
PhD studentship output 

 
Funded by the Institute and Faculty of Actuaries 



Price Bounds for the Swiss Re Mortality Bond 2003

Raj Kumari Bahl

University of Edinburgh

PARTY 2015

January 16, 2015

Raj Kumari Bahl (UoE) Mortality Bond January 16, 2015 1 / 52



Quotation

�Nothing is certain in life except death and taxes.�

� Benjamin Franklin
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Introduction

Motivation

In the present day world, �nancial
institutions face the risk of un-
expected �uctuations in human
mortality

This Risk has two aspects

Mortality Risk: Actual rates of
mortality are in excess of those
expected
Longevity Risk: People outlive
their expected lifetimes
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Possible Mortality Catastrophes

Terrorist Attacks

Wars

Meteorite Crashes

In�uenza Epidemics

Infectious diseases
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Historical Facts
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Historical Facts

 

 

 

 

• The 1918 influenza pandemic: Increase in mortality rate by 30% overall.  

• Most affected age groups: 15-24 and 25-34   

• For individuals aged 55 and over a little decrease in the death rate 
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Available Methodologies

Natural Hedging: compensating longevity risk by mortality risk

Drawback: Cost prohibitive

Mortality-linked Securities (MLS'S) or Catastrophe (CAT) Mortality
(CATM) Bonds: Cash �ows linked to a mortality index such that the
bonds get triggered by a catastrophic evolution of death rates of a
certain population

Swiss Re Bond 2003: The �rst mortality bond

Longevity Bonds: Cash �ows linked to a longevity index

EIB/BNP Longevity Bond 2004: The �rst longevity bond
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Valuation approaches on MLS's

Risk-adjusted process/ No-arbitrage Pricing:

Estimate the distribution of future mortality rates in the real world
probability measure
Transform the real-world distribution to its risk-neutral counterpart
Calculate the price of MLS by discounting the expected payo� under
the risk-neutral probability measure at the risk-free rate

The Wang Transform:

Employs a distortion operator that transforms the underlying
distribution into a risk-adjusted distribution
MLS price is the expected value under the risk-adjusted probability
discounted by risk-free rate

Instantaneous Sharpe Ratio: Expected return on the MLS equals the
risk-free rate plus the Sharp ratio times its standard deviation

The utility-based valuation: Maximisation of the agent's expected
utility subject to wealth constraints to obtain the MLS equilibrium
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History of Mortality Linked Securities

Tontines: 17th and 18th century in France

Annuities in Geneva: Payo�s directly linked to the survival of Genevan
"mademoiselles"

Speculations came to an end during French Revolution

Detailed overview in [Bauer(2008)]
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Recent Developments(1)
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Recent Developments(2)

 

 

 

 

 

Chen and Cox (2009) Modelling mortality with Jumps 

Cox et al (2010) Mortality Risk Modelling 

Shang et al (2011) Recursive Approach to MLS 

Cox et al (2013) Mortality portfolio Risk Management 

Lin et al (2013) Pricing mortality securities with 

correlated indexes 

Huang et al (2014) Price jumps of MLS in incomplete 

markets 

Pessler (2000) Criticism of Wang Transform 

Raj Kumari Bahl (UoE) Mortality Bond January 16, 2015 12 / 52



Prime Focus

Why Swiss Re Bond...?

An Innovative Security...one of its kind

A kind of pioneer and path setter

Shifted the risk exposure from the balance sheet to the capital markets

Attracted lot of attention and was fully subscribed (Euroweek, 19
December 2003)

Investors included a large number of pension funds

Established a Special Purpose Vehicle (SPV) called VITA I for the
securitization

Strength: Extreme Transparency
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The Bond Mechanism

 

 

 

 

Swiss Re Bond holders SPV (Vita 
Capital) 

Check 
terminal 
mortality 

index value 

Up to $400m if 
extreme 
mortality is not 
experienced 

Up to $400m if 
extreme 
mortality is 
experienced 

Annual coupons 

 (USD LIBOR + 135bps) 

Principal 

payment $400m 

Off balance 

sheet 
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Design of the Swiss Re Bond

A 3-year bond issued in December 2003 with maturity on Jan 1, 2007

Principal s.t. mortality risk de�ned in terms of an index qi in yr ti
Mortality index constructed as a weighted average of mortality rates
(deaths per 100,000) over age, sex (male 65%, female 35%) and na-
tionality (US 70%, UK 15%, France 7.5%, Italy 5%, Switzerland 2.5%)

Index =
∑

j Cj

∑
i

(
GmAiq

m
i ,j ,t + G fAiq

f
i ,j ,t

)

qmi ,j ,t and qfi ,j ,t = mortality rates (deaths per 100,000) for males and
females respectively in the age group i for country j

Cj = weight attached to country j

Ai = weight attributed to age group i (same for males and females)

Gm and G f = gender weights applied to males and females respectively

q0 = base index
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Index Distribution

 

 

 

Table showing distribution by age within the VITA index 

Age 

Group 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 

Weight 1% 5% 12.50% 20% 20% 16% 12% 7% 3% 2% 1% 0.50% 

 

 

            

             

US

70%

UK

15%

France

8%

Swizerland

5%

Italy

2%

Geographic distribution within the vita index
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Design of the Swiss Re Bond(1)

Principal Loss Percentage

Li =


0 if qi ≤ K1q0
(qi−K1q0)
(K2−K1)q0

if K1q0 < qi ≤ K2q0

1 if qi > K2q0

(1)

For Swiss Re Bond K1 = 1.3 K2 = 1.5
Proportion of the principal returned to the bondholders on the
maturity date:

X = C

(
1−

3∑
i=1

Li

)+

, (2)

C = $400 million
Risk-neutral price of the pay-o� at time 0:

P = e−rTEQ [X ] (3)

Q is the EMM
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Design of the Swiss Re Bond(2)
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Our Approach for Bond Evaluation

Adapt the payo� of the bond in terms of the payo� of an Asian put
option

Assume the existence of an Equivalent Martingale Measure (EMM)

Present model-independent bounds

Exploit comonotonic theory as illustrated in
[Albrecher et al.(2008)Albrecher, Mayer, and Schoutens] for the
pricing of Asian options

Carry out Monte Carlo simulations to estimate the bond price under
Black-Scholes Model

Draw graphs of the bounds by varying the interest rate r and mortality
rate q0
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Payo� as that of an Asian Put Option

Alternative form of writing Payo�

P = De−rTE
[
(q0 − S)+

]
(4)

D = C
q0

Si = 5 (qi − 1.3q0)+

S =
3∑

i=1

Si

Call counterpart of the payo�

P1 = De−rTE
[
(S − q0)+

]
(5)
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Put-call parity for the Swiss Re Bond

The relation

P1 − P = De−rT

[
5

3∑
i=1

ertiC (1.3q0, ti )− q0

]
(6)

De�ne

G = De−rT

[
5

3∑
i=1

ertiC (1.3q0, ti )− q0

]
(7)

Bounding P1 by bounds l1 and u1

Corresponding bounds for the Swiss Re Mortality Bond:

l1 − G ≤ P ≤ u1 − G (8)
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Some Basic Concepts

De�nition

Stop-loss Premium: The stop-loss premium with retention d of a random
variable X is de�ned as E

[
(X − d)+

]
.

De�nition

Stop-loss Order: Consider two random variables X and Y. Then X is said to
precede Y in the stop-loss order sense, written as X ≤sl Y , if and only if X
has lower stop-loss premiums than Y:

E
[
(X − d)+

]
≤ E

[
(Y − d)+

]
−∞ < d <∞ (9)

De�nition

Convex Order: X is said to precede Y in terms of convex order, written as
X ≤cx Y , if and only if X ≤sl Y and E [X ] = E [Y ].
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Lower Bound for the Call Counterpart

Lower Bound using Jensen's Inequality

P1 ≥ De−rTE

[(
n∑

i=1

5 (E (qi |Λ)− 1.3q0)+ − q0

)+]
(10)

We de�ne: Zi = 5 (E (qi |Λ)− 1.3q0)+ ; i = 1, 2, ..., n & Z =
n∑

i=1

Zi

S ≥sl Z or E
[
(S − q0)+

]
≥ E

[
(Z − q0)+

]
The conditioning variable Λ is chosen in such a way that E [qi |Λ] is
either increasing or decreasing for every i
This implies the vector: Zl = (Z1, . . . ,Zn) is comonotonic & yields

Stop-loss lower bound for the call-counterpart

P1 ≥ De−rT
n∑

i=1

E

[(
5 (E (qi |Λ)− 1.3q0)+ − F−1Zi

(FZ (q0))
)+]

(11)
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The Trivial Lower Bound

if the random variable Λ is independent of the mortality evolution
{qt}t≥0 we get

The Trivial Lower Bound

P1 ≥ Ce−rT

(
n∑

i=1

5 (exp (rti )− 1.3)+ − 1

)+

=: lb0 (12)

Using

G = De−rT

[
5

3∑
i=1

ertiC (1.3q0, ti )− q0

]
(13)

Corresponding bound for the Swiss Re Mortality Bond:

P ≥ lb0 − G =: LB0 (14)
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The Lower Bound LB1

We choose Λ = q1 in (11)

Use the martingale argument for the discounted mortality process

E [qi |q1] = E
[
erti e−rtiqi |q1

]
= er(ti−t1)q1.

The Lower Bound LB1

P1 ≥ 5D
n∑

i=1

e−r(T−ti )C

(
q0

(
1.3

er(ti−t1)
+

(
x − 1.3

er(ti−t1)

)+
)
, t1

)
=: lb1

(15)

where x is the solution of
n∑

i=1

(
er(tj−t1)x − 1.3

)+
= 0.2

C (K , t1) is the price of a European call on the mortality index with
strike K, maturity t1 and current mortality index q0
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The Lower Bound LB
(1)
t

Further improvement using additional assumptions
The following inequality holds for every random variable Y and every
constant c

⇒ E
[
a+
]
≥ E

[
a1I{Y≥c}

]
(16)

Utilizing the above inequality twice
and further assume: qi and 1I{qt≥c} are non-negatively correlated for
t > ti

The Lower Bound LB
(1)
t

P1 ≥ 5De−rT max
0≤t≤T

C
(∼
ct , t

) n∑
i=j

erti =: lb
(1)
t (17)

where j = min {i : ti ≥ t} and

∼
ct = q0

(
(0.2 + 1.3n)−

∑j−1
i=1e

rti∑n
i=je

r(ti−t)

)
(18)
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A Model-independent Lower Bound(1)

Additional assumption that holds good for stationary exponential Lèvy
models

n∑
i=1

qi ≥sl

 j−1∑
i=1

q
(1−ti/t)
0 q

ti/t
t +

n∑
i=j

er(ti−t)qt

 (19)

for 0 ≤ t ≤ T and j = min {i : ti ≥ t}
We then use the following two results

Proposition

Let (X , Y ) ∼ BVN
(
µX , µY , σ

2
X , σ

2
Y , ρ

)
, where BVN stands for bivariate

normal distribution. The conditional distribution function of X , given the
event Y = y , is given as

FX |Y=y (x) = Φ

x −
(
µX + ρσXσY (y − µY )

)
σX
√
1− ρ2

 (20)
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A Model-independent Lower Bound(2)

Proposition

Let W = (Wt) , t ≥ 0 be a standard Brownian motion. Then the
conditional expectation of Wti given Wt is given as

E [Wti |Wt ] =
ti
t
Wt for any ti < t

The above proposition then leads to the following proposition

Proposition

The additional assumption (19) holds for stationary exponential Lèvy
models with mortality evolution qt = q0 exp (Ut), where (Ut)t≥0 is a Lèvy
process

Raj Kumari Bahl (UoE) Mortality Bond January 16, 2015 28 / 52



A Model-independent Lower Bound(3)

We use this result to achieve the lower bound for the Asian-type call
option

n∑
i=1

5 (E (qi |qt)− 1.3q0)+ =

j−1∑
i=1

5q0

((
qt
q0

)ti/t

− 1.3

)+

+
n∑
i=j

5q0

(
qt
q0

er(ti−t) − 1.3

)+

=: S l2 . (21)

S l2 is the same as Z with Λ being replaced by qt

So we have S ≥sl S
l2
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A Model-independent Lower Bound(4)

De�ne Y = (Y1, . . . ,Yn) with

Yi =

5q0

((
qt
q0

)ti/t
− 1.3

)+

i < j

5q0
((

qt
q0

)
er(ti−t) − 1.3

)+
i ≥ j

i = 1, 2, ..., n

Y is comonotonic:-components are strictly increasing functions of qt

By the comonotonic theory

E

[(
S l2 − q0

)+]
=

n∑
i=1

E

[(
Yi − F−1Yi

(FS l2 (q0))
)+]

(22)

where FS l2 (q0) is the distribution function of S l2 evaluated at q0
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A Model-independent Lower Bound(5)

such that for an arbitrary t, we have:

FS l2 (q0) = P

[
S l2 ≤ q0

]
= P

(
j−1∑
i=1

((
qt
q0

)ti/t

− 1.3

)+

+
n∑
i=j

((
qt
q0

)
er(ti−t) − 1.3

)+

≤ 0.2

)
(23)

Substitute x for qt/q0 in (23)

where x solves

j−1∑
i=1

(
x ti/t − 1.3

)+
+

n∑
i=j

(
xer(ti−t) − 1.3

)+
= 0.2 (24)

Then S l2 ≤ q0 if and only if qt ≤ xq0
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A Model-independent Lower Bound(6)

This yields

FS l2 (q0) = Fqt (xq0) =

FYi

(
5q0

(
x ti/t − 1.3

)+)
i < j

FYi

(
5q0

(
xer(ti−t) − 1.3

)+)
i ≥ j

The Lower Bound lb(2)t

P1 ≥ 5De−rT

(
j−1∑
i=1

q
1−ti/t
0 E

[(
q
ti/t
t − q

ti/t
0

(
1.3 +

(
x ti/t − 1.3

)+))+
]

+
n∑
i=j

ertiC

(
q0

(
1.3

er(ti−t)
+

(
x − 1.3

er(ti−t)

)+
)
, t

))
=: lb

(2)
t (25)
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A Model-independent Lower Bound(7)

lb
(2)
t is a lower bound for all t and can be maximized w.r.t. t to yield

the optimal lower bound:

P1 ≥ max
0≤t≤T

lb
(2)
t (26)

As before, we have on using the put-call parity

P ≥ lb
(2)
t − G =: LB

(2)
t (27)
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A Lower Bound under Black-Scholes Model(1)

Assume that the mortality evolution process {qt}t≥0 follows the Black-
Scholes model written as qt = eUt

where

Ut = loge (q0) +

(
r − σ2

2

)
t + σW ∗

t (28)

and {W ∗
t }t≥0 denotes a standard Brownian motion

Ut ∼ N

(
loge q0 +

(
r − σ2

2

)
t, σ2t

)
(29)

Proposition

If (X , Y ) ∼ BVN
(
µX , µY , σ

2
X , σ

2
Y , ρ

)
, the conditional distribution of the

lognormal random variable eX , given the event eY = y is

FeX |eY=y (x) = Φ

 loge x −
(
µX + ρσXσY (loge y − µY )

)
σX
√
1− ρ2

 (30)

Raj Kumari Bahl (UoE) Mortality Bond January 16, 2015 34 / 52



A Lower Bound under Black-Scholes Model(2)

Given the time points ti , t for each i

let ρ be the correlation between Uti and Ut

Then, (Uti ,Ut) ∼ BVN
(
µUti

, µUt , σ
2
Uti
, σ2Ut

, ρ
)

where µUti
, µUt , σ

2
Uti

and σ2Ut
are given by (46)

Now qt = eUt

The distribution function of qi conditional on the event qt = st is
given as

Fqi |qt=st (x) = Φ (a (x))

where a (x) is given by

a (x) =

loge x −

(
log

(
q0
(

st
q0

)ρ√ ti
t

)
+
(
r − σ2

2

)
(ti − ρ

√
ti t)

)
σ
√
ti (1− ρ2)

.

(31)
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A Lower Bound under Black-Scholes Model(3)

For the mortality evolution process {qt}t≥0 de�ned as qt = eUt

E (qi |qt) =

q0
(

qt
q0

) ti
t
e

σ2ti
2t

(t−ti ) ti < t,

qte
r(ti−t) ti ≥ t.

(32)

Use this result to achieve the lower bound for the Asian-type call
option

De�ne Y = (Y1, . . . ,Yn)

where

Yi =

5q0

((
qt
q0

)ti/t
e

σ2ti
2t

(t−ti ) − 1.3

)+

i < j

5q0
((

qt
q0

)
er(ti−t) − 1.3

)+
i ≥ j

i = 1, 2, ..., n

Y is comonotonic
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A Lower Bound under Black-Scholes Model(4)

De�ne S l3 =
∑n

i=1 Yi

By the comonotonic theory

E

[(
S l3 − q0

)+]
=

n∑
i=1

E

[(
Yi − F−1Yi

(FS l3 (q0))
)+]

(33)

where FS l3 (q0) is the distribution function of S l3 evaluated at q0
such that for an arbitrary t, we have:

FS l3 (q0) = P

[
S l3 ≤ q0

]
= P

(
j−1∑
i=1

((
qt
q0

)ti/t

e
σ2ti
2t

(t−ti ) − 1.3

)+

+
n∑
i=j

((
qt
q0

)
er(ti−t) − 1.3

)+

≤ 0.2

)
(34)

Raj Kumari Bahl (UoE) Mortality Bond January 16, 2015 37 / 52



A Lower Bound under Black-Scholes Model(5)

Substitute x for qt/q0 in (34)

where x solves

j−1∑
i=1

(
x ti/te

σ2ti
2t

(t−ti ) − 1.3

)+

+
n∑
i=j

(
xer(ti−t) − 1.3

)+
= 0.2 (35)

Then S l3 ≤ q0 if and only if qt ≤ xq0

This yields

FS l3 (q0) = Fqt (xq0) =


FYi

(
5q0

(
x ti/te

σ2ti
2t

(t−ti ) − 1.3

)+
)

i < j ,

FYi

(
5q0

(
xer(ti−t) − 1.3

)+)
i ≥ j
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A Lower Bound under Black-Scholes Model(6)

As a result we have:

P1 ≥ 5De−rT

(
j−1∑
i=1

q
1−ti/t
0 E

((
q
ti/t
t e

σ2ti
2t

(t−ti )

− q
ti/t
0

(
1.3 +

(
x ti/te

σ2ti
2t

(t−ti ) − 1.3

)+
))+)

+
n∑
i=j

ertiC

(
q0

(
1.3

er(ti−t)
+

(
x − 1.3

er(ti−t)

)+
)
, t

))
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A Lower Bound under Black-Scholes Model(7)

Denote the term within the �rst summation as E1 and its value is
given below.

E1 = 5q0

(
erti Φ (d1ai )−

(
1.3 +

(
x ti/te

σ2ti
2t

(t−ti ) − 1.3

)+
)

Φ (d2ai )

)
(36)

where d2ai and d1ai are given respectively as

d2ai =
− loge

(
dai
q0

)
+
(
r − σ2

2

)
t

σ
√
t

(37)

d1ai = d2ai + σ
ti√
t

(38)

and dai is given as

dai = q0

(
1.3

e
σ2ti
2t

(t−ti )
+

(
x ti/t − 1.3

e
σ2ti
2t

(t−ti )

)+)t/ti

(39)
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A Lower Bound under Black-Scholes Model(8)

As a result we have

The Lower Bound lb(3)t

P1 ≥ 5De−rT

(
j−1∑
i=1

q0

(
erti Φ (d1ai )−

(
1.3 +

(
x ti/te

σ2ti
2t

(t−ti ) − 1.3

)+
)

Φ (d2ai )

)

+
n∑
i=j

ertiC

(
q0

(
1.3

er(ti−t)
+

(
x − 1.3

er(ti−t)

)+
)
, t

))
=: lb

(3)
t (40)

The bound lb
(3)
t can undergo treatment similar to lb

(2)
t in sense of

maximization with respect to t yielding

P1 ≥ max
0≤t≤T

lb
(3)
t (41)
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An Upper Bound for the Swiss Re Bond(1)

Proposition

The payo� of the call option is a convex functiona of the strike price, i.e.,
E
[
(X − x)+

]
is convex in x.

aA function f : I → R , where I is an interval in R, is convex if and only if

f (ax + (1− a) y) ≤ af (x) + (1− a) f (y) ∀a ∈ [0, 1] and any pair of elements

x , y ∈ I .

De�ne a vector λ = (λ1, . . . , λn) such that λi ∈ R and
∑n

i=1 λi = 1
With the help of λ we can write the payo� of the Asian-type call option
as

P1 = Ce−rTE

[(
n∑

i=1

(
5
(

qi
q0
− 1.3

)+
− λi

))+]
. (42)

The above result for the call option implies

P1 ≤ 5De−rT
n∑

i=1

ertiC

(
q0

(
1.3 +

λi
5

)
, ti

)
(43)
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An Upper Bound for the Swiss Re Bond(2)

Employing the Lagrangian with φ as the Lagrange's multiplier, we have

L (λ, φ) =
5

q0

n∑
i=1

ertiC

(
q0

(
1.3 +

λi
5

)
, ti

)
+ φ

(
n∑

i=1

λi − 1

)
(44)

The Upper Bound ub1

P1 ≤ 5De−rT
n∑

i=1

ertiC
(
F−1qi

(x) , ti
)

=: ub1 (45)

where x ∈ (0, 1) solves
n∑

i=1

F−1qi
(x) =

q0
5

(1 + 6.5n)

Put-Call parity yields: P ≤ ub1 − G =: UB1
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Numerical Results(1)

Assume that the mortality evolution process {qt}t≥0 obeys the
Black-Scholes model, speci�ed by the following stochastic di�erential
equation (SDE)

dqt = rqtdt + σqtdWt .

In order to simulate a path, we will consider the price of the asset on a
�nite set of n = 3 evenly spaced dates t1, ..., tn.

The Brownian Simulation

qtj = qtj−1
exp

[(
r − 1

2
σ2
)
δt + σ

√
δtUj

]
Uj ∼ N (0, 1) , j = 1, 2, . . . , n

(46)

Parameter choices in accordance with [Lin and Cox(2008)]

q0 = 0.008453, r = 0.0, T = 3, t0 = 0, n = 3, σ = 0.0388
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Numerical Results(2)

 

Table 1:  Table showing the various lower bounds, upper bound and the Monte Carlo estimate for varying values of r 

 

          r                    LB0                 LB1                   LBt_(1)           LBt_(2)            LBt_(3)                 UB1                  MC 

0.035 0.899130889131400 0.899130889153152 0.899130889163207 0.899131563852078 0.899131577418890 0.899131637780299 0.899130939228525 

0.03 0.913324024542464 0.913324024546338 0.913324024548259 0.913324251738880 0.913324256505855 0.913324320930395 0.913324120543246 

0.025 0.927447505802074 0.927447505802722 0.927447505803066 0.927447578831809 0.927447580428344 0.927447619324390 0.927447582073642 

0.02 0.941626342686440 0.941626342686542 0.941626342686600 0.941626365090140 0.941626365599735 0.941626384748977 0.941626356704134 

0.015 0.955935721003105 0.955935721003120 0.955935721003129 0.955935727561107 0.955935727716106 0.955935736078305 0.955935715488521 

0.01 0.970419124545862 0.970419124545864 0.970419124545865 0.970419126377220 0.970419126422140 0.970419129771609 0.970419112046475 

0.005 0.985101139986133 0.985101139986134 0.985101139986134 0.985101140473942 0.985101140486345 0.985101141738075 0.985101142704466 

0 0.999995778015617 0.999995778015617 0.999995778015617 0.999995778139535 0.999995778142797 0.999995778583618 0.999995730678518 

 

Table 2:  Table showing the various lower bounds, upper bound and the Monte Carlo estimate for varying values of q0 when r=0.0 

 

              q0                          Lb0                    Lb1                 Lbt(1)              Lbt(2)              Lbt(3)                  UB1                   MC 

0.007 0.999999999999517 0.999999999999517 0.999999999999517 0.999999999999517 0.999999999999517 0.999999999999517 1.000000000000000 

0.008 0.999999915251651 0.999999915251651 0.999999915251651 0.999999915252160 0.999999915252175 0.999999915253115 0.999999935586330 

0.008453 0.999995778015617 0.999995778015617 0.999995778015617 0.999995778139535 0.999995778142797 0.999995778583618 0.999995730678518 

0.009 0.999821987943444 0.999821987949893 0.999821987949893 0.999822025862818 0.999822025862818 0.999822875816246 0.999816103328680 

0.01 0.978292691034648 0.978310383929407 0.978310383929037 0.978503560221413 0.978503560221499 0.986262918346612 0.978738658827918 

0.011 0.572750782003669 0.610962124257773 0.610962123857399 0.610962123857399 0.610962123857400 0.877336305501968 0.652440509314875 

0.012 0.029980287407555 0.040209774144029 0.040209770810356 0.040209770810359 0.040209770810359 0.395672911251278 0.094615386163640 

0.013 0.001068265288866 0.000791137238546 0.000791141242590 0.000791141242584 0.000791141242578 0.083466184427206 0.001662471990070 

0.014 0.000019422582024 0.000019358292710 0.000019362301765 0.000019362301763 0.000019362301756 0.008942985848261 0.000003376858132 
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Numerical Results(3)

Figure1:  Rel. Diff. of LBt(2), LBt(3) and UB1 w.r.t. MC estimate under Black-Scholes model 

 

 

Figure2:  Comparison of different bounds under B-S model in terms of difference from MC estimate for r=0 
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Numerical Results(4)

 

 

 

Figure3:  Price Bounds under Black-Scholes model for the parameter choice of Lin and Cox(2008) Model 
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Conclusions

Swiss Re thrives from Life Insurance Business

It achieved Mortality Risk Transfer

Main purpose of Swiss Re:- Protection against extreme mortality
events

Pro�tability negatively correlated to mortality rates

Needed counter parties to o�oad mortality risk

No dependence on retrocessionaire

Methodology: Catastrophic bond with loss measurement based on a
parametric index

Investors in the bond took opposite position

Received an enhanced return if an extreme mortality event doesn't
occur
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What Lies Ahead...?

 

 

 

Extreme Mortality Securitizations 

Company Year Principal Amount No. of tranches 

Swiss Re – Vita Capital 1 2003 $400 million 1 

Swiss Re – Vita Capital 2 2005 $362 million 3 

Scottish Re –Tartan capital 2006 $155 million 2 

AXA-Osiris Capital 2006 $250 million 4 

Swiss Re -Vita Capital 3 2007 $390 million 2 

Munich Re – Nathan Ltd 2008 $100 million 1 

Swiss Re –Vita Capital 4 2009 $75 million 1 
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Further Research

Using the model-independent bounds for mortality jump models

Deriving even more tighter upper bound

Drawing correspondence between these bounds and the bounds in
literature
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�If there will be one day such a severe world-wide pandemic that one
of the bonds I bought will be triggered, there will be more important
things to look after than an investment portfolio.�

� ANONYMOUS CATM INVESTOR

Thanks!
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