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“Nothing is certain in life except death and taxes.”

— Benjamin Franklin
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Introduction

@ In the present day world, financial
institutions face the risk of un-
expected fluctuations in human
mortality

@ This Risk has two aspects

o Mortality Risk: Actual rates of
mortality are in excess of those
expected

e Longevity Risk: People outlive
their expected lifetimes

o’
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Possible Mortality Catastrophes
-_—

Terrorist Attacks
Wars

Meteorite Crashes

Influenza Epidemics

Infectious
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Historical Facts

Deaths per 100,000
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Historical Facts

Table 2: The change of death rates per 100,000 for cach age group, from 1917 to 1919

Bgegoups 1917 19 Rafio | Agegoups 17 19 Ratio
All 1810 1286 3544 2008 13393 1487

<1 111672 1068 4554 1385.6 15241 1100

14 15733 1476 5564 26481 0.089
514 4128 1613 6574 35505.0 0961
1524 1070.6 2283 75.84 123862 112057 0912
2534 1643.5 2532 ~=85 245036 22135 0903

e The 1918 influenza pandemic: Increase in mortality rate by 30% overall.
*  Most affected age groups: 15-24 and 25-34

*  For individuals aged 55 and over a little decrease in the death rate

Mortality Bon: January 16, 20



Available Methodologies

e Natural Hedging: compensating longevity risk by mortality risk
o Drawback: Cost prohibitive

o Mortality-linked Securities (MLS'S) or Catastrophe (CAT) Mortality
(CATM) Bonds: Cash flows linked to a mortality index such that the
bonds get triggered by a catastrophic evolution of death rates of a
certain population

e Swiss Re Bond 2003: The first mortality bond
e Longevity Bonds: Cash flows linked to a longevity index
o EIB/BNP Longevity Bond 2004: The first longevity bond
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Valuation approaches on MLS's

o Risk-adjusted process/ No-arbitrage Pricing:
o Estimate the distribution of future mortality rates in the real world
probability measure
o Transform the real-world distribution to its risk-neutral counterpart
o Calculate the price of MLS by discounting the expected payoff under
the risk-neutral probability measure at the risk-free rate
@ The Wang Transform:
o Employs a distortion operator that transforms the underlying
distribution into a risk-adjusted distribution
o MLS price is the expected value under the risk-adjusted probability
discounted by risk-free rate
@ Instantaneous Sharpe Ratio: Expected return on the MLS equals the
risk-free rate plus the Sharp ratio times its standard deviation

@ The utility-based valuation: Maximisation of the agent’s expected
utility subject to wealth constraints to obtain the MLS equilibrium
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History of Mortality Linked Securities

@ Tontines: 17th and 18th century in France

@ Annuities in Geneva: Payoffs directly linked to the survival of Genevan
"mademoiselles"

@ Speculations came to an end during French Revolution
@ Detailed overview in [Bauer(2008)]
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Recent Developments(1)

Blake & Burrows (2001) derived the concept of longevity bond
Swiss Re. (2003) issued the first mortality bond
European investment . .
bank (2004) } issued the first longevity bond
Cowley & Cummins(2005)|  show that sccuritization may increase a firm’s value
Lin & Cox (2005) study and price the mortality bonds and swaps
. . show how to price mortality-linked (inancial
(G, Bkl & BanilH0y) instruments such as the E1B bond
Blake et al. (2006) Introduce five types of longevity bonds

i Bahl (UoE) Mortality Bond



Recent Developments(2)

o =) = = z 9ac
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Prime Focus

Why Swiss Re Bond...7
An Innovative Security...one of its kind
A kind of pioneer and path setter

Shifted the risk exposure from the balance sheet to the capital markets

Attracted lot of attention and was fully subscribed (Euroweek, 19
December 2003)

Investors included a large number of pension funds

o Established a Special Purpose Vehicle (SPV) called VITA | for the
securitization

@ Strength: Extreme Transparency
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The Bond Mechanism

Off balance
sheet

Annual coupons
(USD LIBOR + 135bps)

Bahl (UoE)

Swiss Re SPV (Vita Bond holders
Capital)
—
Principal
payment $400

Up to $400m if Check Up to $400m if
extreme terminal exlreme .
mortality is mortality mona.llly is not
experienced index value experienced




Design of the Swiss Re Bond

@ A 3-year bond issued in December 2003 with maturity on Jan 1, 2007

@ Principal s.t. mortality risk defined in terms of an index g; in yr t;

o Mortality index constructed as a weighted average of mortality rates
(deaths per 100,000) over age, sex (male 65%, female 35%) and na-
tionality (US 70%, UK 15%, France 7.5%, Italy 5%, Switzerland 2.5%)

Index =3, G >, (GmAiq,(,"j,t + G'Aiqf; )

° g, and gf;, = mortality rates (deaths per 100,000) for males and
females respectively in the age group i for country j

C; = weight attached to country j

A; = weight attributed to age group i (same for males and females)
G™ and Gf = gender weights applied to males and females respectively
go = base index
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Index Distribution

Geographic distribution within the vita index

swizerland 'talY
5% 2%

Table showing distribution by age within the VITA index

Age
Group 20-24 25-29 30-34 35-39 40-44 4549 50-54 55-59 60-64 65-69 70-74 75-79

Weight 1% 5% 12.50% 20% 20% 16% 12% 7% 3% 2% 1% 0.50%
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Design of the Swiss Re Bond(1)

Principal Loss Percentage

0 if gi < Kiqo
Li = q (Rl if Kigo < ai < Koo (1)
1 if gi > Kaqo

For Swiss Re Bond K1 =1.3 K, = 1.5
Proportion of the principal returned to the bondholders on the
maturity date:

3 +
X:C<1—ZL,-> , (2)
i=1

e C = %400 million
@ Risk-neutral price of the pay-off at time 0:

P =e"TEqQ[X] (3)
@ Q is the EMM
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Design of the Swiss Re Bond(2)
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Our Approach for Bond Evaluation

o Adapt the payoff of the bond in terms of the payoff of an Asian put
option

@ Assume the existence of an Equivalent Martingale Measure (EMM)

@ Present model-independent bounds

@ Exploit comonotonic theory as illustrated in
[Albrecher et al.(2008)Albrecher, Mayer, and Schoutens] for the
pricing of Asian options

@ Carry out Monte Carlo simulations to estimate the bond price under
Black-Scholes Model

@ Draw graphs of the bounds by varying the interest rate r and mortality
rate qo
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Payoff as that of an Asian Put Option

Alternative form of writing Payoff

P =De "TE[(q0 — S)"] (4)

Call counterpart of the payoff
Pr = De "TE[(S — q0)"] (5)
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Put-call parity for the Swiss Re Bond

The relation

3
P, — P =De " [52 e C(1.3qo, t;) — QO] (6)
i=1

o Define

i=1

3
G=De T [5 D " e™C(1.3qo, 1) — QO] (7)

e Bounding P; by bounds /; and vy
e Corresponding bounds for the Swiss Re Mortality Bond:

h—G<P<u—-G (8)

Raj Kumari Bahl (UoE) Mortality Bond January 16, 2015 21 / 52



Some Basic Concepts

Definition

Stop-loss Premium: The stop-loss premium with retention d of a random
variable X is defined as E [(X — d)+].

Definition

Stop-loss Order: Consider two random variables X and Y. Then X is said to
precede Y in the stop-loss order sense, written as X <y Y/, if and only if X
has lower stop-loss premiums than Y:

E[(X-—d)"]<E[(Y-d)T] —-oco<d<oo (9)

Definition

Convex Order: X is said to precede Y in terms of convex order, written as
X <« Y, ifand only if X <y Y and E[X] = E[Y].
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Lower Bound for the Call Counterpart

Lower Bound using Jensen's Inequality

n aF
P, > De 'TE [<Z5 (E (qi|A) — 1.3g0)" — qo>
i=1

(10)

o We define: Z; =5(E(qi|\) —1.3q0)";i=1,2,..n & Z = ZZi
i=1

© S>>y ZorE[(S— qo)+] >E[(Z - qo)+]

@ The conditioning variable A is chosen in such a way that E [g;|A] is
either increasing or decreasing for every |

o This implies the vector: Z' = (2, ..., Z,) is comonotonic & yields

Stop-loss lower bound for the call-counterpart

Raj Kumari Bahl (UoE Mortality Bond January 16, 2015 23 / 52
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The Trivial Lower Bound

o if the random variable A is independent of the mortality evolution
{at}i0 we get

The Trivial Lower Bound

n +
P> Ce " (ZS (exp (rt;) — 1.3)" — 1) =: Ibg (12)

i=1

e Using

3
G=De T [5 Z e C(1.3qo, t;) — QO] (13)
i=1

e Corresponding bound for the Swiss Re Mortality Bond:

P> Iby— G =: LBy (14)
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The Lower Bound LB;

@ We choose A = g; in (11)
@ Use the martingale argument for the discounted mortality process

E [qilq1] = E [ee M qi|qr] = e qy.

The Lower Bound LB,

P, > 5D ; —r(T=t) ¢ L3 13 \* =:Ib
12 Ze qo m'i‘ e sy , tn | =:1by

i=1

n
+
@ where x is the solution of Z (er(tf_tl)x - 1.3) =0.2
i=1
e C(K,t1) is the price of a European call on the mortality index with
strike K, maturity t; and current mortality index qg
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The Lower Bound LB

o Further improvement using additional assumptions
@ The following inequality holds for every random variable Y and every
constant ¢
=E [aﬂ >E [a]l{yz(_.}] (16)
@ Utilizing the above inequality twice
o and further assume: q; and 1, >, are non-negatively correlated for
t >t

The Lower Bound LB{"

P, >5De™"" max C (ct, )Zert’ — b’ (17)

0<t<T

e where j =min{i : t; > t} and

N (0.2 4 1.3n) — YU je
Ct = (70( Zn ,er(ti_t) L (18)
i=j
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A Model-independent Lower Bound(1)

e Additional assumption that holds good for stationary exponential Lévy
models

n j—1 n
1—t; i P
Saiza | Do af T 0g 4 Y e, (19)
i=1 i=1 i=j

e for0<t<Tandj=min{i: t;>t}
@ We then use the following two results
Proposition

Let (X, Y) ~ BVN (ux, py,0%, 0%, p), where BVN stands for bivariate
normal distribution. The conditional distribution function of X, given the
event Y =y, is given as

x — (ux +pX(y — uy))

Fyiy—,(x)=®
X|Yy() O'X\/m

(20)
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A Model-independent Lower Bound(2)

Proposition
Let W = (W;),t > 0 be a standard Brownian motion. Then the
conditional expectation of W;, given W; is given as

ti
E[th.|Wt] = ?Wt for any t; <t

@ The above proposition then leads to the following proposition

Proposition

The additional assumption (19) holds for stationary exponential Lévy
models with mortality evolution q; = qo exp (U;), where (Ut),~ is a Lévy
process
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A Model-independent Lower Bound(3)

@ We use this result to achieve the lower bound for the Asian-type call

option

ji-1 a ti/t +
25 (qilgr) —13q0)" = 25%(() —1.3>
i—1 do
+ En:5q0 (qte'(ff—f) - 1.3>Jr
qo0

i=j

= Sk (21)

@ S% is the same as Z with A being replaced by q;
@ So we have S >, Sk

January 16, 2015 29 / 52
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A Model-independent Lower Bound(4)

@ Define Y = (Y1,...,Y,) with

qt i/t " H H
y - 5q0 ((q()) — 1.3> 1<y

+
50 ((%) er(ti=t) _ 1.3) P>
0 i=12..n

@ Y is comonotonic:-components are strictly increasing functions of g

@ By the comonotonic theory

E[( '2—%)] ZE[( v (Fss (qo))>+] (22)

o where Fgi, (go) is the distribution function of S evaluated at qo
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A Model-independent Lower Bound(5)

@ such that for an

arbitrary t, we have:

= P [S"z < qo]
— P<§ ((EZ)W - 1.3)

+ i ((g(:) er(ti—t) _ 1.3)+ < 0.2) (23)

1

@ Substitute x for g¢/qo in (23)

@ where x solves

(xff/f - 1.3)+ + Z (xe'(ff—f) - 1.3)+ =02  (24)
i

@ Then S < qq if and only if g; < xqo

Raj Kumari Bahl (UoE)
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A Model-independent Lower Bound(6)

@ This yields

FY,' 5qo (th/t — 13)+ i<y
Fsi (q0) = Fq. (xq0) = { é )

Fy, (590 (Xer(ti*t) — 1.3)+> >

The Lower Bound |b§2)
j-1 N
(z/ (- 13+ (e -29)"))

i=1

, 1.3 13 \*
+ Ze t’C < (er tl t) < - er(ti_t)> > bl t> )

= b® (25)

4

P

Y
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A Model-independent Lower Bound(7)

° |b§2) is a lower bound for all t and can be maximized w.r.t. t to yield
the optimal lower bound:

P; > max Ib£2) (26)
0<t<T

@ As before, we have on using the put-call parity

P> - G= 18P (27)
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A Lower Bound under Black-Scholes Model(1)

@ Assume that the mortality evolution process {q;},~ follows the Black-

Scholes model written as g, = eVt
@ where
o? .
Uy = log. (qo) + r— = t+ oW, (28)
and {W;'},-, denotes a standard Brownian motion
°
o2 2
Ut ~ N { log, qo + r—— t, ot (29)

Proposition

If (X, Y) ~ BVN (ux,py,0%,0%,p), the conditional distribution of the
lognormal random variable X, given the event e¥ =y is

loge x — (ux + p3 (loge y — uv))

oxy\/1— p?

FeX|eY:y x)=9¢
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A Lower Bound under Black-Scholes Model(2)

@ Given the time points t;, t for each f
@ let p be the correlation between Uy, and Uy

e Then, (U, Ut) ~ BVN <NUti7MUt7U%/ti7U%/t7p>

@ where MUt,»HUtaU%/t, and a%jt are given by (46)

o Now g; = eVt

@ The distribution function of g; conditional on the event g; = s; is

given as

Falgi=s: (x) = ®(a(x))

@ where a(x) is given by

log x — <|0g <qo (%)p > + (’ - 072) (ti — pﬁ))
a(x)= :

o t,'(l—p2)

e

(31)
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A Lower Bound under Black-Scholes Model(3)

o For the mortality evolution process {q;},~q defined as q; = e!*

L 2
g\t UT:i(t*ti) t<t
E (qilg:) = qo(qo) ¢ e

(32)
gre"(i=t) t>t.
@ Use this result to achieve the lower bound for the Asian-type call
option
o
@ DefineY = (Yq,...,Y))
@ where
t,‘/l’ oct;
5qo ((Z;) e (17t) 1 3) i <j
l' =

5q0 <<%> erltimt) 1 3) P>

e =12 ..n

@ Y is comonotonic

Raj Kumari Bahl (UoE) Mortality Bond January 16, 2015 36 / 52



A Lower Bound under Black-Scholes Model(4)

o Define S5 =37,V
@ By the comonotonic theory

(st - m) | = e[ (vi- A ) | o9
i=1

o where Fgy, (qo) is the distribution function of S® evaluated at qo
@ such that for an arbitrary t, we have:

Fou (q0) = P[S" < qo]

j—1 t,/t 2 +
<Z ez (E74) _ 1.3)

i=1

+ ; << ) r(ti—t) _ >+<0.2> (34)

i=j
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A Lower Bound under Black-Scholes Model(5)

@ Substitute x for g¢/qo in (34)

@ where x solves

jil ozt- + n +

> <xtf/fezt’(f—tf) - 1.3) + (xer(t"_t) - 1.3) =02 (35)

i=1 i=j
e Then S < qq if and only if g; < xqo
@ This yields

( [t i (tt) "
Fy, | 5q0 <Xt’ teze (E-8) 1.3) i</,
Fsis (q0) = Fq. (xq0) =

Fy, (5q0 (xer(t—) — 1.3)*) i>j
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A Lower Bound under Black-Scholes Model(6)

o As a result we have:

o'2t-
P > 5De_rT<Zq1 ti/tp <<q:i/te2t‘(t—t,)

i=1

o2+ + +
i/t (1.3 + (xff/fezf’(f—tf) — 1.3> ) ) )
1.3 1.3 \*
rt; o
N IB)
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A Lower Bound under Black-Scholes Model(7)

@ Denote the term within the first summation as E; and its value is

given below.
a2t,- +
Ey =5q0 | efid(dia) — | 1.3+ <xff/fezf(f—tf) — 1.3) ® (dhai)
(36)
@ where dy,; and dy,; are given respectively as
— log, (%) + (r— %) t
oai = 37
2a U\/E ( )
ti
drai = haj + 00— (38)

V't

@ and da; is given as
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A Lower Bound under Black-Scholes Model(8)

@ As a result we have

The Lower Bound |b§3)
—rT I‘t, _ t,-/t ﬁ(t—t,’) . i
Zqo O (i) — (134 (xt/te’ 1.3

, 1.3 13 \*
Ze "c (qo ( (ot <X_ m> ) ’ t) >

@ The bound |b£3) can undergo treatment similar to Ibg2) in sense of
maximization with respect to t yielding

P1

v

3
Ib®)

P; > max Ib( ) (41)
0<t<T

January 16, 2015 41 / 52
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An Upper Bound for the Swiss Re Bond(1)

The payoff of the call option is a convex function® of the strike price, i.e.,
E[(X - x)+] is convex in x.

?A function f : | — R , where / is an interval in R, is convex if and only if
flax+(1—a)y)<af(x)+(1—a)f(y) Vae]l0,1] and any pair of elements
x,y €1 .

o Define a vector A = (\1,...,\;) such that \; e Rand > 7 ; \i=1
o With the help of X we can write the payoff of the Asian-type call option

i P, = Ce™'TE [(i (5 (% - 1.3)+ - )\;>>+] L (42)

i=1
@ The above result for the call option implies

LTS Lt Ai
Py <5De 7Y eiC <qo <1.3 + 5) , t,-> (43)

i=1
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An Upper Bound for the Swiss Re Bond(2)

e Employing the Lagrangian with ¢ as the Lagrange’'s multiplier, we have

L(X o) = Zert'C<qo<13+ ) >+¢<Z)\—1) (44)

i=1

The Upper Bound ub;

Py < 5De” 'TZeff'c 1 (x), t) =t uby (45)
i=1

n
e where x € (0, 1) solves Z Fq_‘,1 (x) = % (1+46.5n)
i=1

o Put-Call parity yields: P < ub; — G =: UB;
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Numerical Results(1)

@ Assume that the mortality evolution process {q:},~, obeys the
Black-Scholes model, specified by the following stochastic differential
equation (SDE)

dqg; = rqidt + oq: dW;.

@ In order to simulate a path, we will consider the price of the asset on a

finite set of n = 3 evenly spaced dates ty, ..., t,.

The Brownian Simulation

1
gy, = qr;_, exp [(r— 502) 6t—|—0\/§Uj] U~N(,1), j=1,2,...,n

(46)

Parameter choices in accordance with [Lin and Cox(2008)]

go = 0.008453, r = 0.0, T=3, tp =0, n=3, o = 0.0388

4
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Numerical Results(2

Table 1: Table showing the various lower bounds, upper bound and the Monte Carlo estimate for varying values of r

r L8O 181 LBt_(1) LBt_(2) LBt_(3) uB1 mMC

0035 0. 0.899130889153152 0. 07 0.89913 0.899131577418890  0.899131637780299 0.

003 0913324024542464  0.9133: 09133 0.913324251738880  0.9133: 0.9133; 0.913324120543246
0025 0.9274 0.9274 09274 0.927447578831809  0.927447580428344  0.927447619324390  0.927447582073642

002 0.941626342686440 0.941626342686542 0.941626342686600 0.941626365090140  0.941626365599735  0.941626384748977  0.941626356704134

0015  0.955935721003105 0.955935721003120 0.955935721003129  0.955935727561107 ~0.955935727716106 0.955935736078305  0.955935715488521

001 0.970419124545862 0.970419124545864 0.970419124545865 0.970419126377220 0.970419126422140 0.970419129771609  0.970419112046475

0.005 0.985101139986133 0.985101139986134 0.985101139986134 0.985101140473942  0.985101140486345 0.985101141738075 0.985101142704466

0 0.999995778015617 0.999995778015617 ~0.999995778015617 ~0.999995778139535  0.999995778142797  0.999995778583618  0.999995730678518
Table 2: Table showing the various lower bounds, upper bound and the Monte Carlo estimate for varying values of g0 when r=0.0
a0 Lbo Lb1 Lbt(1) Lbt(2) Lbt(3) UB1 mC
0.007 0. 0. o 17 o o. o. 17 1
0008 0. 0.999999915251651  0.999999915251651 0. 160 o. 175 0.999999915253115  0.999999935586330

0.008453 0.999995778015617 0.999995778015617 0.999995778015617 0.999995778139535 0.999995778142797 0.999995778583618
0.009 0.999821987943444 0.999821987949893 0.999821987949893

0.999995730678518

0. 0. 16246 0.999816103328680
001 0, 09 0.9783 X 1413 0. 1499 0.986262918346612 0.

0011 0.572750782003669 0.610962124257773 0.610962123857399 0.610962123857399 0.610962123857400 0.877336305501968

0.012 0.029980287407555 0.040209774144029 0.040209770810356 0.040209770810359 0.040209770810359 0.395672911251278

0.013  0.001068265288866 0.000791137238546 0.000791141242590 0.000791141242584 0.000791141242578 0.083466184427206

0.014 0.000019422582024

o
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Numerical Results(3)

Figurel: Rel. Diff. of LBt(2), LBt(3) and UB1 w.r.t. MC estimate under Black-Scholes model
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Figure2: Comparison of different bounds under B-S model in terms of difference from MC estimate for r=0
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Numerical Results(4)

Figure3: Price Bounds under Black-Scholes model for the parameter choice of Lin and Cox(2008) Model
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Conclusions

Swiss Re thrives from Life Insurance Business
@ It achieved Mortality Risk Transfer

Main purpose of Swiss Re:- Protection against extreme mortality
events

Profitability negatively correlated to mortality rates
Needed counter parties to offload mortality risk

No dependence on retrocessionaire

Methodology: Catastrophic bond with loss measurement based on a
parametric index

Investors in the bond took opposite position

@ Received an enhanced return if an extreme mortality event doesn't
occur
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What Lies Ahead...?

Extreme Mortality Securitizations

Company Year Principal Amount No. of tranches

Swiss Re — Vita Capital 1 2003 $400 million 1
Swiss Re — Vita Capital 2 2005 $362 million 3
Scottish Re —Tartan capital 2006 $155 million 2
AXA-Osiris Capital 2006 $250 million 4
Swiss Re -Vita Capital 3 2007 $390 million 2
Munich Re - Nathan Ltd 2008 $100 million 1
Swiss Re —Vita Capital 4 2009 $75 million 1

Mortality Bond




Further Research

@ Using the model-independent bounds for mortality jump models
@ Deriving even more tighter upper bound

@ Drawing correspondence between these bounds and the bounds in
literature
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“If there will be one day such a severe world-wide pandemic that one
of the bonds | bought will be triggered, there will be more important
things to look after than an investment portfolio.”

— ANONYMOUS CATM INVESTOR

Thanks!
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