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1. Summary and Introduction 

1.1. A Word of Thanks 
 
A great many people have contributed a lot of hard work to this working party – 
beyond the members named, including former working party members, their 
colleagues and other members of this and other professions. We are very grateful to 
all who have taken part and have helped contribute to a wide ranging paper. 

1.2. Our objectives this year 
 
The objectives we set ourselves this year were: 
 
Objective 1: Statistical Testing When Conditions Met 
To continue the consideration of the performance of statistical methods when all their 
underlying conditions are met. We would like to better understand to what extent and 
in what circumstances these methods can be reliable indicators of ultimate claims 
outcomes at the tails of the distribution. 
 
Objective 2: Test More Methods 
To expand the review and testing of methods on “real” data to include additional 
methods, if possible those which operate on transactional data. This would ideally 
include further quantitative and qualitative review.  
 
Objective 3: Robustness of Methods in Real Life 
To expand the work on simulated data to test the response of methods to 
circumstances when the underlying conditions are not met – which is the case in most 
real life scenarios. 
 
We have made some progress on the first and second of these objectives.  The third 
has been touched on with the work on assessing the ability of stochastic methods to 
predict the development of real data triangles, but this has not been as much of a focus 
as other areas. 
 
The key area we have investigated has been that surrounding the first objective.  The 
difficulties that the more commonly used methods exhibit in estimating the higher 
percentiles is concerning, given that these methods are used widely in assessing 
capital requirements of companies and also in providing indicative estimates of 
reserving uncertainty. 

1.3. This report 
 
This report has five main components: 

1.3.1. Accuracy of stochastic reserving methods 
Last year we presented some results that indicated methods did not predict the true 
extent of the variability of claims reserves even when the underlying data exactly 
matched the method’s criteria.  This became our top priority for the current year’s 
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work and we present our results relating to our continuing investigations relating to 
this topic. 

1.3.2. Application of Bayesian techniques to range estimation 
As an extension of the work above, we have tested another method that is gaining 
popularity in the area of reserve ranges, Bayesian modelling.  Here we use a set of 
data from the FSA returns to test the effectiveness of one particular method – the 
collective risk method – compared to standard maximum likelihood methods. 

1.3.3. International approaches 
The CAS in the US and IAA in Australia have both been active in the area of 
stochastic methods recently, and we discuss their findings and approaches, and 
indicated how they compare to practice in the UK.  We also note a number of other 
jurisdictions and their current status with regard to reserve range methodologies. 

1.3.4. Applying Methods to Real Data 
The third area of work is in the application of a numbers of methods and models to 
some real claims development data.  This is an extension to the main thrust of the 
work last year. The latest results extend the results of the over-dispersed Poisson 
(ODP) method. 
 
We also consider methods based on transactional level data, although the latter does 
not easily fit within this section as we are unable to get “real” transactional level data 
to test.  However CAS has recently developed a data generator, which we have used 
to investigate this type of method. 

1.3.5. Areas of concern when applying stochastic reserving 
We are conscious that the application of stochastic methods is still a relatively new 
area for most actuaries.  This section discusses a number of topics that need to be 
considered when applying stochastic methods, either particular to individual methods, 
or in general. 
 
This discussion is very much at a high-level and “entry-level” in terms of technical 
content.  It is designed to raise awareness of the areas where stochastic methods are 
weak, and where the results of such methods may need to be treated with caution.  
Our aim is to help prevent over-reliance on methods and their results without full 
understanding of the implicit assumptions being made. 
 
1.4 Next Year 
 
We believe the combination of our investigations this year and the work last year has 
given an appropriate level of basic education and guidance for the profession. 
 
Although we believe many of the areas commented on in this paper require further 
research and investigation, we consider that the best method for this is through 
individual research as they are becoming increasingly disparate.  We are therefore 
minded to disband this working party after this year as a ROC sponsored group, but 
invite others to continue this work on a more ad hoc basis through the normal GIRO 
working party route. 
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We also note that the work we have carried out recently has been increasingly 
focussed on the extremes of the distribution.  There are many areas of work where the 
focus is much less extreme, and these could potentially be considered in more detail, 
particularly around the communication of such results. 
 
We also reserve the right to reinstate this workstream if we believe it is appropriate, 
particularly if Solvency II demands become sufficiently crystallised to require 
interpretation and investigation. 
 
1.5 Summary of findings 
 
The extent to which stochastic models are able to correctly predict the underlying 
distribution of future claims payments is currently creating significant discussion. 
 
We find that the work last year implying that some stochastic reserving methods 
understate the extremities of the predicted distribution is correct.  These methods as 
usually applied rely on Maximum Likelihood Estimator methods to derive parameter 
values, which seems to exacerbate the problems.  We have found that the use of 
Bayesian methodologies helps to reduce this effect, although there remains 
underestimation in the research we and others have carried out. 
 
We find that a hybrid method using the higher of Mack and ODP provides a 
consistently better result at higher percentiles of the reserve distribution than using 
either in all cases when the underlying data exactly meets the assumptions relating to 
the ODP method.  Note that this method does not produce significantly better results 
in all cases. 
 
When investigating the effects of changing the properties of the triangles under Mack 
and ODP, we discovered some apparently anomalous results.  These indicate that 
shorter tail business can be more understated at higher percentiles than longer tail 
business (assuming a full run-off triangle is available). 
 
This result combined with the result indicating that applying these methods to classes 
with fewer expected claims also makes the estimation of higher percentiles worse lead 
us to infer that it is the volatility in the development patterns that is the key driver to 
the estimation error. 
 
In effect, shorter tail business may well have greater volatility in the early periods of 
development than longer tail business when using similar development period 
intervals.  Similarly where fewer claims are expected, the development pattern will be 
more volatile than where a greater number of claims will give more statistical stability 
to a development pattern. 
 
Thus we anticipate that accuracy of these methods can be improved by choosing 
development intervals that are appropriate for the length of tail of the business being 
modelled to ensure that the development pattern is as stable as possible.  Where such 
stability is not achievable through either development intervals being too long, or low 
frequency of claims, we expect the methods to perform less well. 
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We have not had time to determine the precise number of periods within a 
development curve to maximise the accuracy of these methods and encourage others 
to investigate this in future. 
 
We therefore also expect that other methods are more suitable to the modelling of low 
frequency claims and hence methods based on transactional level data or operational 
time may be more suitable for such situations.  We have investigated transactional 
methods briefly in this paper and note that they require extreme care when 
parameterising if sensible results are to be obtained. 
 
To expand our review of common methods, we have looked at methods that use 
transactional level information.  We believe that although these methods use more 
information than the traditional aggregate triangular data based methods, there are 
limitations to these methods that imply the results are not necessarily “better”. 
 
We have also considered changes to the standard ODP Bootstrap method, and show 
the results of applying these changes to real data.  In addition we have put together a 
summary of what we believe are common areas of concern when looking at 
estimating reserve uncertainty and our own views on issues to consider. 
 
Finally, we have also looked at other actuarial professions and highlight some of the 
work being done that may be of interest to members of the UK profession. 
 
To put this paper into context, we note that any estimation of the uncertainty of a 
homogeneous book of business will only tell part of the story of the uncertainty 
relating to a wider portfolio. 
 
Correlations between such books will almost certainly be a significant factor in 
assessing any overall portfolio based uncertainty, although the evidence presented in 
this paper and its predecessor indicate that the uncertainty within a single portfolio 
can be at least as great. 
 
Finally, we remind the reader that the challenges of communicating the information 
contained within these calculations to stakeholders can be daunting, and ultimately 
key to a successful reserving uncertainty calculation. 
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2. Accuracy of stochastic reserving methods 

2.1. Introduction 
 
In our report to GIRO 2007 (Section 9 and Appendix B) we presented results of 
numerical simulations in which the performance of some widely used stochastic 
reserving methods were tested by applying the methods to large numbers of 
artificially generated run-off triangles. Some of our main findings were that: 
 

• The method of Mack (1993) can significantly understate the chances of 
extreme outcomes, even when its assumptions are perfectly satisfied (see 
section B.1.3 of our report last year).  

• Of the various published Bootstrap methods based on over-dispersed Poisson 
assumptions that we tested, the best performing seemed to be the method 
described by England (2001). However, this method also tended to understate 
the chance of extreme outcomes (see section B.2.4.3 of last year’s report). 

• The Mack method seemed to perform better on data that satisfies the over-
dispersed Poisson assumptions (and therefore does not satisfy Mack’s 
assumptions) than on data that does satisfy Mack’s assumptions.  

We have looked into these results in more detail this year, and have found that they 
are robust, and continue to apply even when the size of the triangles increases and the 
parameters used to generate the data are varied.  
 
We have also considered (Section 2.3.7) the possibility of developing a scale of 
correction factors that might be applied to high percentiles given by these commonly 
used stochastic methods in order to remove most of the error. However, the results we 
have obtained this year lead us to believe that there is no consistent set of correction 
factors because the magnitude of the error varies substantially depending on the data. 
 
As one possible way forward, we have considered the possibility of using multiple 
stochastic methods (eg Mack and ODP-Bootstrap) then forming a predictive 
distribution by taking each predictive percentile to be the maximum of the percentiles 
of the different methods. We have tested (Section 2.4) such a hybrid stochastic 
method on large numbers of artificial triangles and found that it performs better than 
each of its component methods individually. 

2.2. Performance of Mack’s method where its assumptions are true 
 
In our report to GIRO 2007 (Section B.1 of Appendix B) we described tests of the 
performance of Mack’s method on artificial run-off triangles constructed so that 
Mack’s assumptions are perfectly satisfied. We found that, in these ideal conditions, 
the method has a tendency to understate the chance of extreme outcomes. We carried 
out these tests last year only on triangles with 10 origin years and 10 development 
years (55 data-points in total).  This year we have carried out similar tests on larger 
artificial triangles. 
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In Table 2-1 below, the first column shows the same results as in Table B-5 (Section 
B1.3.4) of last year’s paper. These were obtained by applying Mack’s method to 
10,000 artificial triangles, all with 10 origin years and 10 development years. The 
figure 8.4% indicates that in 840 of the 10,000 simulations, the true reserve exceeded 
what was supposed to the 99th percentile of the predictive distribution obtained by 
Mack’s method. Clearly if the method correctly assesses the reliability of reserve 
estimates, this should occur in only 1% of simulations. 
 
We speculated that the cause of this poor performance of Mack’s method might be 
that the underlying theory relies on asymptotic formulas and that these give poor 
approximations when applied to finite datasets. If this is the explanation, then we 
should expect the performance to improve as the number of data-points in the triangle 
increases. To test this, we have carried out simulations on triangles of increasing size 
as shown in the Table 2-1 below. Each set of results is based on 10,000 artificial 
triangles of the specified size. The artificial triangles were generated using Algorithm 
A described in Section B.1.2.9 of last year’s paper. As the triangle size was increased, 
the development factor parameters were changed so that the mean delay to payment 
was always about half the number of development periods in the triangle. 
 
Clearly, the total reserve across all accident years increases substantially as the 
triangle size increases because the number of origin years increases and the length of 
the development pattern increases in each origin year. However the variance 
parameters of Algorithm A (denoted alpha-k in Mack's 1993 paper) were all set to the 
value one, so the amount of random variation of each individual datapoint in the 
traingle remains the same in this sense as the triangle size increases 
 
These results show that the performance of Mack’s method does seem to improve as 
the triangle size increases, particularly for percentiles away from the extremes.  
However, even with 100 origin periods and 100 development periods, the method still 
seems to materially understate the chance of extreme outcomes: what was supposed to 
be the 99th percentile of the predictive distribution was exceeded in 2.1% of 
simulations. 
 

Table 2-1 Results for Mack’s method (Algorithm A) 

Triangle size 10 15 20 25 100 

Mean BCL estimate 78.0    6,707,341 

Proportion of sims with (BCL estimate > True 
reserve) 

48.1%    48.6% 

Mean of (BCL estimate – True reserve) 0.93    -313.5 

Mean Mack standard error 29.52    87,826.5 

Mean of (BCL – True) / (Mack std error) -0.51    -0.062 

Mean square of the above 4.2    1.208 

1% 8.4%    6.1%    5.6%    4.7%    2.1%    

5% 16.3%   14.0%   13.0%   12.3%   7.6%    

10% 22.5%   21.1%   19.8%   18.7%   12.9%   

20% 32.6%   32.0%   30.7%   29.0%   23.1%   
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30% 41.2%   41.6%   39.9%   39.0%   32.5%   

50% 57.8%   58.2%   57.8%   56.7%   51.6%   

70% 73.9%   75.2%   74.6%   74.3%   70.8%   

80% 81.9%   83.2%   83.1%   83.5%   80.3%   

90% 90.0%   91.4%   92.1%   91.9%   89.9%   

95% 93.8%   95.3%   95.9%   96.1%   94.9%   

99% 97.8%   98.4%   98.5%   98.8%   98.5%   

 

2.3. ODP Bootstrap method where assumptions are true – summary of previous 
results 

 
Section B.2.4 of our report last year describes the testing of several variants of the 
Bootstrap method based on ODP assumptions that have appeared in the literature. 
 
Maximum likelihood estimates of reserves based on the ODP assumptions are equal 
to basic Chain Ladder estimates, and the original aim of the Bootstrap method based 
on these assumptions was (like Mack’s method) to find a predictive probability 
distribution of reserves centred on Basic Chain Ladder (BCL) estimates. However, the 
mean of the Bootstrap predictive distribution is not in general equal to the BCL 
estimate, so the method does not achieve this objective. 
 
Nevertheless, the results we presented last year (Section B.2.4.3) suggest that the 
method as described by England (2001) performs reasonably well when its 
assumptions are perfectly satisfied, except at extreme percentiles.  
 
The results obtained last year (from Table B-10 of Section B.2.4.3 of last year’s 
report) are repeated in Table 2-2. The figure 2.6% achieved in the first set of 10,000 
simulations means that in 260 of these simulated triangles, the “true” reserve turned 
out to exceed the 99th percentile of the Bootstrap predictive distribution. Clearly if the 
Bootstrap predictive distribution were correct, this should occur with a probability of 
1%, so the actual number of occurrences in 10,000 simulations should vary according 
to a Binomial distribution with p = 1% and n = 10,000. This implies that the actual 
number of occurrences in 10,000 simulations has approximately a 90% chance of 
falling in the range 80 to 120 (that is 0.8% to 1.2% of simulations). 
 
Since the actual proportion was between 2.5% and 2.8% in all four independent sets 
of 10,000 simulations, we conclude that the probability of an outcome in excess of 
what is supposed to be the 99th percentile is significantly higher than 1%. In other 
words, the predictive distribution tends to be too light-tailed, and tends to understate 
the true chance of extremely high outcomes.    
 
These results also show that although the BCL estimate is usually less than the true 
outcome (the BCL estimate is greater in 46.7% of simulations), the mean BCL 
estimate is higher than the mean true reserve. Also, the mean of the Bootstrap 
predictive distribution tends to be higher than the BCL estimate.  
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Table 2-2 – Results for 2001 Bootstrap ODP method (Algorithm B) 

Results from different sets of 10,000 
simulations 

 

Set 1 Set 2 Set 3 All  

Mean BCL estimate 3,668 3,654 3,632 3,651 

% of triangles with BCL estimate greater than true reserve 46.9% 46.8% 46.4% 46.7% 

% of triangles with BS mean greater than true reserve 51.8%    

Mean of (BCL estimate – True reserve) 303.7 292.7 268.4 288.3 

Mean Bootstrap mean  3,727 3,719 3,695 3,714 

Mean Bootstrap standard error 1,307 1,309 1,299 1,305 

Mean of (BCL - True) / (BS std error) -0.245 -0.237 -0.255 -0.246 

Mean square of the above 1.701 1.692 1.670 1.688 

1% 2.6% 2.8% 2.5% 2.6% 

5% 8.3% 8.0% 8.4% 8.2% 

10% 14.3% 13.7% 14.5% 14.2% 

20% 24.8% 24.4% 25.3% 24.8% 

30% 34.8% 34.2% 35.3% 34.8% 

50% 53.9% 53.4% 54.4% 53.9% 

70% 71.8% 71.2% 71.9% 71.6% 

80% 80.1% 79.8% 80.8% 80.2% 

90% 88.6% 88.4% 89.0% 88.7% 

95% 93.0% 93.1% 93.2% 93.1% 

99% 97.3% 97.5% 97.6% 97.5% 

 
These results are more easily understood by reference to some graphs. The graphs 
below are all cumulative distribution functions for the first set of 10,000 simulations. 
That is, the vertical axis shows the proportion of simulations in which the quantity 
plotted on the horizontal axis takes a value less than the value on the horizontal axis. 
 
The first graph below shows the cumulative distribution function for the ratio of the 
mean of the Bootstrap distribution to the BCL reserve estimate. Reading off from the 
value 1.0 on the horizontal axis, we see that in only about 22% of simulations was the 
mean of the Bootstrap distribution less than the BCL estimate. This confirms that in 
general, the method does not give a predictive distribution that is centred on the BCL 
estimate. 
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The next graph shows the cumulative distribution functions of the quantities (BCL 
estimate – True reserve) and (Bootstrap mean – True reserve). The curve that lies 
further to the right for probabilities (vertical axis) between 0 and 0.8 relates to the 
Bootstrap mean. From where this curve crosses the vertical axis we see that 48.2% of 
simulations have Bootstrap mean less than true reserve. 
 
The other curve relates to the BCL reserve, and from where this crosses the vertical 
axis we see that 53.1% of simulations have BCL reserve less than true reserve. Both 
curves are positively skewed (that is, the right tail is longer than the left tail) from 
which it is clear that the mean value of the difference is positive (that is, both the BCL 
estimate and the Bootstrap mean are positively biased estimates of the true reserve). 
This is confirmed by the results shown in the Table 2-2.  
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The third graph shows the cumulative distribution function of the quantity (BCL 
reserve – True reserve) / (Bootstrap Standard Error). Comparing this to the graph 
above, we see that when the estimation error of the BCL is standardised by dividing 
by the Bootstrap standard error, the cdf changes from being positively skewed to 
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negatively skewed. This implies that when the BCL underestimates the true reserve 
(left tail), the Bootstrap standard error also tends to be understated.   
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Finally, the fourth graph shows the empirical cumulative distribution function of the 
Bootstrap predictive distribution evaluated at the true reserve. For example, reading 
off from the value 0.8 on the horizontal axis gives the proportion of simulations 
(vertical axis) in which the true reserve was smaller than the 80th percentile of the 
Bootstrap predictive distribution. The corresponding value on the vertical axis is 
0.752, which means that in 75.2% of simulations (7,520 out of 10,000 simulated 
triangles) the true reserve was smaller then the 80th percentile (as shown in Table 2-2) 
of the Bootstrap predictive distribution. This implies that in the other 24.8% of 
simulations the true reserve was greater than the 80th percentile of the predictive 
distribution.  In other words, something that should really have a probability of 20% 
occurred in 24.8% of simulations. 
 
The graph also shows the straight line from (0, 0) to (1, 1): ideally, the cumulative 
distribution function would not deviate significantly from this straight line.  
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2.4. ODP Bootstrap method applied where its assumptions are true – new results 
 
The results obtained last year, and summarised in Section 2.3 above, relate to a 
particular set of parameter values used to generate the artificial triangles. This year, 
we have carried out further tests with the aim of establishing how generally these 
results hold. The tests we have carried out are as follows: 

(a) Same artificial triangles as last year but an increased number of Bootstrap 
simulations on each triangle (2,000 instead of 1,000). 

(b) More stable triangles than tested last year. That is, triangles with a smaller 
degree of random deviation from the underlying development pattern.   

(c) Triangles of the same size as tested last year (10 origin years and 10 
development years) but with a shorter-tailed development pattern than used 
last year. 

(d) Larger triangles than tested last year (15x15 and 20x20). 

The results are summarised in the following sub-sections. 
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2.4.1. Increased number of Bootstrap simulations 
Table 2-3 below shows the results obtained by applying the ODP Bootstrap method 
described by England (2001) to the same artificial triangles as used in the first set of 
10,000 simulations carried out last year. The only difference is that the number of 
Bootstrap simulations carried out on each triangle has been increased from 1,000 to 
2,000. The results show that this increase in the number of Bootstrap simulations has 
no significant effect. 
 
Table 2-3 Results for 2001 Bootstrap ODP method (Algorithm B) – Increasing the 
number of Bootstrap simulations 

Number of Bootstrap simulations for each of 10,000 triangles 1,000 2,000 

Mean BCL estimate 3,668 

% of triangles with BCL estimate greater than true reserve 46.9% 

% of triangles with Bootstrap mean greater than true reserve 51.8% 51.9% 

Mean of (BCL estimate – True reserve) 303.7 

Mean Bootstrap mean  3,727 3,727 

Mean Bootstrap standard error 1,307 1,308 

Mean of (BCL - True) / (BS std error) -0.245 -0.245 

Mean square of the above 1.701 1.698 

1% 2.6% 2.6% 

5% 8.3% 8.4% 

10% 14.3% 14.1% 

20% 24.8% 24.7% 

30% 34.8% 34.9% 

50% 53.9% 54.0% 

70% 71.8% 71.9% 

80% 80.1% 80.1% 

90% 88.6% 88.6% 

95% 93.0% 93.0% 

99% 97.3% 97.4% 
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2.4.2. More stable triangles 
Each of the 10,000 artificial triangles analysed in the preceding results was generated 
using Algorithm B from Section B.2.2 of last year’s report. This algorithm uses a 
compound Poisson/Log-Normal distribution for each incremental amount Yjk of the 
triangle. In other words, each Yjk is constructed as the sum of a number (Njk say) of 
independent Log-Normal amounts, where the number Njk is generated from a Poisson 
distribution. 
 
Algorithm B for artificial run-off data: 

1. The ultimate number of claims in an origin year is generated by random 
sampling from a Poisson distribution (same parameters for each origin year, 
but independent sampling). 

2. Each claim is assumed to be settled by a single payment, and the 
development year of the payment determined by independent random 
sampling from a Multinomial distribution (same parameters for each origin 
year). 

3. The amount of each individual claim payment is determined by independent 
random sampling from a Log-Normal distribution (same parameters in every 
cell of the triangle). 

4. The amounts of claims settling in the upper left triangle of the run-off array 
are accumulated to create this run-off triangle, and all claim  amounts 
(regardless of the development year when settled) are accumulated to obtain 
the ‘true’ ultimate position for each origin year. 

Using the same parameters in all cells (j,k) for the Log-Normal distribution (at Step 3) 
ensures that the quantity Var(Yjk) / E(Yjk) is the same in all cells of the triangle, which 
is required by the ODP assumption. In last year’s report (Section B6.2) it is proved 
that this ratio (denoted φ) is related to the mean μ and variance σ2 of the loss 
distribution used at Step 3 by φ = (μ2 + σ2) / μ. (Note that μ and σ2 here are the mean 
and variance of the Log-Normal distribution used at Step 3, not the mean and variance 
of the related Normal distribution.) 
 
The parameters used in Algorithm B to generate the artificial triangles analysed in last 
year (and in the results described in previous sections of this report) are as follows: 

1. Poisson mean = 100 claims in each origin year. 

2. Given a claim, the probabilities of it being settled in each development year 
are as given in the middle row of Table 2-5. 

3. Log-Normal with mean μ = 10 and coefficient of variation σ / μ = 2.528. (Note 
that these are parameters of the Log-Normal distribution, not parameters of the 
underlying Normal distribution.) 

To investigate the effect of having a more stable run-off triangle, we have increased 
the Poisson parameter at Step 1 from 100 to 1,000. In every cell (j,k) of the triangle, 
this has the effect of increasing both E(Yjk) and Var(Yjk) by a factor of 10. The ODP 
dispersion parameter (φ) is therefore unchanged, but in each cell of the triangle (each 
aggregate paid amount Yjk) the coefficient of variation is decreased by the factor 
0.316 (reciprocal of the square root of 10) and the skewness coefficient is decreased 
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by the factor 0.1, so the triangle will typically show considerably less variation from 
the underlying run-off pattern. Results based on 10,000 triangles generated in this way 
are shown in the final column of the Table 2-4 below. 
 
Table 2-4 – Results for 2001 Bootstrap ODP method (Algorithm B) – Increased number 
of claims in each origin year 

Expected number of claims in each origin year 100 1,000 

Mean BCL estimate 3,668 34,046 

% of triangles with BCL estimate greater than true reserve 46.9% 48.4% 

% of triangles with Bootstrap mean greater than true reserve 51.8% 50.6% 

Mean of (BCL estimate – True reserve) 303.7 368.9 

Mean Bootstrap mean  3,727 34,331 

Mean Bootstrap standard error 1,307 5,154 

Mean of (BCL - True) / (BS std error) -0.245 -0.090 

Mean square of the above 1.701 1.052 

1% 2.6% 1.1% 

5% 8.3% 5.1% 

10% 14.3% 10.7% 

20% 24.8% 21.6% 

30% 34.8% 32.2% 

50% 53.9% 52.7% 

70% 71.8% 71.8% 

80% 80.1% 80.9% 

90% 88.6% 89.9% 

95% 93.0% 94.4% 

99% 97.3% 98.1% 

 
These results show that the mean of the Bootstrap distribution is proportionately much 
closer to the true reserve than previously, and percentiles of the predictive distribution 
are much more accurate. 
 

2.4.3. Shorter development pattern 
For the following results, we return to an expected number of 100 claims in each 
origin year, but increase the speed of development. The multinomial probabilities 
used at Step 2 of Algorithm B are given in the following table: 
 
Table 2-5 – Parameters used at Step 2 of Algorithm B 
Dev year 1 2 3 4 5 6 7 8 9 10 

Previous probs .043 .143 .198 .193 .155 .110 .072 .044 .026 .015 

New probs .280 .378 .216 .0864 .0285 .0083 .0022 .0006 .0001 .00003 
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Table 2-6 – Results for 2001 Bootstrap ODP method (Algorithm B) – Shorter 
development pattern 

Development pattern Long Short 

Mean BCL estimate 3,668 1,265 

% of triangles with BCL estimate greater than true reserve 46.9% 48.3% 

% of triangles with Bootstrap mean greater than true reserve 51.8% 49.9% 

Mean of (BCL estimate – True reserve) 303.7 22.0 

Mean Bootstrap mean  3,727 1,284 

Mean Bootstrap standard error 1,307 405.2 

Mean of (BCL - True) / (BS std error) -0.245 -0.236 

Mean square of the above 1.701 1.996 

1% 2.6% 4.3% 

5% 8.3% 11.3% 

10% 14.3% 17.8% 

20% 24.8% 28.3% 

30% 34.8% 37.5% 

50% 53.9% 53.8% 

70% 71.8% 69.8% 

80% 80.1% 78.1% 

90% 88.6% 86.7% 

95% 93.0% 91.5% 

99% 97.3% 96.6% 

 
These results show proportionately less bias in the BCL estimates and the Bootstrap 
mean, but extreme percentiles are less accurate for the shorter development profile. 
This may be because the expected number of claims shows more variation across 
development years, decreasing rapidly from a high number in early development 
years to a relatively low number in later years. As a consequence, the key assumption 
of the Bootstrap method (that the distribution of residuals has the same shape in all 
development years) becomes less reliable: the skewness of the residuals will actually 
vary substantially across development years, being much higher in the later 
development years where there are relatively few claim settlements. 
 

2.4.4. Larger triangles 
Next we consider results for triangles of increasing size. We have repeated the 
analysis using 10,000 triangles with 15 origin years, and 10,000 triangles with 20 
origin years. In each case, the delay to settlement follows approximately a Gamma 
distribution, with mean delay being equal to one quarter of the number of 
development periods in the triangle. The multinomial probabilities (used at Step 2 of 
Algorithm B) with these properties are shown in Table 2-7. 
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Table 2-7 – Parameters used at Step 2 of Algorithm B 
 Size of triangle 
Dev Year 10 15 20 

1 0.27974 0.09052 0.03609 
2 0.37824 0.23094 0.12437 
3 0.21575 0.24856 0.18083 
4 0.08644 0.18790 0.18466 
5 0.02853 0.11703 0.15537 
6 0.00833 0.06449 0.11566 
7 0.00224 0.03266 0.07913 
8 0.00056 0.01555 0.05088 
9 0.00014 0.00706 0.03121 

10 0.00003 0.00309 0.01844 
11  0.00131 0.01058 
12  0.00054 0.00592 
13  0.00022 0.00324 
14  0.00009 0.00174 
15  0.00003 0.00092 
16   0.00048 
17   0.00025 
18   0.00013 
19   0.00006 
20   0.00003 

 
Results based on triangles with these parameters are shown in the Table 2-8 below. 
(Results for triangles with 10 origin years are repeated from the previous sub-section 
for convenience.) Although the accuracy of extreme percentiles seems to improve as 
the triangle size increases, the accuracy of less extreme percentiles deteriorates. 
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Table 2-8 – Results for 2001 Bootstrap ODP method (Algorithm B) – Increasing size of 
triangle 

Number of origin years and development years 10 15 20 

Mean BCL estimate 1,265 2,588 3,874 

% of triangles with BCL estimate greater than true reserve 48.3% 46.9% 43.3% 

% of triangles with Bootstrap mean greater than true reserve 49.9% 49.6% 46.4% 

Mean of (BCL estimate – True reserve) 22.0 95.2 123.4 

Mean Bootstrap mean  1,284 2,635 3,900 

Mean Bootstrap standard error 405.2 798.5 1,156 

Mean of (BCL - True) / (BS std error) -0.236 -0.261 -0.344 

Mean square of the above 1.996 1.836 1.871 

1% 4.3% 3.1% 2.9% 

5% 11.3% 9.8% 10.5% 

10% 17.8% 17.2% 17.9% 

20% 28.3% 28.9% 30.4% 

30% 37.5% 39.0% 41.1% 

50% 53.8% 55.3% 59.6% 

70% 69.8% 71.0% 74.9% 

80% 78.1% 78.9% 81.6% 

90% 86.7% 86.5% 88.9% 

95% 91.5% 91.3% 92.9% 

99% 96.6% 96.4% 97.1% 

 

2.4.5. Conclusions for ODP Bootstrap method 
Our main conclusion from the results presented in previous sub-sections is that there 
appears to be no simple but widely applicable correction that can be made to extreme 
percentiles obtained from the ODP Bootstrap method when it is applied to triangles 
that satisfy the ODP assumptions.  
 
If we had found, under a wide range of parameter values, that what was supposed to 
be the 99th percentile was usually close to being the true 97th percentile, then we 
would have a simple correction formula for this percentile. However, our results show 
that what is supposed to be the 99th percentile can be close to the true 99th percentile 
in some cases, but can be close to the true 96th percentile in other cases. 
 
In practice there is no easy way to tell which of these cases applies so we are unable 
to recommend a simple rule of thumb for correcting extreme percentiles obtained by 
this method. 
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2.5. Hybrid Mack/ODP-Bootstrap method 

2.5.1. Introduction 
Since our results show that both the ODP-Bootstrap method and Mack’s method tend 
to understate the chance of extremely high outcomes, one possible approach is to 
apply both methods, then define the predictive distribution function as the minimum 
of the Mack and ODP predictive distribution functions. This is equivalent to defining 
any required percentile of the predictive distribution to be the maximum of the 
corresponding percentiles from the Mack and ODP predictive distributions. This is 
illustrated below. 
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The example illustrated above is a case in which the Mack method gives higher values 
for percentiles of extreme adverse events than the Bootstrap method. (For example, 
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the 95th percentile is about 23 according to the Bootstrap, and about 34 according to 
the Mack method). However in some cases, the Bootstrap might give higher extreme 
percentiles. It is also possible that the Mack and ODP distribution functions cross 
more than once in the right tail. Regardless of which method gives the higher 
percentiles, the hybrid distribution function is defined, at each possible reserve value 
on the horizontal axis, as the minimum of the two distribution functions 
 
We have tested this hybrid method on triangles that satisfy the ODP assumptions: the 
same sets of triangles as used in the previous section for testing the ODP-Bootstrap 
method. 

2.5.2. Results for hybrid method 
Results obtained by applying this hybrid method to the first set of 10,000 artificial 
triangles analysed in Table 2-2 are given in the final column of the Table 2-9 below. 
The other two columns give results obtained from the ODP and Mack methods 
separately, for comparison. 
 
To explain these results, consider the first row of the table. This shows that, in 2.6% 
of simulations (260 out of 10,000 triangles) the true reserve exceeded the 99th 
percentile of the ODP Bootstrap predictive distribution, and in 1.4% (140 triangles), 
the true reserve exceeded the 99th percentile of the Mack predictive distribution. The 
final column shows that in 1.3% of simulations (130 triangles) the true reserve 
exceeded the maximum of the two 99th percentiles (that is, the true reserve exceeded 
both the 99th percentile of the ODP Bootstrap distribution and the 99th percentile of 
the Mack predictive distribution). 
 
Table 2-9 – Results of applying hybrid method to data generated using Algorithm B  

Standard algorithm More stable triangles Shorter development pattern  

ODP Mack Hybrid ODP Mack Hybrid ODP Mack Hybrid 

1% 2.6% 1.4% 1.3% 1.1% 1.1% 0.9% 4.3% 1.6% 1.6% 

5% 8.3% 6.8% 6.1% 5.1% 5.6% 4.7% 11.3% 6.9% 6.8% 

10% 14.3% 13.1% 11.8% 10.7% 11.5% 10.2% 17.8% 14.1% 14.0% 

20% 24.8% 27.2% 23.8% 21.6% 22.9% 21.1% 28.3% 26.9% 26.6% 

30% 34.8% 41.2% 34.6% 32.2% 34.0% 31.9% 37.5% 39.2% 37.5% 

50% 53.9% 64.7% 53.6% 52.7% 55.0% 52.5% 53.8% 59.8% 53.8% 

70% 71.8% 81.4% 71.5% 71.8% 73.5% 71.5% 69.8% 77.4% 69.8% 

80% 80.1% 87.8% 79.7% 80.9% 82.2% 80.3% 78.1% 84.2% 78.1% 

90% 88.6% 93.4% 88.1% 89.9% 90.5% 89.3% 86.7% 90.9% 86.7% 

95% 93.0% 96.0% 92.5% 94.4% 94.7% 93.8% 91.5% 94.4% 91.5% 

99% 97.3% 98.3% 96.9% 98.1% 98.1% 97.7% 96.6% 97.5% 96.4% 

 
The results in Table 2-9 show that, in these particular triangles, the hybrid method 
gives a more accurate assessment of the chance of extreme adverse outcomes than 
either the ODP method or the Mack method used alone. To investigate whether this is 
true more generally, we have also applied the hybrid method to all other sets of 
triangles considered in Section 2.3. 
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Table 2-9 also gives results for the 10,000 more stable triangles from Section 2.4.2 
and for the 10,000 triangles with a shorter development pattern analysed in Section 
2.4.3  Table 2-10 gives results for the triangles of increasing size analysed in Section 
2.4.4. 
Table 2-10 – Increasing size of triangle 

 Bootstrap Mack Hybrid 

Size 15 20 15 20 15 20 

1% 3.1% 2.9% 1.0% 0.9% 1.0% 0.9% 

5% 9.8% 10.5% 6.0% 5.1% 5.9% 5.1% 

10% 17.2% 17.9% 12.6% 11.5% 12.4% 11.4% 

20% 28.9% 30.4% 26.2% 25.8% 25.9% 25.6% 

30% 39.0% 41.1% 39.9% 41.6% 38.3% 39.6% 

50% 55.3% 59.6% 61.9% 69.3% 55.3% 59.4% 

70% 71.0% 74.9% 79.8% 86.2% 71.0% 74.9% 

80% 78.9% 81.6% 86.5% 91.8% 78.8% 81.5% 

90% 86.5% 88.9% 92.5% 96.2% 86.5% 88.9% 

95% 91.3% 92.9% 95.7% 97.9% 91.3% 92.9% 

99% 96.4% 97.1% 98.4% 99.2% 96.3% 97.1% 

 

2.5.3. Conclusions  
The methods described above all have difficulty in estimating the more extreme 
percentiles of the distribution of reserves. 
 
The hybrid method, when applied to triangles that satisfy the ODP assumptions, 
generally seems to give a more reliable assessment of the chances of extreme adverse 
outcomes than either the Mack method or the ODP-Bootstrap method alone. 
 
Further investigations into the effects have shown that shorter tail business and classes 
with fewer claims are more difficult to model using these techniques. 
 
We infer that the key determinant for such methods to produce reasonable results is 
the stability of the development pattern within the dataset.  This stability may be 
improved by increasing the frequency of timesteps within the development triangle 
for shorter tail business.  Similarly for classes where numbers of claims are small, 
grouping together similar classes of business, or working from larger datasets (e.g. 
market data) may also reduce the errors involved. 
 
Note that all results in Section 2 relate to uncertainty in the total reserve (the sum of 
all origin years). We cannot be certain that the same conclusions would hold for 
origin years considered separately. 
 



 23

3. Application of Bayesian techniques to range estimation 

3.1. Introduction 
In response to our work last year on the accuracy of the predictions of standard 
stochastic models, we have investigated an alternative method of estimating the 
variability of future reserves. 
 
This method allows explicitly for the parameter error within the estimation procedure 
by using a number of parameter sets when estimating the uncertainty within the 
reserves.  The validity of each of these parameter sets is estimated by calculating the 
probability of the data coming from the model with that set of parameters, and the 
overall distribution of reserves being the convolution of the results of each of the 
parameter sets weighted by these probabilities. 
 

3.2. Methodology 
This section fits a model to paid losses in the UK Motor data as held in UK FSA 
returns.  We split this data into training and test data.  The test data consists of the last 
diagonal of the data, and the training data consisted of everything else. Using this 
model we use the training data to predict the distribution of the sum of losses in the 
test data.  We then calculate the percentile of the observed loss in the test data. 
 
This is done for each of the 34 insurers in the UK Motor data.  We will validate the 
model by testing the hypothesis that the thirty-four percentiles are uniformly 
distributed. 
 
An important feature of the model is that it is a Bayesian model, with the prior 
distribution of parameters being derived from an analysis of fifteen of the large 
insurers. 
 
Currently, there is no single paper that describes the exact methodology used in this 
analysis.  Most of what follows is described in more detail in the following three 
papers by Glenn Meyers. 

1. “Estimating Predictive Distributions for Loss Reserve Models” 

http://www.variancejournal.org/issues/01-02/248.pdf 

2. “Thinking Outside the Triangle” 

http://www.actuaries.org/ASTIN/Colloquia/Orlando/Papers/Meyers.pdf 

3. “Stochastic Loss Reserving with the Collective Risk Model” 

http://www.casact.org/pubs/forum/08sforum/11Meyers.pdf 
 
These papers will be referred to as [1], [2], and [3] respectively. 
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The model, described as the “Cape Cod Model” in [3], first describes the expected 
paid loss in each cell indexed by the accident year (AY) and development year (Lag) 
by the formula: 
 

  

where {ELRAY} and {DevLag} are parameters to be estimated from the data. 
Next the model uses the collective risk model to describe how actual outcomes in 
each (AY, Lag) cell are distributed around the expected loss with the collective risk 
model.  The collective risk model can be described by the following simulation 
algorithm. 

1. Select a random claim count, NAY,Lag from a negative binomial distribution with 

mean λ and variance λ + cλ2.  Following [1] we set c = 0.01. 

2. For i = 1, 2,…, NAY,Lag select a random claim amount, ZLag,i. 

3. If NAY,Lag > 0, set 
,

, ,
1

AY LagN

AY Lag Lag i
i

X Z
=

= ∑ .  Otherwise set XAY,Lag = 0. 

We use the claim severity distributions in [3], in which the expected claim severity 
increases with settlement lag. 
 
Following [3], Appendix B, we use the overdispersed negative binomial to 
approximate the likelihood of the data.  Note that [3] uses a Poisson distribution in 
Step 1 of the simulation algorithm above.  This makes it necessary to replace the 
formula 
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.   

We should stress that the claim severity distributions and the c parameter are fixed, 
and not estimated, based on the author’s experience with US data.  We suggest that 
the model could be improved with parameters based on UK data. 
 
As a first step to fitting this model to the UK motor data we first obtain the maximum 
likelihood estimates of the parameters {ELRAY} and {DevLag} for each insurer.  The 
best way to visualise the {ELRAY} and {DevLag} parameters is as paths along 
increasing AY and Lag time lines.  Figures 1 and 2 below plot the paths for each of the 
34 insurers. 

 

 

 

,E ⎡ ⎤ = ⋅ ⋅⎣ ⎦AY Lag AY AY LagLoss Premium ELR Dev
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Figure 1 

{ELRAY} Paths Based on MLE Estimates  

 

 

 

 

 

 

Figure 2 

{DevLag} Paths Based on MLE Estimates 

  

 

 

 

 

 

Figures 1 and 2 demonstrate two items of interest. 
1. There is a fair amount of apparent random variation in the paths.  As shown in 

Figures 4 and 5 below, restricting the plots to the 15 largest insurers reduces 
the random variation. 

2. Beneath the random variation of the {ELRAY} paths there appears to be 
systematic variation (typically called the underwriting cycle) in the paths. 

 

We now demonstrate that the MLEs of {ELRAY} and {DevLag} do a good job of 
predicting losses when we combine the results for all 34 insurers.  Figure 3 shows a 
plot of the sum over all insurers of the expected loss against the corresponding sum of 
observed losses by settlement lag. 
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Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

The sum of the paid losses in the training data was 31,274,913,000, while the sum of 
the expected losses determined by the MLE model was 31,670,789,000, 1.3% higher.  
 
While, in the aggregate, the MLEs may do a good job of estimating the expected loss, 
paper [2] suggests by way of example that: (1) the MLEs do a poor job of estimating 
the tails of the distribution of outcomes; and (2) a Bayesian approach can do a good 
job of estimating the tails. 
 
Papers [1] and [3] implement the Bayesian approach in different ways.  Paper [1] uses 
a discrete prior distribution based on the MLEs of 40 large insurers.  Paper [3] uses a 
formulaic prior assuming that each of the parameters has an independent gamma 
distribution and simulates the posterior distribution of parameters using the Gibbs 
sampler. 
 
One criticism of the approach in [1] is that the discrete prior is too coarse and may not 
adequately represent the variability of the possible parameters.  A criticism of the 
approach in [3] is that if one wants to base the prior on the experience of large 
insurers finding the right formula to describe the prior could be difficult.  In addition, 
running the Gibbs sampler can be time consuming. 
 
This paper uses a hybrid methodology that draws upon the approaches described in 
each paper.  For each of the large insurers, we generate a set of {ELRAY} and {DevLag} 
parameters using the Gibbs sampler.  The prior distribution for each parameter was a 
gamma distribution centred at the MLE for that parameter that had a coefficient of 
variation that was equal to one.  From these parameter sets, a discrete prior 
distribution was constructed by taking a random sample of {ELRAY} and, 
independently, a random sample of {DevLag}.  In the end, the prior distribution of 
{ELRAY} and {DevLag} consisted of 50,000 parameter sets.  Figures 4 and 5 show a 
sample of paths selected from the prior distribution. 
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Figure 4 

 

 

 

 

 

 

 

Figure 5 

 

 

 

 

 

 

 

We then used the Bayesian methodology described in [1] and [2] to the training data 
and calculated posterior probabilities for each parameter set. 
 
For each parameter set in the prior distribution1 and each (AY,Lag) cell in the test data 
we calculated the expected loss and then used the collective risk model to calculate 
the distribution around the expected loss.  We then calculated the distribution of the 
sum of the losses over each cell in the test data.  The mathematical details for doing 
this are described in Appendix A of [3].  Since we are using the negative binomial for 
the claim count distribution we have to substitute 

( ) ( )( )( ) 1/

, 1 1
c

AY Lag Lagc
−

Φ = − λ Φ −q pr r  for ( ) ( )( )1
,

Lag

AY Lag e Φ −
Φ =

pq
rr  in Step 4 of Section 

                                                 
 
1 To save computing time we selected those parameter sets that had a posterior probability over 
0.00001.  Typically this kept anywhere from several hundred to several thousand parameter sets.  
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A.2.  Since we are assigning posterior probabilities to predetermined discrete 
parameter sets, in Section A.3 we have to substitute ( ) ( )i i

i
pΦ = Φ ⋅∑q qr r  for 

( )
( )i

i

n

Φ
Φ =

∑ q
q

r

r  where pi is the posterior probability of parameter set i.  

By thinking of the MLE as a posterior distribution with a single parameter set, one 
can similarly calculate the distribution predicted by the MLE. 
 
Figure 6 shows some typical plots the Bayesian and the MLE predictive distributions 
for the sum of the losses in the test data.  It also shows observed losses from the test 
data. 

Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

As seen in Paper [2], the Bayesian predictive distribution is generally less variable 
than the MLE predictive distribution. 
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Given the predictive distributions and the test losses, we then calculated the predictive 
percentiles of the test losses for each of the 34 insurers.  If the models are valid, the 
distribution of percentiles should be uniformly distributed, which is testable. 
 
Following Papers [1] and [2], we use PP-plots to as a graphical test that the 
percentiles are uniformly distributed.  Figures 7 and 8 show PP-plots for the Bayesian 
and MLE predictive distributions. 

Figure 7  

 

 

 

 

 

 

 

 

Figure 8 

 

 

 

 

 

 

 

 

 

 

 

The PP-plot for the MLE has the elongated “S” shape that [2] suggests is a 
characteristic of overfitting.  The Bayesian PP-plot have similar characteristics, but 
appears to be more consistent with what one would expect if the model were indeed 
correct. 
 
We characterize these tests as a weak confirmation of the Bayesian model.  The 
confidence bands on the PP-plot are quite wide with only 34 observations. 
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3.3. Summary 
The sections above show that the usual methods underestimate the uncertainty within 
a reserve estimate given perfect data.  This seems to be inherent in the use of MLE 
techniques to determine the parameters within the stochastic model. 
 
Further research as described above and elsewhere (Meyers 2007) has shown that 
using Bayesian techniques to allow for the error in parameter selection can partially 
mitigate this effect, although even this enhancement is no guarantee of correctly 
predicting the underlying distribution. 
 
We therefore encourage practitioners to consider the results from these models with 
caution when deciding on the level of uncertainty to relate to their reserves.  We also 
emphasise the importance of correlations between reserving groups when determining 
any “overall” uncertainty for a book of business, the accuracy of which may have a 
much greater effect than that described above. 
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4. International approaches to stochastic reserving 

4.1. Introduction 
 
Treatment of reserve risk variability differs by territories. Some territories fully 
quantify reserve ranges and use them to assess risk margins and probability of 
adequacy whilst others may provide only qualitative commentary of uncertainty and 
some may not even provide this. 
 
The trend around the globe (including the impending Solvency II reforms) is toward 
increased consideration of uncertainty. This section aims to summarise the situation in 
some of the regions most involved in this trend. 
 
In addition we note that the International Actuarial Association are currently drafting 
a paper ‘Measurement of Liabilities of Insurance Contracts: Current Estimates and 
Risk Margins’. 
 
http://www.actuaries.org/CTTEES_RISKMARGIN/Documents/RMWG_Exposure_D
raft.pdf 

4.2. Australia 

4.2.1. Regulatory / Accounting Framework 
The Australian Prudential Regulatory Authority (APRA) reserving regime has 
required quantification of reserve uncertainty for many years. APRA requires that an 
insurer provides an actuarial assessment of its insurance liabilities at least annually. 
 
This assessment must include an explicit risk margin in excess of the discounted mean 
value of reserves. The risk margin must be equal to the greater of the 75th percentile of 
the reserve distribution minus the mean, or half of the standard deviation. For 
companies in run-off the risk margin must equal the 99.5th percentile of the reserve 
distribution minus the mean. 
 
Reserving is on an accident year basis and risk margins are required for both 
outstanding claims (OS) and unexpired risk reserve (URR). 
 
Diversification between classes of business and between outstanding claims and 
unexpired risk is allowed.  
 
Additional prudential margins may be held in the accounts and the probability of 
adequacy of the total booked reserves including these prudential margins is reported.  
 
All of this requires calculation of a quantitative distribution of reserve outcomes along 
with correlation matrices between portfolios for both OS and URR and correlation 
assumptions between the OS and URR. 
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4.2.2. Professional Guidance 
In 2001 the Institute of Actuaries of Australia commissioned Tillinghast to undertake 
research in respect of net risk margins as defined by the APRA legislation. This report 
was published in November 2001 and provides benchmark risk margins for many 
classes of business along with consideration of correlations.  
 
A paper was also published independently in November 2001 by Trowbridge 
Consulting which presented popular reserve variability quantification methods along 
with benchmark risk margins and correlations. 
 
These reports (particularly the Tillinghast report) are widely used in the Australian 
market, with smaller insurers in particular relying heavily on the benchmarks 
provided. 
 
This perceived over-reliance on benchmarks prompted the General Insurance Practice 
Council (GIPC) to set up a Risk Margins Taskforce. The Taskforce is due to publish a 
report in November 2008 which sets out a more robust practical framework for the 
calculation of risk margins and a more complete suite of tools. 
 
This paper will consider the combination of quantitative and qualitative assessment of 
reserve uncertainty. In particular it will focus on weaknesses of methods, sources of 
systemic volatility, what implications these have for the quantitative outputs and the 
rigorous application of judgement to address these issues. 

4.2.3. Market Practice 
Methods commonly used in the Australian market to calculate reserve variability 
include: 

- Bootstrap 
- Stochastic Chain Ladder 
- Hindsight re-estimates (see section 4.2.4) 
- Mack 
- Blended quantitative / qualitative approaches 
- Judgement 
- Benchmarks 

 
Typically risk margins are calculated separately by class of business for OSC and 
URR and the results correlated together. The correlations used tend to be Pearson 
(linear) correlations and based on judgement, although copulas are sometimes used. 
 
The frequency for review of risk margin calculations (relative to the central estimate) 
varies from some insurers performing a new analysis at each valuation date, to some 
retaining the same margins for two or more years. 
 
Reserve variability calculations are typically based on undiscounted data and 
adjustments are not usually made to allow for additional uncertainty due to possible 
variation of the discount rate or payment pattern over the runoff of the reserves. 
Explicit loadings for potential future inflation to be more volatile than seen in the past 
are not common. 
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4.2.4. Hindsight re-estimate method 
As part of the calculation of actuarial central estimate reserves an actuary is required 
to compare outcomes to previous projections. This however is rarely extended to 
reserve variability assessments. 
 
The hindsight re-estimate method was proposed by Andrew Houltram in his 2005 
paper and is now widely used in the Australian market. This method aims to 
incorporate actuarial estimation error in reserve variability analysis by examining 
historical actuarial central estimates. Typically at least 5 years of historical ultimates 
are needed. 
 
The aim is to allow for the impact of actuarial judgement (including choice of 
methods and the use of qualitative information) on the reserve ultimates. This 
approach acknowledges the fact that reserving is rarely a mechanical process and 
actuarial judgement typically plays a significant role in the reserving process. 
 
The method introduced the idea of the hindsight re-estimate ie the amended amount 
that an actuary would have declared as the estimate of the outstanding claims liability 
at a prior investigation, taking into account experience that has emerged since that 
investigation. 
 
The deviation, as a % of the original estimate for a given year is known as Hindsight 
Development Factor (HDF). Bootstrapping is used on the HDFs for each development 
year to simulate the ‘Ultimate Ultimate’ for each accident year. An empirical 
distribution can then be obtained. 
 
The impact of year on year dependency of actuarial ultimates (referred to as 
‘longitudinal dependence’) is addressed by using the method of block resampling (as 
opposed to point resampling) as previously described by Künsch (1989) and Efron 
and Tibrishani (1993). This is particularly important as the variation of actuarial 
ultimates often display positive correlations between years as trends in claims 
experience are gradually realised. 
 
The hindsight re-estimate method relies on the assumption that past patterns of 
deviation will repeat themselves. Hence a  limitation of the method occurs if there has 
been a change of actuarial staff, actuarial methods or the reserving process over time. 

4.3. USA 
 
The CAS in the US has been focussing on reserving uncertainty for a number of 
years.  In our previous paper we referenced their 2005 Forum and a number of very 
useful papers arising from it.  They are repeating that event this year and have a 
number of groundbreaking papers to be published both on this topic and others. 
 
Papers of particular interest to the subject being discussed here include the use of paid 
and incurred data at the same time to improve the estimation of both the mean and 
uncertainty within reserves.  Work has also been published on the testing of methods 
for robustness, which helps identify those methods that have a greater or lesser 
sensitivity to particular data points and parameters. 
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Other papers have also started the discussion on ranges for economic (or discounted) 
reserves.  Papers are presented that address the additional drivers of uncertainty based 
on data not included in the past history of a triangle and hence go some way to allow 
for the limitations of MLE fitting discussed elsewhere in this paper. 
 
Interested readers are directed to the CAS September 2008 eForum for these and other 
interesting papers. 

4.4. Switzerland 
 
Switzerland currently employs the Swiss Solvency Test, where risk margins are set on 
the basis of the cost of the statutory minimum capital requirement. This is designed 
with the aim that a third party can take over the assets and liabilities of the initial 
insurer in the event of insolvency. The Federal Office of Private Insurance (FOPI) 
argues that a third party will only be willing to do this if the cost of setting up the 
regulatory capital is covered by the portfolio price. 
 
The assets are used to pay for the claims, and the excess is used to pay 
dividends to the investor for providing the risk capital (his investment). In this 
situation, it is the investor who takes the long term run-off risk. Therefore, the 
policyholder will not suffer a financial loss. 
 
We note the developments in Switzerland as they reflect a different set of issues to 
those typically discussed. The Swiss Solvency Test is parameterised on the basis of a 
test over a single calendar year.  Hence actuaries are required to estimate the reserve 
volatility over that period rather than to ultimate run-off.  As most models focus on 
the ultimate payments this has caused a certain level of difficulty, although we note 
that the Hindsight Re-estimate method as discussed above may go some way to 
address these issues. 

4.5. EU 
 
No paper on reserving uncertainty would be complete without referring to the 
Solvency II developments, however as this topic is beyond the scope of this paper, we 
are happy to present an incomplete paper in this regard! 
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5. Areas of common concern when applying stochastic methods 

5.1. Background 
 
Those new to stochastic methods may not have a full picture of the areas that are still 
uncertain regarding the application of methods in daily work.  We have therefore 
considered where our experience indicates that models and methods lack clarity, or 
can be misleading without detailed knowledge of their assumptions. 
 
In this section we set out a rather mixed set of comments that addresses the key areas 
we have found challenging when confronting the issues relating to reserve uncertainty 
modelling and estimation. 

5.2. Areas to consider 

5.2.1. Check assumptions 
It is important to check that the assumptions underlying the model being used are 
verified, or at least the assumptions that do not hold are identified. Often there are 
breaches such as: non-homogeneity within the portfolio; the claims triangle is not 
developed sufficiently and hence tail factors are required, or the claims pattern 
changes over time.  Note that not all of these features break the assumptions of all 
models. 
 
Where assumptions do not hold it is important to understand the effects this may have 
on the results.  For example, the requirement for non-negative incremental 
development within the Bootstrap algorithm will tend to upwardly bias the results, 
and so the mean of the resulting distribution will be higher than the pure Chain-ladder 
result (assuming such events are treated with a default of flat development). 
 
Thus simply because the underlying data does not fulfil all of the required 
assumptions for a model, it is not always necessary to completely disregard the results 
of that model.  It can be instructive to consider the results of several imperfect models 
to get a better understanding of the uncertainty predicted by the data set available. 

5.2.2. Consider the type of data being used 
Be aware of what the reserve range is applied to. For example, if underwriting year 
data is used for the exercise, the resultant uncertainty measure reflects both earned 
and unearned portions of exposure. As the reserve uncertainty exercise is often used 
to indicate the uncertainty that lies within the earned claims provision only, a method 
of apportionment needs to be applied to the reserve range to distinguish the 
uncertainty that arises from the earned and unearned part of reserves.  

5.2.3. Changes to claims environment 
The actuary needs to be mindful of when the past variability may not fully reflect the 
future variability. Circumstantial changes such as change in portfolio size, mix of 
business, claims environment, or where the data does not include a full insurance 
cycle may mean judgement is required on how much credibility can be given to the 
historical data when projecting the future. In these instances, scenario testing may be 
especially helpful in sense-testing the results. 
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5.2.4. Reinsurance 
The insurer’s key concern in terms of reserving uncertainty lies within the reserves 
net of reinsurance. However, if the reinsurance program is not consistent over all 
periods due to changes in reinsurance structure, commutations, or exhaustion of the 
cover etc, there may be distorting effects in the underlying process that make many 
methods invalid. Hence caution is needed when applying any method that only relies 
on past data in this instance. 
 
In addition changes to the underlying gross exposure such as line size distribution, 
aggregation and exposure to catastrophes will affect the drivers of uncertainty within 
the net claims reserve. 

5.2.5. ODP methods 
The pure ODP method does not allow negative incremental claims.  Therefore any 
triangle with a mean development factors less than 1 for a given development period 
will not satisfy the model assumptions. Although this predominantly impacts incurred 
claims data, there can be instances where paid claims data also shows this feature.  
One should always check the residuals to see how this affects the overall validity of 
the method. 
 
A potential solution is to set the development factors to a minimum of 1, which 
automatically increases the mean of the projected reserves and destroys the link 
between the ODP and Chain-ladder methods. However, if the factors are close to 1 
anyway, this effect is often minimal.  Otherwise one should allow for the offsetting 
that occurs when interpreting the overall results of the model. 
 
Alternatively, one can use a different distribution for that particular development 
period. For example use a Normal with appropriate mean and standard deviation. This 
obviously doesn't follow the ODP methodology, but the mean result will be correct. 
 
Another option that can be applied is to offset the ODP.  This can be done on an 
individual development factor basis by fitting an ODP with a sensible mean and 
required standard deviation, but then adding a constant to the results of the 
distribution such that the resulting mean and standard deviation reflect that given by 
the residuals of the triangle.  
 
These options are discussed in more detail in section 6.3.3 

5.2.6. Incorrect mean 
As the best estimate (“mean”) of reserves is unlikely to be determined by a pure 
Chain-ladder approach, it is unlikely that the mean of the stochastic method that uses 
a Chain-ladder method as its base will match that generated by a full traditional 
reserving exercise. 
 
Techniques that can be used to adjust for this effect include: 

• Shift the model derived distribution such that the mean is reset as the best 
estimate, without changing the shape or size of the distribution.  This may 
cause issues where the shift results in negative reserves at low percentiles. 
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• Scale the model output such that every percentile is multiplied by the ratio of 
the best estimate to the modelled mean.  This may then understate or overstate 
the absolute extent of reserve movements in the extremities of the distribution. 

• Choose the underlying stochastic model parameters such that the mean of the 
distribution reflects the best estimate.  This can cause the residuals between 
the actual data and fitted model to be biased, leading to higher volatility than 
would otherwise be the case.  However it could be argued that this reflects 
reality to some extent. 

5.2.7. Movement of absolute risk margin when scaling variability 
It is common to estimate reserve uncertainty by applying a derived coefficient of 
variation (CoV) to a mean actual reserve.  One effect that this has is that as the CoV 
increases, the absolute difference between the mean and a high percentile decreases. 
 
Essentially this demonstrates that for a given skewed distribution shape (eg Log-
Normal), a higher CoV generally implies the mean sits at a higher percentile.  
Increasing the CoV whilst retaining a fixed mean can therefore reduce the absolute 
difference between the mean and a particular percentile.  Obviously increasing the 
CoV also increases the “distance” between percentiles, which works in the opposite 
direction to the first effect. 
 
The result of this is that if two classes have the same mean, but the “more risky” class 
has a higher CoV, the reserve at the 80th percentile of the less risky class could be 
higher than that of the more risky class. 
 
Below is a graph showing how the risk margin, defined at the 60th, 70th, and 80th 
percentile, varies with CoV for a Log-Normal distribution. At all three percentiles, 
there is a turning point where the risk margin starts to decrease with increasing CoV 
and eventually becomes negative. The lower percentiles start showing this 
‘anomalous’ effect at lower CoV’s.  Taylor (2006) demonstrated mathematically that 
that for probability p, the turning point occurs when the CoV reaches the standard 
Normal Z(p) for the 100p percentile of the distribution. 
 
It is worth noting that in Australia the regulatory risk margin is the greater of the 75th 
percentile and half of the estimated standard deviation of the liability, which may 
alleviate some of this seemingly anomalous property of risk margins in the regulatory 
context. 
 



 38

Relationship between CoV and Risk margin 
assuming Lognormal distribution
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Potentially this effect will increase if the selected “best” estimate has not fully taken 
account of the entire range of the potential outcomes. As Houtram (2003) points out, 
it is common for an actuary to come up with a best estimate before considering the 
reserving uncertainty. Although the best estimate is defined as the expected value of a 
distribution, a common pitfall when estimating this quantity is to use what seems to 
be a reasonable scenario without thinking about the full range of potential outcomes, 
especially the extreme tails. 
 
If falling into this trap, the best estimate may have a tendency to be closer to the 
median rather than the true mean of the potential distribution, but is then treated as the 
mean in assessing reserve uncertainty. For a skewed distribution, the median can be 
significantly lower than the mean, particularly for liability related classes of business; 
hence one may significantly underestimate the extent of the risk margin at a given 
percentile. 
 
It is not within our scope to consider further the issues around the calculation of the 
correct mean of the distribution and we refer the reader to the findings of the other 
ROC working parties for further discussion on this point.
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6. Testing of methods on real data - update 

6.1. Introduction 
 
Last year we looked at a number of key methods to see how they compared when 
applied to real data.  This included the predictive power and also ease of use and other 
subjective assessments. 
 
This year we have extended this to consider transactional level methods, which 
although they require a more detailed dataset, they have the potential to more 
accurately allow for changes in the business over time using the additional 
information. 
 
We have also looked at potential solutions to some of the more common problems 
found when applying the ODP Bootstrap method, and their effect on the results 
produced. 

6.2. Transactional data methods 

6.2.1. Introduction to transactional level methods 
Transactional level methods involve building up a distribution of the reserves by 
examining and making use of the properties of individual claims.  Claims considered 
include both those that have already been reported (paid, outstanding and IBNER) and 
those that will or may be made in the future (pure IBNR).  In theory, by making 
appropriate use of more granular data, a higher level of the predictive efficiency can 
be achieved than is possible using aggregate data alone.   
 
As transactional methods consider the underlying properties of individual claims, a 
more granular level of data is required than for aggregate methods. Typically this will 
include a full history of the individual claim payments, and/or individual case 
estimates, together with details about the claim status.  Historical inflation figures 
may also be required.  Although the exact data requirements vary from method to 
method the key requirements of most methods should not be beyond the capabilities 
of the average insurer.   
 
A brief review of published papers covering individual claims reserving or 
transactional level methods indicates that a variety of approaches are possible to 
arrive at both a best estimate and the uncertainty in the reserves.  Many methods 
involve the computations of a compound distribution which is built up from 
assumptions about the underlying claim numbers and severity distributions.  
However, some methods only model uncertainty arising from the variability in claim 
severity and assume that the future number of claims is known or at least relatively 
stable.  Often the uncertainty in claim numbers is important but where an estimate of 
the pure IBNR is not required or is felt to be immaterial compared to the IBNER, only 
the claim severity needs to be modelled. 
 
In theory the use of transactional level data in assessing reserve uncertainty has a 
number of advantages over the use of aggregate (triangular) data.  These include: 
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 A higher level of predictive efficiency may be possible than achieved using 
aggregate models where key features of the data may be lost on aggregation; 

 Simulation of individual claims can help gain a understanding as to the source 
of the uncertainty, and in particular whether variability is driven by 
uncertainty in claim numbers or claim severity; 

 A more accurate netting down of the gross reserve distribution to account for 
the actual reinsurance programme is possible; 

 The complete distribution of the unpaid liabilities can be projected.  This 
contrasts to many aggregate methods which estimate just the first two 
moments;  

 It should be easier to allow for changes in the nature of the account.  For 
example if there has been a change in the development profile or the relative 
level of uncertainty in the reserves, it may be easier to adjust a transactional 
level method in a consistent way than for an aggregate method.  Equally 
adjusting for either an unusually high or low number of very volatile claims in 
the historical data may be easier than making an adjustment to an aggregate 
level model; 

 Consistency between models used to estimate underwriting and reserving 
uncertainty may be easier to achieve.  Since many underwriting models 
involve simulation of individual claims, the appropriateness of reserving 
assumptions can be examined in light of the assumptions made in the 
underwriting model; 

 The claims severity distribution can be tested for appropriateness both against 
the settled claims as well as the current outstanding case reserves.  In 
particular examining the tail of the distribution against say the ten largest 
outstanding case reserves can be informative. 

 Key drivers of uncertainty in the liabilities can be modelled explicitly e.g. 
claims inflation could be modelled as a stochastic variable.  This is one 
possible way of providing a link and introducing correlation between the 
individual claims.  Other key drivers of potential correlations could also be 
explicitly modelled e.g. the prospective Ogden discount rate in a motor book. 

 
On the other hand, transactional level methods have several disadvantages compared 
to aggregate level methods.  These include: 
 

 More assumptions are often required.  In particular explicit assumptions about 
correlations or dependencies structures within reserving classes are often 
required.  While this flexibility may appeal to some actuaries, others may be 
more comfortable relying on correlations implicit in some of the aggregate 
methods; 

 If best estimate reserves were established using the more traditional aggregate 
level reserving methodologies then it may be difficult to ensure consistency 
between the assumptions made in the best estimate and uncertainty analysis.  
We note however that similar difficulties often exist when trying to reconcile 
the actuary’s best estimate reserve to the mean of the output of reserve 
uncertainty models; 

 Modelling claims at a transactional level typically takes much longer than 
modelling claims at an aggregate level.  There are likely to be more 
parameters to estimate, programming can be more complex, and many 
methods require simulations to be at a granular level; 
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 Transactional level methods are not currently in widespread use to derive 
either the best estimate or investigate the uncertainty in the reserves, 
consequently the underlying concepts are likely to be less familiar to many 
actuaries; 

 There is a potential danger of over fitting the model.  This may result in too 
great a confidence about the predictive power of the model in estimating 
future claims development. 

 Although some correlation between individual claim severities can be 
explicitly modelled the residual correlation can be extremely difficult to 
estimate, as can any potential correlation between claim numbers and 
severities (many methods assume that these are independent). 

6.2.2. Modelling considerations 
Before a transactional level model is built, a number of factors need to be considered.  
These include: 
 

 Whether the modelling should be done gross or net of reinsurance and use 
paid or incurred data.  Simulating claims at the gross level would allow 
precise application of the reinsurance programme so would be the typical 
choice.  Simulating paid claims, rather than changes in incurred claims is 
likely to be easier but risks throwing away valuable information contained in 
the outstanding case estimates.  If incurred data is used, the method should 
allow fully for the variability in the unsettled case reserves (IBNER).  This is 
important in order to capture the uncertainty both in the outstanding case 
estimates themselves as well as ensuring that the claims distribution for 
unreported claims is sufficiently wide. 

 If paid data is to be used, a further decision needs to be made as to whether 
partial payments should be incorporated into the model, or whether payments 
in respect to an individual claim are aggregated into a single claim payment 
assumed to be made when the claim is settled.  Often it is simpler to aggregate 
payments together; 

 Should the modelling of the future claim numbers be done in aggregate across 
all years of account or should simulation be performed at the individual year 
of account?  Should we simulate the calendar year of the claim payments, and 
allow for the mean and variance of the claims reserves to be functions of time 
of settlement (often larger and more variable claims settle later), or should we 
use more aggregated distributions  based on an appropriate weighting of more 
granular distributions? 

 What distribution should be used for future claims and how should the 
parameters be estimated?  Should we fit a distribution to the data or is there 
enough data to use an empirical distribution and Bootstrap from this?   

 What distribution should be used for claim severity and how should the 
parameters be estimated? 

 How should parameter uncertainty be incorporated into the model? 
 
If we assume that the number of claims is unknown, the method must capture both the 
uncertainty in the claim numbers and severities.  One possible option would be to use 
a compound distribution where the future number of claims is modelled using e.g. a 
Poisson or Negative Binomial distribution.  For each non-zero claim the claim 
severity can then be modelled using e.g. a Log-Normal, Pareto, Gamma or Weibull 
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distribution.  For a detailed example of using such a model see the Claims reserving 
manual v2 (http://www.actuaries.org.uk/__data/assets/pdf_file/0020/24482/crm2-
D7.pdf). 

6.2.3. Example based on pseudo motor data 
Method 
We applied a simple transactional level mode to pseudo motor data.  The data was 
created using a model provided by the Casualty Actuarial Society. Mack and 
Bootstrap methods were also used to estimate the standard error in the reserves and 
the results of the three methods were compared. 
 
The data consisted of ten accident years of transactional level claims payments and 
case estimates.  Partial payments in relation to each claim were identifiable, as was 
the accident date, date of payment, whether the claim was open or closed and if closed 
the date of settlement. 
 
To avoid complications caused by partial settlements only payments with respect to 
closed claims were used to parameterise the model.  To be consistent with the 
definition of paid claims we used settled claim numbers (including claims settled at 
nil cost) to be the definition of our claim numbers triangle.  
 
Over all accident years a total of 4,993 claims had been closed, of which 589 had been 
settled at zero cost. 
 
An accident year triangle of closed claim numbers (includes claims settled at zero 
cost) was created.  The triangle is shown below. 
 

Closed claim numbers

1 2 3 4 5 6 7 8 9 10
1998 206 325 351 359 365 371 372 372 372 372
1999 183 329 356 362 365 367 367 367 367
2000 206 361 382 391 394 395 395 395
2001 235 413 437 447 451 457 458
2002 251 419 458 461 465 468
2003 232 436 471 479 480
2004 338 594 635 647
2005 378 622 674
2006 413 718
2007 414

Development year
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A cumulative claim paid triangle was also created, but only payments with respect to 
claims that were closed as at the end of 2007 were included.  The triangle is shown 
below. 
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Paid claims triangle (only includes payments with respect to settled claims)

1 2 3 4 5 6 7 8 9 10
1998 1,419,830 1,909,101 1,994,922 2,022,320 2,070,237 2,082,772 2,084,521 2,084,521 2,084,521 2,084,521
1999 1,178,858 1,658,775 1,706,496 1,715,105 1,719,856 1,722,601 1,722,601 1,722,601 1,722,601
2000 885,946 1,508,607 1,532,175 1,553,275 1,556,839 1,557,117 1,557,117 1,557,117
2001 1,301,764 2,072,241 2,287,300 2,312,045 2,315,920 2,322,334 2,355,494
2002 1,723,601 3,365,806 3,426,228 3,451,681 3,451,542 3,469,816
2003 1,508,495 2,417,997 2,508,296 2,572,407 2,579,859
2004 1,446,536 2,860,502 2,961,968 2,981,804
2005 1,825,774 2,892,103 3,036,670
2006 2,410,131 4,178,555
2007 2,374,862
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The total number of future settled claims (across all accident years) was modelled as a 
single Negative Binomial distribution.  The mean number of future settled claims was 
estimated to be 509.  This was based on the result of the pure Chain Ladder method 
applied to a triangle of settled claims.  Using Bootstrap applied to the settled claims 
numbers triangle we estimated the standard error as 39.  The proportion of nil claims 
was estimated from the historical claims data as 11.8%. 
 
It would have been possible to model the claim numbers distribution as a Poisson 
distribution. However the results of Mack and Bootstrap on a claim numbers triangle 
suggested that the underlying distribution of future claims was skewed, hence a 
Negative Binomial was chosen as it was thought to be a better fit. 
 
A Log-Normal distribution was fitted to the historical claim severities.  The mean and 
the standard deviation were set equal to the mean and standard deviation of the 
historical settled claim sizes. 
 
The resulting distributions were reviewed for appropriateness against the outstanding 
claim listing and were accepted. 
 
@Risk was used to generate 10,000 simulations, each consisted of generating a future 
number of claims and subtracting an estimate of the number of future nil claims. For 
each non-zero claim a future claim size was generated from the selected distribution.  
The total future claim payment was then calculated as the sum of the individual 
claims estimates. 
 
We assumed that the future proportion of nil claims was fixed and did not vary over 
development period – a triangle of nil claim settlements as a proportion of total settled 
claims numbers was used as a high level test to the reasonableness of this assumption.  
In this example no evidence was found of a markedly different settlement pattern for 
nil claims. 
 
The mean and the standard deviations of the 10,000 simulations were calculated and 
compared to the results of applying Mack and Bootstrap to an aggregate paid claims 
triangle.  
 
Note that future settled claim numbers were simulated in aggregate over all accident 
years.  Some transactional level methods will model claims at the individual accident 
year level.  If the average claim size varies with the age of development, simulation at 
either the individual accident year cohort or allocating future claim numbers to a 
cohort may be necessary in order that appropriate claim severity distributions can be 
applied to each year. 
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Results 
 Mean Standard dev. CoV 

Transactional          2.60m 395k  15% 

Mack 2.29m 503k 22% 

ODP Bootstrap 2.29m 384k 17% 

 
The mean of the transactional method was substantially higher than that of the pure 
Chain Ladder (the method behind the mean of the Mack and Bootstrap).  Although the 
mean of 2.60m was the based on the simulated results, it can be estimated numerically 
as: mean IBNR claims number x proportion of claims settled at cost x average claim size = 
509 x (1-11.8%) x 5,808 =2.61m. 
 
Differences between the means of the transactional level method and the Chain 
Ladder can arise for a number of reasons.  They include the different weights that the 
methods give to data in different parts of the triangle, for example a Chain Ladder 
may give more weighting to a kick or a drop at the far right of the triangle than is 
given by the transactional method.  Equally no account has been made in the 
transactional method for any tendency for claim size to vary with development period, 
but this would be captured by the Chain Ladder. 
 
We also note that the standard error of the transactional level method was similar to 
that of the Bootstrap but quite a bit below that of Mack.  The estimate of the standard 
deviation of the transactional method was driven by the uncertainty in the future claim 
sizes.  The result was relatively insensitive to small changes in the assumed claim 
number distribution. 
 
Where Mack and Bootstrap are used to estimate the future claim number variability, 
some of the problems highlighted in section 2 and in our previous paper may therefore 
follow through to the transactional method.  However it should be noted that based on 
this example, the vast majority of the variability came from the claim size. 
  
Within the transactional method, individual claim sizes were assumed to be 
independent.  It is possible to extend the example and model future inflation or other 
potential drivers of correlation in claim sizes as stochastic variables.  In addition claim 
size and numbers are also assumed to be independent. 
 
No allowance has been made for parameter error in the transactional method.  This 
together with assuming independence in future claims sizes is perhaps one of the 
reasons why the coefficient of variation is lower than that of Mack and Bootstrap. 
 
We note that the data provided contained both property damage and bodily injury 
claims data.  Arguably it would have been better to split this data out into property 
damage and Bodily Injury claims and analyse separately, however the aggregation of 
the results would then have required assumptions regarding correlations between the 
two datasets. 
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Possible refinements 
Some claim level reserving methods use a Negative Binomial distribution, not 
because the underlying claims distribution is assumed to be skewed but to incorporate 
parameter uncertainty.  When the underlying distribution is a Poisson distribution and 
the unknown parameter of the Poisson distribution is assumed to be from a Gamma 
distribution, then the posterior distribution is a Negative Binomial.  In this case, 
allowance is being made for parameter uncertainty.  The rationale for the choice of all 
distributions should be carefully documented, and consideration given as to whether 
parameter uncertainty has been allowed for. 
 
We note that significant information is contained within the case reserves.  We have 
not used this in the example above, but note that this could be used to assist in the 
parameterisation of the claim severity distribution. 
 
Finally, in some instances it may be valuable to be able to allow for correlations 
between claim number and severity.  This could then be used to capture effects such 
as seen in economic recessions within liability claims. 

6.2.4. Summary 
We believe that transactional level methods are a useful tool for an actuary to help in 
quantifying reserve uncertainty.  In our opinion, there is much to be gained from 
further research into such methods. 
 
Using transactional level methods alongside more traditional methods can help to 
improve the robustness of reserving estimates both at the best estimate as well as at 
the extremes of the distribution. 
 
As with other methods, model error is hard to quantify and can be significant, 
however running transactional level analysis in parallel with more traditional 
aggregate methods should help to start to highlight the sensitivity of results to 
different models. 
 
In particular transactional level could be used in relation to large claims and the 
results combined with Mack / Bootstrap results for attritional claims.  This would 
allow the more volatile larger claims to be modelled in greater detail, however 
aggregating such results would be problematic due to the requirements of assumptions 
regarding correlations between the two types of claim. 

6.3. Extension to ODP Bootstrap method 
 
This section looks at developments to the basic over-dispersed Poisson (ODP) 
Bootstrapping method (as set out in ‘Stochastic Claims Reserving in General 
Insurance’ by Peter England and Richard Verrall, published in the British Actuarial 
Journal in 2002) and how these developments are implemented in practice. 
 
These developments fall into three areas: 

• Using a variable scale parameter; 
• Moving beyond the Basic Chain Ladder: curve fitting and tail estimation; 
• Dealing with negative development factors. 
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6.3.1. Using a Variable Scale Parameter 
In England & Verrall (2002) , the Bootstrapping procedure was applied to an over-
dispersed Poisson generalised linear model that gives the same forecasts as the 
traditional Chain Ladder method, using a single scale (or dispersion) parameter.  The 
scale parameter is used for two purposes: to scale the residuals such that their variance 
is approximately 1, and to estimate the process variance when forecasting. 
 
This is essentially a simplifying assumption, usually improved upon by employing a 
scale parameter that varies with each development period. 
 
One of the fundamental assumptions of Bootstrapping is that the residuals should be 
independent and identically distributed.  This is more easily achieved by using a scale 
parameter that varies with each development period. 
 
It is also more consistent with the methodology employed by Mack’s model.  With 
Mack’s model, the variance of cumulative payments is assumed to be proportional to 
the previous cumulative value, where the constant of proportionality can be viewed as 
a scale parameter, and has a different value for each development period in the 
triangle. 
 
The only drawback to using a varying scale parameter is that there can be insufficient 
data to provide credible estimates for all development periods (since we have a 
triangle of data).  This issue is particularly prominent in the tail of the triangle, and is 
an issue for the ODP model and Mack’s model. 
 
Further discussion of using a variable scale parameters for ODP Bootstrapping can be 
found in the 2006 paper ‘Predictive Distributions of Outstanding Liabilities In 
General Insurance’ by Peter England and Richard Verrall, published in the Annals of 
Actuarial Science in 2006. 
 

6.3.2. Moving Beyond the Basic Chain Ladder: Curve Fitting and Tail 
Estimation 

Bootstrapping is simply a statistical procedure that can be applied to a well-defined 
statistical model to obtain distributions of parameters.  Forecasts can then be 
simulated, if required, conditional on those parameters.  In England & Verrall (2002) 
the procedure was applied in the reserving context to a specific GLM, fitted to a 
triangle of data, which happens to produce the same expected predictions for future 
developments as would a BCL approach.  Unfortunately, the term “Bootstrapping” in 
this context is often wrongly associated with that specific model.  It is important to 
separate Bootstrapping as a statistical procedure from the underlying model that it is 
applied to. 
 
The procedure has three steps.  Step 1 is to define and fit the statistical model, and 
obtain parameter estimates and appropriate residuals.  Step 2 is to resample the 
residuals (with replacement), invert the resampled residuals to give pseudo-data, and 
re-fit the same model that was defined at Step 1 to each set of pseudo data.  This gives 
a distribution of parameters.  Step 3 is to simulate forecasts into the future, conditional 
on the parameters obtained at Step 2. 
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For the specific model described in England & Verrall (2002), the procedure can be 
processed far more quickly by applying a BCL methodology to the pseudo-data 
instead of fitting a GLM to the pseudo-data.  This is a sleight of hand that is justified 
on the basis that (for that specific model) the forecasts are identical. 
 
Once we have justified the approach for a standard case (the pure Chain Ladder model 
with no tail), we can generalise it and include any of the common adjustments that we 
might make to the BCL for reserving purposes.  We simply follow the three steps 
outlined above, and perform a sleight of hand at the appropriate point if required. 
 
The following common extensions to the BCL methodology can be readily 
incorporated into the Bootstrapping process: 

• Manipulating development factors; 
• Curve-fitting for the estimation of tail factors; 
• Smoothing the underlying data, and hence the development factors, without 

curve-fitting. 
 
Incorporating these techniques into Bootstrapping, and the impact that they have, is 
discussed below. 
 
Manipulating Development Factors 
General development factor methods require an average development factor to be 
selected for each development period.  Manipulating development factors covers the 
exclusion of certain development factors in calculating averages and the selection of 
which type of average to calculate for each development period. 
 
The standard Chain Ladder method takes an average of all development factors for a 
given development period, weighted by the cumulative developments in the 
subsequent period.  There are various alternative averages that might be selected, such 
as arithmetic averages or time-weighted averages. 
 
When using this process in conjunction with Bootstrapping, the procedure is as 
follows: 

1. Calculate a triangle of development ratios; 
2. Choose which development factors to exclude and which form of average to 

calculate on the remaining development factors in the development period in 
question. 

 
At this stage, we have selected development factors to create an alternative 
development factor method to produce a fixed point estimate of the ultimate position.  
In order to apply Bootstrapping to this estimate, the procedure is as follows: 

3. Calculate residuals using fitted values derived from the selected alternative 
development factors; 

4. Remove from the pool of residuals all the points that correspond to excluded 
development factors.  (We do this because the exclusion of a development 
factor implies that it is sufficiently out of line with what – based on actuarial 
judgement – we would consider reasonable.  It would therefore be 
inappropriate to include it as representing potential future developments.); 

5. Resample with replacement from the reduced pool of residuals to produce a 
full triangle of pseudo-data (in the same way as with standard Bootstrapping); 
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6. Calculate a triangle of development ratios; 
7. Exclude the same development factors in development and origin periods that 

were excluded in the original projection of the actual data; 
8. Apply the same averaging calculations to the development factors (after 

exclusions) that were used in the original projection of the actual data to derive 
average development factors; 

9. As with standard Bootstrapping, perform this process on a large number of 
sets of pseudo-data to produce a distribution of outputs. 

 
Note that the exclusion of data from the triangle reduces the credibility of the fit, and 
also exacerbates the over-fitting effects discussed elsewhere in this paper.  In addition 
it is debateable whether any data point should be excluded unless it is due to data 
errors as this is effectively ignoring valid volatility within the data. 
 
Curve-fitting 
Curve fitting is used in traditional reserving to smooth through the noise in the later 
development factors of the data and to extrapolate the data where the oldest relevant 
origin period is not fully run off. 
 
The procedure is as follows: 

1. Calculate a triangle of development ratios; 
2. Choose which development factors to exclude and which form of average to 

calculate on the remaining development factors in the development period in 
question; 

3. Choose a subset of the average development factors to which to fit curves; 
4. Fit curves to these average development factors (typically exponential decay, 

inverse power, power, and Weibull); 
5. Select which development factors are used for forecasting.  That is, which are 

based on the average factors and which should be based on the curve-fits; 
6. Select how far to extrapolate into the future and which curve should be used to 

do this; 
7. Derive a tail factor as the product of the extrapolated development factors 

derived from the selected curve. 
 
At this stage, we have used curve-fitting techniques to produce a fixed point estimate 
of the ultimate position.  In order to apply Bootstrapping to this estimate, the 
procedure is as follows: 

8. Calculate residuals using fitted values derived from the selected alternative 
development factors and curve; 

9. Exclude any residuals corresponding to excluded development factors; 
10. Resample with replacement from the (reduced pool of) residuals to produce 

pseudo-data (in the same way as with standard Bootstrapping); 
11. Calculate a triangle of development ratios; 
12. Exclude the same development factors in development and origin periods that 

were excluded in the original projection of the actual data; 
13. Apply the same averaging calculations to the development factors (after 

exclusions) that were used in the original projection of the actual data to derive 
average development factors; 

14. Fit the same curve to the average development factors, excluding average 
development factors from the same positions as the original curve fit; 
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15. Select which development factors are used for forecasting.  That is, which are 
based on the average factors and which should be based on the curve-fits.  Do 
this using the same selections for each development period that were used in 
the original projection; 

16. Forecast into the future using the same number of future development periods 
and the same curve as selected in the extrapolation stage of the original 
projection; 

17. As with standard Bootstrapping, perform this process on a large number of 
sets of pseudo-data to produce a distribution of outputs. 

 
Smoothing through development factors (without curve-fitting) 
This is an alternative method for dealing with development factors that are unusual, 
without resorting to excluding them.  It uses a calculation based on the underlying 
data to smooth through spikes in the data. 
 
This method is typically used when an unusually large or small development is 
immediately followed by an unusual movement of opposite magnitude.  However, it 
is possible to smooth through more than two consecutive points at once.  Common 
smoothing techniques are linear interpolation or fitting higher order polynomial 
splines. 
 
The procedure is as follows: 

1. Calculate a triangle of development ratios; 
2. Select which contiguous development ratios exhibit spikes that are specific to 

data issues that should not be projected into the future; 
3. Smooth through the underlying cumulative data associated with those ratios, 

ensuring the cumulative amounts at the start and end of the smoothing region 
remain unchanged; 

4. Recalculate the development ratios, and then proceed in the same way as 
described under “Curve-fitting”. 

 
Again this method may have the drawbacks of restricting the uncertainty being 
modelled as discussed above. 
 
Summary 
There are a number of consequences of deviating from the basic ODP methodology in 
the manner described above and these should be borne in mind throughout the 
modelling process. 
 
Applying a selected methodology to pseudo-datasets in the manner described above is 
a very literal interpretation of applying the methodology.  It applies the same 
selections that were made in modelling the actual data (Step 1) rather than applying 
the same rationale.  For example, when fitting a curve to the data to derive a tail 
factor, the initial selection may have been, say, the inverse power curve since it was 
the best fit to the data.  However, the curve selected when deriving a tail factor for 
each set of pseudo-data will be the inverse power curve every time, rather than the 
curve that best fits the data.  This is because Bootstrapping is being used to obtain a 
distribution of parameters for the inverse power curve. 
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Curve-fitting in particular can lead to very volatile outcomes, since the fit is an 
automatic mathematical calculation.  When a curve is fitted to claims data, we need 
the second derivative of the curve to be negative in the tail (that is, we need the curve 
to flatten off).  However, for some pseudo-datasets, the development factors to which 
a curve is fitted can produce curves with positive second derivatives in the tail.  This 
leads to tails that increase rather than flatten off.  If this occurs, it can be readily 
identified in the output of percentiles and the model must be refitted. 
 
Another common problem comes about when the fitted tail is overly long.  When 
projecting data to obtain a point estimate, there is no significant impact to fitting a 
long tail rather than a short tail to the data, so long as the extra development factors in 
the long tail are very close to 1.  However, this is not the case when Bootstrapping due 
to the simulated process uncertainty.  Even if the projected increment for a 
development is only slightly larger than 0, this projected value is used as the mean of 
a distribution, so the Bootstrapping process will continue to simulate variability in the 
flat section of the tail.  The consequence of this is that the number of developments in 
a fitted tail should be kept to a realistic estimate of how long the data should take to 
run off in order to avoid over-estimating the variability in the tail, particularly as 
negative offsetting movements are not possible using the standard technique. 
 
The better the model fits the data, the smaller the residuals will be, and hence the 
lower the simulated future parameter uncertainty.  This means adjustments to the 
model such as smoothing through development factors using curve fitting may 
increase the volatility of the forecasts.  However, a trade-off between goodness-of-fit 
and number of parameters (included in the calculation of the scale parameters) should 
balance this out (see England & Verrall, 2006). 
 
All of the methods discussed in this section are natural extensions to carrying out 
Bootstrapping using development factor modelling on pseudo-data.  However, they 
are not rigorously justified by the underlying theory since they do not project results 
by fitting a GLM to the data.  Where a GLM would usually be fitted on theoretical 
grounds, a sleight of hand is being performed by using a standard actuarial 
deterministic method.  As with any actuarial technique, care and judgement must be 
applied.  The adjustments discussed above should not be made within a black box 
process, but rather should be carefully considered having Bootstrapped a standard 
Chain Ladder model first, then steadily deviating from that and gaining an 
understanding of what is driving variability. 
 

6.3.3. Dealing with negative pseudo-development factors 
Bootstrapping attempts to capture two sources of uncertainty – parameter uncertainty 
and process uncertainty. 
 
Process uncertainty refers to the inherent randomness in claim development.  It is 
captured in the Bootstrapping process by simulating future developments conditional 
on forecasts based firstly on the simulated parameters.  When this process uncertainty 
is modelled using a positive distribution (such as the gamma distribution, which is a 
typical choice) it is not possible to use a negative mean. 
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A negative mean can occur when a pseudo-development factor is less than one.  This 
can only occur when the sum of pseudo-incremental values in any development 
period is less than zero.  Note that it does not occur simply if a pseudo-incremental 
value is negative, but if the sum within a development period is negative.  This can 
occur during the residual inversion stage, and may or may not be an issue, depending 
on whether negative incremental values are perceived as being valid or not.  This is 
usually less common when non-constant scale parameters are used.  Note that 
negative incremental movements are often observed in the underlying data, for a 
variety of reasons.  In paid data, negative increments may represent recoveries 
through salvage and subrogation; whilst in incurred data, negative increments may 
also be a consequence of claims assessors revising down case estimates. 
 
There are three main methods to work around this problem: 

• Censor the pseudo-development factor so that it is positive, but very close to 
1; 

• Switch to a normal distribution when required; 
• Translate (shift) the distribution. 

 
Censor the pseudo-development factor 
This is a very straightforward approach, but potentially causes a bias.  However, if 
negative increments are frequently simulated (generally because there are negative 
increments in the real data) then the ODP model is unsuitable in any case, so a simple 
work-around may be appropriate if it is only called upon infrequently. 
 
Switch to a normal distribution when required 
This has the benefit of maintaining the desired mean and variance for the simulated 
increment.  However, the normal distribution is symmetric, so this does not allow for 
the positive skewness present in a distribution such as the gamma.  Usually, the need 
to switch to a normal distribution is a rare occurrence, so this will not be noticeable.  
Ideally, the number of times this is required should be monitored. 
 
Translate the distribution 
For a given negative mean, simulate the increment from a positive distribution with a 
mean equal to the absolute value of the required mean (which is therefore positive).  
Negatively translate the distribution by double the positive mean, thus resulting in a 
distribution with the required negative mean.  This method has the advantage of 
maintaining the positive skewness of the desired distribution, whilst also maintaining 
the required negative mean. 

6.3.4. Worked example 
We have applied the techniques above to the Employers Liability data set as used in 
our 2007 paper.  This consists of annual data from underwriting years 1985 – 2005 as 
at the end of 2005. 
 
Unless otherwise stated, all tests use a gamma distribution for process variance, 
switching to a normal distribution if a simulated future incremental claim movement 
is negative.  All tests using ODP are on paid data and all tests using Mack are on 
incurred data. 
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The tests we performed are set out on the graph and tables below.  The various 
scenarios are: 
  

• BCL ODP single - This uses a straightforward ODP model on a BCL, using a 
single scale parameter. 

 
• BCL ODP single excluding ratios - This model amends the first model by 

excluding a proportion of the development factors from the more recent 
developments in the triangle, where noise and spikes start to come about as a 
result of sparse data. 

 
• BCL ODP single Curve Fit - This model builds on the first one by fitting an 

inverse power curve through the development factors.  This curve is used from 
development year 11 onwards, including the addition of a tail from 
development year 20 to ultimate. 

 
• BCL ODP variable - This model is the same as BCL ODP single, but uses 

variable scale parameters rather than a single scale parameter.   
 

• BCL ODP variable excluding ratios - This model is the same as BCL ODP 
single excluding ratios, but uses variable scale parameters rather than a single 
scale parameter.   

 
• BCL ODP variable Curve Fit - This model is the same as BCL ODP single 

Curve Fit, but uses variable scale parameters rather than a single scale 
parameter. 

 
• BCL ODP variable 1997 & prior excluded - This model excludes all 

development factors from 1997 and prior, and fits an inverse power curve to 
the data to provide a tail factor.  This curve takes over from the derived 
development factors from year 7 onwards. 

 
• BCL ODP variable smoothed - This model is the same as BCL ODP single, 

but uses variable scale parameters rather than a single scale parameter.  
Furthermore, the variable scale parameters have been smoothed (using 
actuarial judgement) so that simulated future developments do not mirror the 
incidental jumps in the historical data in the equivalent development periods. 

 
• BCL ODP variable smoothed excluding ratios - This model is the same as 

BCL ODP single excluding ratios, but uses variable scale parameters rather 
than a single scale parameter.  Furthermore, the variable scale parameters have 
been smoothed as described above. 

 
• BCL ODP variable smoothed Curve Fit - This model is the same as BCL 

ODP single Curve Fit, but uses variable scale parameters rather than a single 
scale parameter.  Furthermore, the variable scale parameters have been 
smoothed as described above. 
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• BCL ODP variable Use 0.01 - This model is the same as BCL ODP single, 
but uses variable scale parameters rather than a single scale parameter.  
However, in this model, if a negative future development is simulated then we 
use a value of 0.01 to allow for the process variance. 

 
• BCL ODP variable smoothed excluding ratios - This model is the same as 

BCL ODP single excluding ratios, but uses variable scale parameters rather 
than a single scale parameter.  Furthermore, the variable scale parameters have 
been smoothed as described above. 

 
• BCL Mack - This model uses a straightforward Mack model on a BCL. 

 
• BCL Mack excluding ratios - This model amends a BCL by excluding some 

large spikes in the data in the initial development phase. 
 

• BCL Mack 1997 & prior excluded - This model excludes all development 
factors from 1997 and prior.  No tail is required as the 1997 year can be 
considered to be fully developed on an incurred basis. 

 
• BCL Mack smoothed - This model amends a BCL by smoothing Mack’s 

alpha (using actuarial judgement) so that simulated future developments do 
not mirror the incidental jumps in the historical data in the equivalent 
development periods. 

 
• BCL Mack smoothed excluding ratios - This model is the same as BCL 

Mack excluding ratios, but Mack’s alpha has been smoothed as described 
above. 

 
• BCL Mack use 0.01 - This model is the same as BCL Mack, but in this 

model, if a negative future development is simulated then we use a value of 
0.01 for the process variance. 
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6.4. Summary 
 
We have presented a number of common amendments to the standard Bootstrap ODP 
method.  These are intended to overcome some practical issues in the application of 
the technique to real data.  In most cases these will reduce the applicability of the 
analytic features of the method, but do not remove the usefulness of the results. 
 
The example data set we have applied these to show that they can have a significant 
effect in the calculation of both the mean and the extreme percentiles of the 
distribution of outcomes. 
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7. Areas for further research 

7.1. Introduction 
 
The scope for our work this year has largely been focussed on how to address the 
errors found in the methods commonly used to assess reserve uncertainty.  We have 
gone some way to addressing this, particularly in determining some of the 
characteristics of a “good” triangle. 
 
However, we have only touched on a few areas within the broader topic in the above 
sections.  Here we set out a number of other areas where we believe that more 
research needs to be done in order to allow greater understanding and use of 
stochastic reserving methods within the Profession. 

7.2. Methodologies 
 

• Continuing investigations as to what characteristics a “good” data set has for 
use in one or more methods, particularly an indication of tests to possibly 
identify the expected level of error a given method will have on a particular 
dataset. 

• Reserving cycle and necessary amendments to stochastic reserving methods 
• Underwriting vs accident year data sets and interpretation of the results from 

one basis to applications in the other 
• Discounting – variation between discounting stochastic reserving results of 

undiscounted amounts, and comparison with stochastic discounting 
calculations 

• Reserving “catastrophes” and their parameterisation 
 

7.3. Correlations 
 
There are many types of correlation used within reserve uncertainty estimates.  As 
mentioned above, these assumptions can have a dramatic effect on the anticipated 
uncertainty within a combined portfolio.  We believe that the sensitivity of the results 
to these assumptions deserves detailed investigation.  These include: 

• Correlations between data sets 
• Correlations between origin years 
• Derivation of correlations through top down vs bottom up methods and the 

issues that arise 
• Pearson (linear) vs copula correlations and the effects on the overall reserve 

percentiles 
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