΠ = − ∆ *

t

But since *exp( )tP  is unaffected by the stochastic differentiation process, since this 
uses values at the start of each time period, and *exp( )tP  is a previsible constant in 
this respect, we can again eliminate this term from the equation, giving 
 .d dV dSΠ = − ∆  (3.28) 

3.3.12 Thus, as stated above, we can see that, since we can construct a hedged 
portfolio for   and  *V *S  then we can also construct a hedge portfolio for V  and S .  
 

3.3.13 We therefore have an alternative option pricing formula incorporating a 
market-based Risk Premium, that we can use to conduct detailed analyses of actual 
market prices and can hence test the validity of the POP formula.  
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4. TESTING THE OPTION PRICING FORMULA 
4.1    Implied Volatilities 

 
4.1.1    The options market is clearly a logical source of data on forecast volatilities 

although, historically, the levels of implied volatilities estimated using the Black-
Scholes-Merton formulae have been quite diverse in terms of levels and have varied 
significantly across differing expiry dates and across different strike prices for the 
same option expiry date.  

4.1.2    These implied volatilities appear as a broadly consistent curve for each 
expiry date, known as the ‘volatility smile’ or ‘smirk’. 

4.1.3 From both a practical and theoretical basis, it is difficult to rationalize the 
existence of the volatility smile, since it seems extremely unlikely that the market 
could operate efficiently with such a diverse range of estimated volatilities. 

4.1.4 Hence it seems more likely that the ‘smile’ is, at least in major part, a result of 
the risk-neutral assumptions embedded in the standard option pricing models, rather 
than a fundamental part of the market valuation process.  

4.1.5 If this is the case, then we will expect to observe a more stable pattern of 
implied volatilities when we fit live option data to the POP model. 

 
 

4.2     Methodology 
 

4.2.1   The newly derived POP model was tested with samples of actual market data 
with the following objectives: 
 

1. To assess the validity of the formula in providing a better fit to market-
determined option prices 

2. To determine whether option prices could be modelled using a single 
estimate of volatility across all strike prices for a given option expiry date 

3. To obtain market-driven estimates of investor risk-aversion parameters for 
different expiry terms and at different times in the market cycle. 

4.2.2 Option pricing data for the S&P 500 was utilized for the empirical 
testing as the breadth and liquidity of the US markets provides a more consistent 
source of data on a regular basis and this is therefore the data utilized in this paper. 

4.2.3 Even within the relatively liquid  US market, however, it was found 
to be important to ensure that the testing was conducted on strikes and expiries which 
had  actual trades occurring on the dates of the testing.  

4.2.4 Accordingly, where possible, the POP model was fitted to data series 
for which there was associated data for actual traded volumes for that day. For certain 
of the price series where such data was not available, the POP model was fitted to a 
set of call options which extended from the ‘at-the-money’ strike together with 5 or 
six adjacent ‘out of the money’ strikes. 

4.2.5 The data series that have been tested cover the time period from 11th 
January 2000 to 30th May 2003, although the majority of the data tested falls within 
the period 10th January 2002 to 30th May 2003. 

4.2.6 The data series used are the end of day settlement prices provided by 
the Chicago Board Options Exchange (CBOE) for the S&P500 contract 

4.2.7    Bid and Ask prices for each strike price for which data was 
available were averaged to provide a mid-price for the contracts. 
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4.2.8 A number of alternative methodologies are available for estimating 
the time to expiry for each contract. The methodology adopted in this paper is to 
compute ‘actual workdays’ as a fraction of a 260 day year, as this appeared to provide 
a slighter better fit to market prices. 

4.2.9 For each contract series, the Put-Call parity relationship was tested to 
ensure that the data series appeared consistent as to the allocation of the relevant Put 
and Call option prices relative the market Strike prices. 

4.2.10 As dividends accrue to the index, but not to the option-holder, the 
Put-Call parity relationship was also used to estimate the present value of dividends 
discounted by the market. This value was checked against the anticipated dividend 
flow rate for the period to ensure consistency. 

4.2.11 Given that Put-Call parity was generally found to hold in the US 
market, it was only necessary to validate the Call pricing equation, using the variables 
established above. 

4.2.12 For each expiry date on the selected trading days, the POP model 
was fitted to the actual market settlement prices, using the Solver routine in Excel. 
The fitting process was a simple minimisation of least squares based on the 
differences between the actual option pricing curve and the POP model solution to 
provide the best fit.  

4.2.13 The data points used for this purpose were selected as described 
above. 

4.2.14  In general, it was found that the bulk of the trading volume was 
carried in ‘at-the-money’ or ‘out-of-the-money’ strikes within a relatively narrow 
range.  

4.2.15 In addition, as a further check on the ‘quality’ of the fit between the 
curves, the POP model was fitted at each strike price, keeping the derived value of the 
Market Price of Risk constant, in order to generate a set of ‘implied volatilities’ for 
comparison with those generated from the Black-Scholes-Merton model. 
 
 

4.3 Empirical Results 
 

4.3.1 For each expiry date it was found that it was possible to obtain a good fit 
between the actual option market price curve and the POP model, using a single 
estimate of volatility and a single estimate of the Market Price of Risk (‘MPR’) 
parameter. 

4.3.2 Of equal significance was the fact that the volatility estimates were markedly 
similar across a range of expiry dates for each of the trading dates tested. 

4.3.3 The comparison tests of implied volatilities also appeared to demonstrate a 
high level of consistency across the major part of the option pricing curve, although it 
was noted that the implied volatilities for options which were deep ‘in-the-money’  
were significantly lower than those in which active trading was taking place. 

4.3.4 The implication of this latter finding, on the assumption that the POP model is 
valid, is that deep ‘in-the-money’ options are being mis-priced by the standard curve-
fitting models currently being utilised. 

4.3.5 It was also observed that the MPR factor tended to move by relatively small 
amounts over time, with the more significant changes occurring in the level of 
underlying volatility being assumed by the market. 

4.3.6 There was clearly a marked increase in both the level of volatility and the level 
of Market Price of Risk, during periods of stock market weakness. These factors, of 
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course combine to form the Risk Premium. This also therefore, as anticipated, was 
observed to rise during periods of market decline. 
               
 
 
 
 

4.4 Test Results 
4.4.1  Detailed data and graphical representations of samples of the results are 

contained within Appendix 3 to this paper and a summary of the results is shown 
below. 

4.4.2  Sample data for single expiry months for each of the following trading dates 
are provided. 

    11th January 2000 
17th January 2001 
17thJanuary 2003 
10th March 2003   
27th May 2003  

4.4.3  The tables below show the summary data for all of the tested expiry dates for 
each of the above trading dates. 

 
 

 
 

 
 
 
 
 

S&P 500    Close  1438 11-Jan-2000 
          

Expiry Date 16-Mar-2000 15-Jun-2000 14-Sep-2000 14-Dec-2000 
Days to expiry 47 112 177 242 

Volatility 15.19% 15.38% 15.08% 16.66% 
Risk Premium 4.12% 4.31% 4.68% 3.96% 
Risk Aversion 0.68  0.70  0.78  0.60  

S&P 500     Close 1326.7 17-Jan-2001 
            

Expiry Date 17-Feb-2001 17-Mar-2001 16-Jun-2001 22-Sep-2001 22-Dec-2001 
Days to expiry 22 42 107 177 242 

Volatility 19.00% 18.10% 16.73% 17.08% 17.18% 
Risk Premium 3.02% 4.98% 4.14% 3.94% 4.17% 
Risk Aversion 0.40  0.69  0.62  0.58  0.61  
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S&P 500   Close 900.8 17-Jan-2003 
          

Expiry Date 21-Mar-2003 20-Jun-2003 19-Sep-2003 19-Dec-2003 
Days to Expiry 45 110 175 240 

Volatility 20.53% 19.16% 18.85% 19.26% 
Risk Premium 3.61% 5.65% 6.13% 6.13% 
Risk aversion 0.44  0.74  0.81  0.80  

S&P 500    Close 807.48 10-Mar-2003 
          

Expiry Date 21-Mar-2003 20-Jun-2003 19-Sep-2003 19-Dec-2003 
Days to expiry 9 74 139 204 

Volatility 27.86% 20.64% 19.48% 19.08% 
Risk Premium 2.47% 6.20% 5.75% 5.65% 
Risk Aversion 0.22 0.75 0.74 0.74 

S&P 500      Close 951.48 27-May-2003
            

Expiry Date 20-Jun-2003 18-Jul-2003 19-Sep-2003 19-Dec-2003 19-Mar-2004
Days to expiry 18 38 83 148 213 

Volatility 15.94% 15.47% 15.21% 14.27% 14.51% 
Risk Premium 1.39% 2.31% 2.92% 3.90% 3.95% 
Risk Aversion 0.22 0.37 0.48 0.68 0.68 
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5.  CONCLUSIONS 
 

5.1 Summary 
5.1.1 The primary purpose underlying this research was to improve upon the 

techniques available for understanding market valuations of assets.  
5.1.2 This purpose would appear to have been achieved, as we have developed a 

means of extracting additional information from the options market on the underlying 
Risk Premium that is being discounted, together with its component parts of volatility 
and Market price of Risk. 

5.1.3 That, as a result of this research, we have also developed the POP valuation 
model for pricing options is clearly an added benefit. 

5.1.4 The fact that the model effectively removes the ‘volatility smile’ would also 
appear to support its use as a more natural tool for the purpose of pricing both traded 
and ‘over-the-counter’ options. 

5.1.5 The definition of the underlying Risk Premium incorporated into current 
market prices is clearly an important one, since it allows us to break away from 
estimations based solely on historic data. 

5.1.6 The fact that the Risk Premium is defined in terms of a theoretical option, 
rather than a simple additional annual excess return is also a major step in the process 
of understanding the dynamics of the markets. 
 

5.2 Other Implications 
5.2.1 The empirical results from testing the POP model pricing formula in the US 

options market appear to provide strong support for the use of this model as a 
standard option pricing tool. 

5.2.2 The model has also been tested on limited data for the UK, German and 
Japanese markets. These tests have generated similar results to those observed in the 
US market in terms of the improved fit compared to the Black-Scholes-Merton model. 

5.2.3 The demonstration of the effectiveness of the POP model in pricing options, 
and the associated appreciation that there is a single underlying estimate of volatility 
used by the market, does provide us with the necessary information to move forward 
in attempting to build more effective, forward-looking models of the equity market. 

5.2.4 It should also, however, be noted that the theory developed in this paper is 
applicable to individual assets and to groups of assets. 

5.2.5 This does provide a significant challenge to large areas of existing investment 
theory, since these have been based on different assumptions 

5.2.6 This issue and the application of the theory to the currency and bond markets, 
and to the development of equity pricing models, will be addressed in a companion 
paper to be published later in the year. 
 
 

CONFIDENTIALITY AND COPYRIGHT NOTICE 
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THE PUT PRINCIPLE - APPENDIX I 

 

THE  BLACK-SCHOLES OPTION PRICING EQUATION 
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A Stochastic Calculus Approach to the Black Scholes Equation 
 
In this section, we develop the standard risk-neutral option pricing model using a 
stochastic calculus approach. This is included for the sake of completeness and also 
because we utilise the same methodology when we incorporate the Risk Premium into 
the process. It is also recognised that this is an unfamiliar area for many people.  
 
The classical theory, as developed in the Black-Scholes models, is developed from a 
hedged portfolio approach from which a partial differential equation is developed. 
Interestingly, this equation contains no explicit terms reflecting effect of the risk 
premium, even though a risk premium, or additional drift term, was assumed at the 
outset.  
 
As a result, Messrs Black and Scholes were able to solve the partial differential 
equation by effectively assuming a risk-neutral environment. i.e., that the risk 
premium element did not influence the actual pricing of options. 
 
A key element of the Black-Scholes approach lay in establishing that the price of a 
derivative was determined by its arbitrage price. This price is equal to the value of   a 
notional portfolio consisting of appropriate proportions of the underlying asset and a 
riskless bond. The portfolio is constructed so that its value replicates the pay-off 
characteristics of the derivative at each time point. Additionally the necessary 
rebalancing of the assets requires no additional cash inflows or outflows to be made. 
Such a portfolio is described as a self-financing replicating portfolio.  
 
It has also been shown that, where the price equation of an asset can be represented by 
a pure martingale, (i.e. a driftless martingale), then the arbitrage price and the 
expectation value will be equal. (See Baxter & Rennie. “Financial Calculus”) 
 
This approach potentially provides a tractable means of deriving the required 
derivative equation, subject to our being able to meet the required stringent tests. 
 
We first consider a Brownian motion  as being representative of the stochastic 
nature of asset returns and assume that a Risk-Neutral environment pertains. Then the 
change in price of an asset

−P tW

tS , can be represented by the equation 
  

           . . . .t t tdS S r dt S dWtσ= +                  (6.1) 
   
Or     (log ) . .td S r dt dWtσ= +                                                    (6.2) 
   
Where   r = drift rate = Risk-free rate 
     t Time to expiry =
             tS = Asset Price at time   t
  σ = Standard measure of risk of asset 
  Measure for the Brownian motion  =P
 
 
Integrating, we have log . .t tS r t Wσ= +  
Assuming  0 1S =
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And hence exp( . . )t tS r t Wσ= +  (6.3) 
 
 
We now wish to calculate the price of a European call option on tS , with a strike 
price , exercisable at time T  with an unknown claim value at that time ofY . X
 
As described above, if we are to be able to use an expectations approach to compute 
the present value of the option, we need to be able to transform this Brownian 

motion  with drift  into an alternative 

−P

tW .r t − Brownian motion tW
∧

 which is a pure 
martingale.  
 
If we can then construct a self-financing replicating portfolio with value  equal to 
the expected present value of the claim

tV
tE , within that − Brownian motion 

framework, then we can calculate the price of the options using the expected value of 
the claim. 
 
For the construction of the portfolio, we also need to define the value of the riskless 
bond tB   such that:-   
  .r t

tB e=
 
In order to establish an appropriate martingale measure under which we can calculate 
the expected value of the claim tE , we need to be able to eliminate the drift term in 
the asset price equation.  
 
An obvious way to achieve this is to discount both the asset price and the claim by the 
bond rate, to eliminate the growth due to the risk-free drift rate.  
 
 
 
 
 Hence we define the discounted asset function  such that:- tZ
  (6.4) 1 .t ttZ B S−=
 
And the corresponding discounted claim as  
 1 .T TE B Y−=  (6.5) 
 
If we now consider the function   
 log( )t tL Z=  (6.6) 
  
 . tWσ=  
So 
 .t tdL dWσ=  (6.7) 
 
  (6.8) 2 2 .tdL dtσ=
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Applying Ito’s Lemma to , we can derive the stochastic differential 
equation for Z

exp( )tZ = tL
t as   

 1 2
2.( . . )t t tdZ Z dW dtσ σ= +  (6.9) 

 
 
Applying the Cameron-Martin-Girsanov theorem for changes of measure, we can 

transform the Brownian motion  into −P tW − Brownian motion tW
∧

 by 

introducing a drift of  1

2
σ  into the original Brownian motion so that    

 . .t tdZ Z d Wσ t
∧

=  (6.10) 
  
And hence  under is driftless and is a martingale. tZ
 
It is also a necessary condition that the pricing is conditional only upon the history of 
the asset up to the present time. We therefore define a filtration tF  representing the 
history of the asset up until time . t
 
We can then define the conditional expectation process Et under measure  and 
subject to the filtration Ft  such that 
 
 1[ . | ]t tTE B Y F−= E  (6.11) 
 
 
Then Et is also a martingale.  −
 
 Since tZ  is a martingale process with volatility greater than zero, it follows from 
the Martingale representation theorem (see Appendix) that there exists an                  

-pre-visible process,

−

tF tϕ  such that: 
 .t tdE dZtϕ=  (6.12) 
 
We can now seek to create a self financing replicating portfolio to ensure that an 
arbitrage price exists at all times. 
 
If we define a portfolio ( , )t tϕ ψ  which consists of 
 tϕ Units of the security tS  at time , and t
 tψ Units of the bond tB  
 
Where  tψ  is defined by the equation:-  

 .t t t tE Zψ ϕ= −  

 
And tϕ , tψ  are each previsible (i.e., can be determined at the start of each period) and 
are constant for each period dt . 
 
Then the value of the portfolio tV ( , )t tϕ ψ  is given by 
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 . .t t t t tV S Bϕ ψ= +  

                          . ( . ).t t t t t tS E Z Bϕ ϕ= + −  
                                  

 
 . . . .t t t t t t tB E S B Zϕ ϕ= + −  

r 
t

O
 .t tV B E=  (6.13) 

nd    
t

 
 
A
 . .t t t tdV B dE E dB= +  
 
Substituting, we obtain, 

t

  
 ( . . ( . ) )t t t t t t tdV B dZ Z dBϕ ψ ϕ= + +  
        . . . . .t t t t t t t tB dZ Z dB dBϕ ϕ ψ= + +  
     ( . . ) .t t t t t t tB dZ Z dB dBϕ ψ= + +  
                                        t . ( . ) .t t t td B Z dBϕ ψ= +  

t                                          . .t t tdS dBϕ ψ= +                                 (6.14) 

 

the portfolio is due only to changes in the value of the 

T

 
 

 
Thus the change in value of 
assets.  
In addition, we note that at time T  
   
 .T TV B E=  
                                                              Y=  

 
Hence we have a replicating self-fina gncin  portfolio which ensures that there is an 

, the value of the portfolio at time   

arbitrage price at all times.  
We are therefore able to calculate the price of the option using an expectations 
approach but under the measure  . 
 

he price of the option is given byT  0V  0 .
As we have seen above this is given by:- 

1[ . 0 0 0. . 0| ]TB E B=
1

B Y F−  E
 0. [ | ]TB Y F−= E  
 
Since 
 

 B0  is defined to be equal to unity at time , we therefore have 

[

0
     

 exp( ). | ]V rT Y F0 0= − E  (6.15) 

iven that we are seeking to price a European-style call ption with strike price
 
G  o  of X , 
we can see that the value of the claim at expiry is only dependent upon the stock price 
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at that time. The value of the claim will therefore be ( )tS X−  if this is positive, and 
zero otherwise. i.e. max( ,0)tS X−  
 
Hence we merely n eeed to know th  margin e stock price under 

easure to be able to determine the expectation value of the claim. 

ri

al distribution of th
m  
 

f we rew te the process equation for I tS  in terms of the − Brownian motion tW
∧

, 
recalling that we require to eliminate the drift term of  1 2

2
.dtσ  

Equation (6.2)  therefore becomes 

   1 2
2(log )td S = . . .td W r dt dtσ σ+ −                       (6.16) 

 
rice at time zero as

∧

If we denote the stock p S , then we ha ev   

 1 2
2log log . ( ).t tS S W r tσ σ= + + −  

∧

o           S 1 2
2.exp( . ( ).t tS S W rσ σ

∧

= + −  t

Or         1 2
2.[exp( . ( ). )]t tS S W r tσ σ

∧

= + −                      (6.17) 

nd for ease of manipulation, we can alternatively write:- 

 
 
A

 1 2
2[ .exp( )].[exp( . .t t )]S S rt Wσ σ= − t

∧

      (6.18) 

 we now consider the moment-generating functions of normal variables, we know 
at, for any random variable  which is a normal, 

 
 
If
th Y  2( , )N µ σ , 
 
  2 2[exp( )] exp( ½ )Yθ θµ θ σ= +E                          For all realθ . 
  
If we thus consider the variable  

t
We see that  

W

Or  

 2( . ½ . )ty Wσ σ
∧

= −  

 2[exp( )] [exp( ½ . )]ty tσ σ
∧

= − +E E  

2[exp( )] exp( ½ ). [exp( . )]ty t Wσ σ
∧

= −E E   

             2 )]t tσ σ= − +  

                                (6.19) 
  

 

 
 .σ σ2 2exp( ½ ).exp( .0 ½
 

          2 4exp( ½ ½ )t tσ σ= − +  
 

S
  

ince  W
∧

 Is a normal 2(0, )N Tσ with respect to . T
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Equatio 6.19) is the enerating functi  on ( moment-g on f a Normal T ,     
l distribution of 

2 2( ½ , )N Tσ σ−
so the margina TS under the measure  is given by .exp( )S rT   

riance σ2T. 

e f

multiplied by the exponential of a Normal with mean (-½σ2T) and va
 
If we rewrite Equation (6.18) in th orm  
 [ .exp( )].[exp( )]tS S rt y=   
 
Then 
 ln lnty S S rt= − −  (6.20) 
 

nd  wA e can write the value  as :-  0V

 
22

2
( ½ )

2
0 2

( .
2 a

V e e . ). .
y trt

rt y tS e X e dy
t

σ
σ

πσ

+∞− −⎡ ⎤
⎢ ⎥−=
⎢ ⎥⎣ ⎦

 (6.21) 

           
here         T

 

∫
 
W  ln lna X S r= − −  

Then             
22

2
( ½ ) .

2
0 2

1 ( . . ).
2

y t dyy rt t

a

V S e X e e
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lack-Scholes call option pricing formula. 
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llows for the 

ayment of dividends.  

s these do not accrue to the benefit of the derivative owner, but only to the holder of 
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 will be given by  
−

We can similarly derive the Black-Scholes-Merton model, which a
p
 
A
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We also require to adjust the drift rate to allow for the payment of dividends, and th
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CAMERON-MARTIN GIRSANOV THEOREM 
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Cameron-Martin-Girsanov Theorem 
 
 
The Cameron-Martin-Girsanov theorem provides a means with which to interpret a 
change from a measure  to an equivalent measure Q  as having the effect of 
changing the drift of the underlying Brownian motion.  

P

 
Equivalent measures are defined as being measures (probability-sets of all possible 
outcomes) under which the set of events having zero probabilities are identical 
 
The theorem is stated as follows: 
 
Let  be a  Brownian motion and let tW −P tν  be a previsible process under the 
filtration tF , so that the value of tν  at any time  is dependent only upon the history 
of the process up until time . We also define the process 

t
1t − tν  to be bounded such 

that the expectation  under measure  satisfies the inequality: PE P
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Martingale Representation Theorem   
 
If tX  is a martingale with volatility tσ , under some measure P , then any other - 
martingale  can be represented in terms of  

P

tY tX  by  means of an  tF -previsible 
process tν , defined such that:  

 2 2

0

.
T

t t dtν σ < ∞∫  

Subject only to the requirement  that  0tσ >  at all times. 
 
Then  can be represented by the equation tY
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t sY Y dXν= + ∫ s
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S&P 500 1438.16                    
DATE 11-Jan-2000        σ 15.19% 19.31% 4.12% 
 Depo Rate 5.88% 5.71%        K' 0.679462    

Div Yld 1.25% 1.24%                   
              
              

                 new       PUT B-S
Strike          Expiry Put/Call Market Days ln(S/K) d1 d2 Price Market %Diff Abs diff Implied Implied
1400        16-Mar-2000 CALL 82.75 47 0.02689228 0.846889 0.782305665 84.110 82.75 1.64% 1.360 14.73% 23.06%
1410        16-Mar-2000 CALL 75.5 47 0.01977481 0.736682 0.672099262 76.659 75.5 1.53% 1.159 14.81% 22.52%
1420        16-Mar-2000 CALL 68.875 47 0.01270765 0.627255 0.562671709 69.546 68.875 0.97% 0.671 14.98% 22.16%
1425        16-Mar-2000 CALL 65.875 47 0.00919271 0.57283 0.508246576 66.124 65.875 0.38% 0.249 15.11% 22.20%
1430       16-Mar-2000 CALL 62.5 47 0.00569007 0.518595 0.454012075 62.795 62.5 0.47% 0.295 15.10% 21.87%
1435         16-Mar-2000 CALL 59.625 47 0.00219967 0.46455 0.399966874 59.560 59.625 -0.11% -0.065 15.21% 21.74%
1440         16-Mar-2000 CALL 56.25 47 -0.0012786 0.410693 0.346109657 56.422 56.25 0.31% 0.172 15.14% 21.38%
1445        16-Mar-2000 CALL 53.625 47 -0.0047448 0.357022 0.292439121 53.382 53.625 -0.45% -0.243 15.26% 21.31%
1450         16-Mar-2000 CALL 50.625 47 -0.008199 0.303537 0.238953975 50.442 50.625 -0.36% -0.183 15.25% 21.07%
1460        16-Mar-2000 CALL 44.875 47 -0.0150719 0.197118 0.132534764 44.864 44.875 -0.02% -0.011 15.19% 20.62%
1470        16-Mar-2000 CALL 39.875 47 -0.0218979 0.091425 0.026841969 39.693 39.875 -0.46% -0.182 15.25% 20.37%
1475         16-Mar-2000 CALL 37.125 47 -0.0252935 0.038848 -0.025735108 37.261 37.125 0.37% 0.136 15.15% 20.09%
1480        16-Mar-2000 CALL 35 47 -0.0286776 -0.01355 -0.078134259 34.931 35 -0.20% -0.069 15.21% 19.95%
1485         16-Mar-2000 CALL 32.875 47 -0.0320503 -0.06577 -0.130356684 32.702 32.875 -0.53% -0.173 15.24% 19.84%
1490         16-Mar-2000 CALL 30.625 47 -0.0354116 -0.11782 -0.182403571 30.573 30.625 -0.17% -0.052 15.21% 19.84%
1495        16-Mar-2000 CALL 28.5 47 -0.0387617 -0.16969 -0.234276096 28.543 28.5 0.15% 0.043 15.18% 19.75%
1500         16-Mar-2000 CALL 26.25 47 -0.0421006 -0.22139 -0.285975424 26.611 26.25 1.37% 0.361 15.07% 19.50%
1525         16-Mar-2000 CALL 17.375 47 -0.0586299 -0.47733 -0.541914049 18.351 17.375 5.62% 0.976 14.82% 18.31%
1550        16-Mar-2000 CALL 11 47 -0.0748904 -0.72911 -0.793690886 12.211 11 11.01% 1.211 14.64% 17.64%
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January 11th 2000-S&P Implied Vols 
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S&P 500 1326.7                     
DATE 17-Jan-2001         σ 17.18% 21.36% 4.17% 
Depo Rate 5.71% 5.55%         K' 0.608926    
Div Yld 1.24% 1.23%                    
               
             

 
  

                new       Put B-S Est
Strike             Expiry Put/Call Market Days ln(S/K) d1 d2 Price Market %Diff Abs diff Implied Implied Implied
1100        22-Dec-2001 CALL 302.25 242 0.228975 1.959464 1.79367791 313.524 302.25 3.73% 11.274 13.64% 40.51% 17.18%
1150        22-Dec-2001 CALL 263.25 242 0.184523 1.691338 1.52555138 271.362 263.25 3.08% 8.112 15.11% 37.95% 17.18%
1200          22-Dec-2001 CALL 226.375 242 0.141963 1.434625 1.26883801 231.248 226.375 2.15% 4.873 16.14% 35.69% 17.18%
1225       22-Dec-2001 CALL 208.5 242 0.121344 1.310252 1.14446549 212.155 208.5 1.75% 3.655 16.46% 34.59% 17.18%
1250          22-Dec-2001 CALL 191.625 242 0.101141 1.188392 1.02260571 193.806 191.625 1.14% 2.181 16.78% 33.63% 17.18%
1275          22-Dec-2001 CALL 174.875 242 0.081339 1.068946 0.90315916 176.269 174.875 0.80% 1.394 16.94% 32.62% 17.18%
1300       22-Dec-2001 CALL 159 242 0.061921 0.951819 0.78603211 159.604 159 0.38% 0.604 17.08% 31.71% 17.18%
1325        22-Dec-2001 CALL 143.5 242 0.042872 0.836923 0.67113619 143.861 143.5 0.25% 0.361 17.13% 30.77% 17.18%
1350         22-Dec-2001 CALL 129.25 242 0.02418 0.724174 0.55838797 129.078 129.25 -0.13% -0.172 17.21% 29.99% 17.18%
1375         22-Dec-2001 CALL 115.5 242 0.005831 0.613495 0.44770866 115.282 115.5 -0.19% -0.218 17.22% 29.19% 17.18%
1400         22-Dec-2001 CALL 102.75 242 -0.01219 0.50481 0.33902367 102.484 102.75 -0.26% -0.266 17.22% 28.47% 17.18%
1425          22-Dec-2001 CALL 90.75 242 -0.02989 0.398049 0.23226241 90.686 90.75 -0.07% -0.064 17.19% 27.78% 17.18%
1450          22-Dec-2001 CALL 79.5 242 -0.04728 0.293144 0.12735796 79.876 79.5 0.47% 0.376 17.13% 27.11% 17.18%
1500           22-Dec-2001 CALL 60 242 -0.08118 0.088655 -0.0771312 61.120 60 1.87% 1.120 17.01% 25.96% 17.18%
1525            22-Dec-2001 CALL 51.25 242 -0.09771 -0.01105 -0.1768336 53.101 51.25 3.61% 1.851 16.88% 25.38% 17.18%
1550            22-Dec-2001 CALL 43.75 242 -0.11397 -0.10913 -0.2749147 45.927 43.75 4.98% 2.177 16.81% 24.92% 17.18%
1575           22-Dec-2001 CALL 37 242 -0.12997 -0.20564 -0.3714264 39.546 37 6.88% 2.546 16.73% 24.48% 17.18%
1600             22-Dec-2001 CALL 30.625 242 -0.14572 -0.30063 -0.4664182 33.903 30.625 10.70% 3.278 16.56% 23.97% 17.18%
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January17th  2001 - S& P Implied Vols 
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S&P 500 901.5                   
DATE 17-Jan-2003      σ 18.85%  24.98% 6.13%

Depo Rate 1.45% 1.44% 0.990357 K' 0.814        
Div Yld 1.95% 1.93% 0.987113               

             
            

   
 

                new    PUT BS
Strike Expiry Put/Call Settle Days ln(S/K) d1     d2 Price Market Diff implied implied

800 19-Sep-2003  CALL 136.7      175 0.11944831 1.149703183 0.995026 139.464 136.7 2.764 18.01% 27.70%
850         19-Sep-2003 CALL 102.3 175 0.05882369 0.757759776 0.603083 102.818 102.3 0.518 18.72% 26.14%
880     19-Sep-2003 CALL 84 175 0.02413814 0.533514653 0.378838 83.754 84 -0.246 18.92% 25.29% 
900        19-Sep-2003 CALL 72.7 175 0.00166528 0.388225702 0.233549 72.368 72.7 -0.332 18.94% 24.69%
925     19-Sep-2003 CALL 60 175 -0.02573369 0.211088971 0.056412 59.651 60 -0.349 18.94% 24.04% 
975         19-Sep-2003 CALL 39.1 175 -0.07837743 -0.1292573 -0.28393 39.138 39.1 0.038 18.84% 22.91%

1000        19-Sep-2003 CALL 30.7 175 -0.10369524 -0.29293912 -0.44762 31.166 30.7 0.466 18.72% 22.36%
1050        19-Sep-2003 CALL 18.2 175 -0.1524854 -0.60837173 -0.76305 19.126 18.2 0.926 18.53% 21.52%
1075        19-Sep-2003 CALL 13.7 175 -0.1760159 -0.76049843 -0.91518 14.749 13.7 1.049 18.43% 21.17%
1100          19-Sep-2003 CALL 10.1 175 -0.19900542 -0.90912765 -1.0638 11.262 10.1 1.162 18.31% 20.81%
1150        19-Sep-2003 CALL 5.4 175 -0.24345718 -1.19651212 -1.35119 6.383 5.4 0.983 18.19% 20.35%
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January 17th 2003 - S&P Call Prices Sep 2003 Strikes
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January 17th 2003- S&P Implied Vols 
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S&P 500 807.48                     
DATE 10-Mar-2003        σ 19.48% 25.23% 5.75% 
 Depo. Rate 1.21% 1.21%   K' 0.739775        

Div Yld 1.81% 1.79%                   
              
             

 
 

                        PUT BS
Strike           Expiry Put/Call Market Days ln(S/K) d1 d2 Price Market %Diff Abs diff implied implied
650    19-Sep-2003 CALL 171.3 139 0.216946 1.866181 1.72373 181.889 171.30 6.18% 10.589 14.17     32.69  
700     19-Sep-2003 CALL 131.6 139 0.142838 1.345931 1.20348 137.790 131.60 4.70% 6.190 16.85     30.81  
725     19-Sep-2003 CALL 113.3 139 0.107747 1.099584 0.95714 117.322 113.30 3.55% 4.022 18.05     29.92  
750     19-Sep-2003 CALL 96.2 139 0.073845 0.86159 0.71914 98.307 96.20 2.19% 2.107 18.63     29.05  
775      19-Sep-2003 CALL 80 139 0.041055 0.6314 0.48895 81.002 80.00 1.25% 1.002 19.06     28.02  
800     19-Sep-2003 CALL 65.3 139 0.009307 0.408518 0.26607 65.600 65.30 0.46% 0.300 19.31     27.05  
825     19-Sep-2003 CALL 52.3 139 -0.02147 0.192496 0.05005 52.202 52.30 -0.19% -0.098 19.45     26.19  
850     19-Sep-2003 CALL 41.2 139 -0.05132 -0.01708 -0.15952 40.815 41.20 -0.93% -0.385 19.55     25.48  
875     19-Sep-2003 CALL 31.5 139 -0.08031 -0.22057 -0.36302 31.360 31.50 -0.44% -0.140 19.48     24.69  
900     19-Sep-2003 CALL 23.6 139 -0.10848 -0.41834 -0.56078 23.686 23.60 0.36% 0.086 19.4     24.03  
925     19-Sep-2003 CALL 17.5 139 -0.13588 -0.61068 -0.75313 17.593 17.50 0.53% 0.093 19.4     23.56  
950     19-Sep-2003 CALL 12.6 139 -0.16254 -0.7979 -0.94035 12.857 12.60 2.04% 0.257 19.32     23.07  
975     19-Sep-2003 CALL 9 139 -0.18852 -0.98025 -1.1227 9.251 9.00 2.79% 0.251 19.3     22.73  
995     19-Sep-2003 CALL 6.6 139 -0.20882 -1.1228 -1.26524 7.033 6.60 6.55% 0.433 19.15     22.32  
1025     19-Sep-2003 CALL 4.1 139 -0.23853 -1.33133 -1.47378 4.582 4.10 11.76% 0.482 19     21.86  
1050  CALL   19-Sep-2003 2.7 139 -0.26263 -1.5005 -1.64295 3.159 2.70 16.99% 0.459 18.9     21.53  
1075     19-Sep-2003 CALL 1.7 139 -0.28616 -1.66569 -1.80814 2.150 1.70 26.46% 0.450 18.73     21.15  
1100     19-Sep-2003 CALL 1.275 139 -0.30915 -1.82708 -1.96953 1.445 1.28 13.35% 0.170 19.1     21.46  
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March 10th 2003 - S&P Call Prices 
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March 10th 2003 S&P Implied Vols 
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S&P 500 951.48                     
DATE 27-May-2003        σ 15.21% 18.13% 2.92% 

Depo 1.22% 1.21% 0.996136       K' 0.480568    
Div Yld 2.20% 2.18% 0.993077           1.405    

              
             

 
 

                        PUT BS
Strike           Expiry Put/Call Market Days ln(S/K) d1 d2 Price Market %Diff Abs diff implied implied
875 19-Sep-2003  CALL 91.1 83 0.100882 1.181091 1.09515     92.956 91.10 2.04% 1.856 13.29% 22.19%
900           19-Sep-2003 CALL 72.2 83 0.072712 0.853282 0.76734 72.811 72.20 0.85% 0.611 14.79% 21.15%
925            19-Sep-2003 CALL 55.3 83 0.045313 0.534454 0.44852 55.006 55.30 -0.53% -0.294 15.37% 20.24%
950            19-Sep-2003 CALL 40.5 83 0.018644 0.22413 0.13819 39.958 40.50 -1.34% -0.542 15.47% 19.35%
975            19-Sep-2003 CALL 28.2 83 -0.00733 -0.07813 -0.16407 27.850 28.20 -1.24% -0.350 15.37% 18.54%
995            19-Sep-2003 CALL 20.25 83 -0.02764 -0.31441 -0.40035 20.231 20.25 -0.09% -0.019 15.22% 17.94%
1025           19-Sep-2003 CALL 11.45 83 -0.05734 -0.66008 -0.74601 11.890 11.45 3.84% 0.440 14.95% 17.17%
1050        19-Sep-2003 CALL 6.7 83 -0.08144 -0.94049 -1.02643 7.278 6.70 8.63% 0.578 14.78% 16.68%
1075            19-Sep-2003 CALL 3.75 83 -0.10497 -1.2143 -1.30024 4.268 3.75 13.80% 0.518 14.69% 16.35%
1100            19-Sep-2003 CALL 1.95 83 -0.12796 -1.48182 -1.56775 2.399 1.95 23.03% 0.449 14.54% 16.01%
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May 27th 2003- S&P Implied Vols 
Sep 2003 Strikes
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