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Introduction 
 

 

This paper is a reflection on the optimal strategy for deploying a fixed amount of insurance 

capacity over a period of time. In particular, we consider the following questions: 

 

 which pricing strategy maximises the expected profits? 

 should it be based on market conditions or shareholders’ expectations? 

 should it be static or dynamic? 

 how does an insurer manage the insurance cycle? 

 can we expect to make a profit when market returns are negative? 

 

To respond, we introduce the theory of revenue management, which integrates market conditions 

and fluctuations in demand into the decision-making process. We use this framework to develop 

an optimal pricing strategy and demonstrate how it can be a valuable tool to manage the insurance 

cycle. 

 

Illustration 
 

In order to exemplify our case in point, we can think of an insurer with a surplus S of $ 1bn and a 

capacity constraint driven by a 5:1 minimum written premiums-to-surplus ratio imposed by its 

regulator.  

 

As a result, this insurer has a capital allocation of 20% of premiums written and it prices each 

policy based on a 15% charge on allocated capital; 15% being the target return on equity 

promised to its shareholders1. 

 

We have therefore the following pricing formula:  
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1 we assume in this example that the shareholders’ equity is equal to the company’s surplus. 



 

3 

 

with 

 

 Pi: price-bid2 for policy i. 

 Li: losses for policy i. 

 E i: expenses for policy i. 

 K i: capital allocated to policy i, here 20% * Pi. 

 r: required return on allocated capital (a.k.a. capacity charge). 

 

As we can see, the insurer has a limited capacity for the underwriting year and each policy 

written “consumes” some of it.  

 

This example reflects a fairly common approach to pricing and charge for capacity, and the 

object of our analysis is to explore the following questions: does this pricing strategy maximise 

the expected profits? if not, what would be the best alternative? 

 

                                                 
2 i.e. the minimum acceptable premium for policy i 
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Revenue Management 
 

 

Background 
 

Revenue management techniques first appeared in the early 1980s in the airlines industry and 

have since been introduced progressively in other industries (e.g. as hotels, car rentals, internet 

service providers…). Their objective is simple: maximising the profits from a fixed supply of 

perishable goods/services over a period of time.  

 

For instance, airlines use sophisticated revenue management systems based on historical booking 

patterns to estimate the likelihood of an empty seat at departure. They need to balance the risk of 

not selling that seat, with the opportunity cost of passing up a “premium customer” willing to pay 

a higher price. “If a plane is not filling up as rapidly as historically expected, the probability of an 

empty seat goes up and the opportunity cost of selling more discounted seats goes down, so the 

airline’s management system may offer some tickets at an exceptionally low price. If, however, a 

group of seven business people suddenly books onto the flight, the probability of filling the flight 

jumps substantially, the opportunity cost goes up, and the airline’s management system blocks 

additional sales of the cheapest tickets.” [5] 

 

Insurance Applications 
 

It is fairly easy to see how these techniques can be applied to insurance:  

 

 insurers have a fixed supply of insurance capacity over a period of time (more accurately, 

capacity can be increased or decreased at times but it is fixed in between these events).  

 insurance capacity is perishable, in the sense that unused capital for an underwriting year 

can not be transferred to the next3. 

 

                                                 
3 we work under the assumption that capital usage is triggered by underwriting decisions; it would be fairly 
easy to integrate other sources of capital usage, such as running-off of existing policies, by only 
considering the capacity available for writing new policies. 
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While revenue management can take several forms4, the framework we present in this paper is 

purely price-driven: we seek to set r over time so that it maximises the expected profit based on 

market conditions and expected demand.  

 

The required return on allocated capital becomes a stochastic process r(t) and the pricing formula: 
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We call pricing strategy a path r for r(t) over the underwriting period [0, T], r ={ }],0[),( Tttr ∈ . 

Our objective is to determine r* which maximises the expected profit process Π*(t, st)5: 
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with 

 

 K(t, r(t)): capacity demand at time t for a given r(t). 

 st: remaining capacity inventory at time t. 

 τr,tst: time when the all the capacity is exhausted. 

 ρ: discount rate. 

 

Although our introductory example assumes a capital allocation based on premium writings over 

an underwriting year, our framework is more general and encompasses different capital allocation 

approaches (e.g. profit margin, rating agency or regulatory formulas, risk-based formulas…), time 

periods and definition of capacity (e.g. capital, resources). 

 

We chose to use the required return on allocated capital r* as our optimising variable, because 

prices are usually easier to adjust than capacity. It should be noted however that a similar revenue 

management framework could be derived to optimise capacity S* for a given pricing policy r. 

 

                                                 
4 e.g. managing the release of capacity between classes of customers, such as business vs. economy 
travellers. 
5 on a present value basis; note that if Π is not independent over time (e.g. markovian processes), the 
expected value becomes conditional on history ht; and we have Π(t, st, ht). 
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Insurance Cycle 
 

Most insurers face fluctuations in demand over time, resulting from: 

 

 fluctuations in the flow of business shown to the insurer (e.g. changes in 

marketing/distribution strategy). 

 the insurance cycle: progressive or abrupt shifts in market “supply and demand” 

conditions, resulting in shifts in the insurer’s demand function. 

 

Our revenue management framework provides a tool to adapt to these fluctuations: 

 

 it integrates expectations for market conditions (i.e. evolution of the insurance cycle). 

 it can be re-parameterised dynamically in light of the latest information on actual 

capacity usage and demand expectations; for instance, an insurer could decide to review 

its strategy and retune its revenue management model on a monthly basis. 

 

An insurer can therefore manage the ups and downs of the cycle by adjusting its capacity charges 

so that its expected profits are maximized. 
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Modelling Framework 
 

 

We use the theory of revenue management to contend with our optimisation problem: “maximize 

the expected profits under the constraints of the capacity demand and capacity inventory 

processes”.  

 

In this section, we detail these 2 processes, formulate the optimisation problem and present 

methods to derive its optima.  

 

Capacity Demand 
 

The demand for the insurer’s capacity K(t, r(t)) can be analysed in 2 parts: the business flow 

shown to and quoted by the insurer N(t), and the demand function d(t, r(t)) which reflects the 

acceptance level of quotes by prospects. 

 

The demand for capacity at time t for a given r(t) is therefore K(t, r(t)) = N(t) d(t, r(t)). 

 

Business Flow 

 

The business flow is the flow of requests for the insurer’s capacity, i.e. demand for quotes. It is 

modelled by a stochastic process N(t) which varies over time according to:  

 

 the overall demand for the insurance products sold by the insurer. 

 the effectiveness of the marketing and distribution network. 

 seasonal fluctuations (e.g. large renewal months). 

 

N(t) is typically modelled with Poisson λ(t), Mixed Poisson Λ(t) (e.g. Negative Binomial) or 

Geometric Brownian (µt, σt) processes. The model formulation and estimation can be derived 

from historical observations, after allowing for anticipated trends and future changes in the 

business flow process. 
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Demand Function 

 

The demand function d(t, r(t)) reflects the price-elasticity relationship between the level of 

required return r(t) and the quantity of capacity sold at that level. It can be described as the 

probability distribution for the market reservation price, which is the highest price at which a 

prospect is willing to accept a quote.  

 

The demand function depends on: 

 

 the competitive forces in the market place, determined by supply and demand. 

 the prospects’ utility function. 

 

Commonly used families of demand functions are: 

 

 Exponential survival functions d(t, r(t)) = e-r(t)/ν(t), and other Weibull survival functions: 

 Normal survival functions d(t, r(t))= 1-Фµ,σ(r(t)) 

 iso-elastic functions d(t, r(t)) = (1+r(t))-ν(t): 

 perfectly elastic functions, representing a single market clearing price. 

 

The form and parameters for the demand function can be inferred from empirical observations of 

“hit ratios” and/or using the quotations systems available in some markets such as UK Motor. 

 

Capacity Inventory 
 

Starting with a capacity of S, the capacity inventory process is defined as: 
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The capacity inventory is exhausted at a time τr,t,st at which point the demand process is turned 

off. 
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Optimal Pricing Strategy 
 

Optimisation Problem 

 

As noted in the introduction section, our optimisation problem is finding the pricing strategy r* 

which maximises the expected profits process Π*(t, st). This is summarised in Equation (1): 
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We will limit our range for r(t) to [0,+∞[ as a negative required return strategy of selling below 

the expected marginal cost is always strictly dominated by abstaining from selling capacity. 

 

Dynamic Programming 

 

Dynamic programming is concerned with dynamic systems and their optimisation over time, and 

we can use some of its classical results to find our optimal pricing strategy. Our optimisation 

problem is an example of dynamic programming, with s(t) as the state variable, r(t) as the control 

variable and Π(t, st) as the value function..  

 

The key idea in dynamic programming is the Principle of Optimality:  

 

“An optimal policy has the property that whatever the initial state and initial decision are, the 

remaining decisions must constitute an optimal policy with regard to the state resulting from the 

first decision” [1].  

 

This principle translates into the following recursive equation, known as the Optimality or 

Bellman Equation: 
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Closed-form solutions have been derived for particular formulations of N(t) and d(t, r(t)). For 

instance, 

 

 Gallego and van Ryzin [3]: time-invariant Poisson business flow with exponential 

demand functions. 

 Zhao and Zheng [12] for time-variant Poisson business flow with iso-elastic demand 

functions. 

 Xu and Hopp [10] for Geometric Brownian business flow with iso-elastic demand 

functions. 

 

But these solutions correspond only to a limited number of practical applications, and numerical 

solutions provide a more flexible alternative.  

 

Numerical Solutions: Backward Recursion Algorithm 

 

We compute our numerical solutions to the “discretised” optimisation problem using the 

backward recursion algorithm.  This approach consists in: 

 

1. solving Π*(T, sT) for each possible value of sT. 

2. solving Π*(T-1, sT-1) using the values computed for Π*(T, sT): the principle of optimality 

states that the solution r*(T-1) for Π*(T-1, sT-1) will also maximise Π*(T, sT-1-K(r*(T-1), 

d(T-1, r*(T-1)))). 

3. solving Π*(t, st) for t=1…T-2 using the same iterative process.   

 

The advantage of the backward recursion approach is its computational efficiency, resulting from 

the principle of optimality. 
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Comparative Analysis 
 

 

In this section, we apply the revenue management approach to a simple but realistic case study 

and compare the performance of different pricing strategies:  

 

 1 based on shareholders’ expectations. 

 1 based on market returns. 

 3 revenue management strategies6: the first one static constant for the year, the second 

static but variable for each month and the third one dynamic re-parameterised each 

month. 

 

Case Study Scenario 
 

The assumptions of our case study are as follows: 

 

 insurer: 

 mono-line insurer. 

 capacity constraint based on underwriting decisions (the actual capital allocation 

formula is not relevant). 

 shareholders’ expectations: 15% return on equity. 

 capacity: 

 fixed capacity of $ 1bn. 

 capacity is sold by blocks of $ 1m. 

 time period: 

 one underwriting year with 12 monthly periods. 

 business flow: 

 business flow process is Negative Binomial ($ 450m, 0.2) with an expected value of 

$ 1.8bn and standard deviation of $ 95m. The simulations are plotted in graph [1]. 
                                                 
6 we call revenue management strategy any optimal strategy derived from the revenue management 
framework (i.e. integrating market conditions and expected demand); we get different “optimal strategies” 
depending on the context of the optimisation problem, for instance: 
- we can get the optimal fixed constant charge for the year, or allow the charge to vary monthly. 
- we can get a static or dynamic strategy: a static strategy is set at the beginning of the period and 

remains unchanged, whereas a dynamic strategy is reset periodically using the latest information 
available. 
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 monthly business flows follow a seasonal pattern (cf. graph [2]), with each month 

simulated as a Negative Binomial variable. 

 demand function: 

 survival function of a Normal(µ(t), 3.5%) (cf. graph [3] with µ=5%); the Normal 

function has the advantage of being symmetrical and allowing negative capacity 

charges.  

 µ(t) is the average market reservation price; it can be interpreted as the market return 

in month t. 

 market conditions: 

 the market return µ(t) is decreasing linearly from 10% capacity charge in month 1 to 

5% in month 12 (cf. graph [4]). 

 discount rate: 

 5% p.a. constant over the year. 

 

Graph 1: Total Business Flow Simulations
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Graph 3: Demand Function µ=5.0% σ=3.5%
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Graph 4: Market Return by Month
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Alternative Strategies 
 

To respond to the questions specified in introduction, we have compared the performance of the 

following 5 pricing strategies: 

 

 Strategy 1: “charge 15% return for the year”: 

 a fixed charge r for the year, based on the target return to the shareholders of 15%. 

 r= 15% for t=1 to 12. 

 Strategy 2: “charge the market return each month” :  

 a variable charge r(t) based on the anticipated market conditions for each month. 

 r(t)= µ(t) for t=1 to 12 

 Strategy 3: “charge the demand-driven price for the year”:   

 a fixed charge r based on the anticipated market conditions and the expected demand 

for the year. 

 r is determined using static revenue management for the year. 

 market conditions are determined by the weighted average µ(t) for year. 

 expected demand is determined by the expected total business flow of $ 1.8bn and by 

the insurer’s demand function. 

 Strategy 4: “charge the demand-driven price each month”   

 a variable charge r(t) based on the anticipated market conditions and the expected 

demand for each month. 

 r(t) is determined using static revenue management for each month. 

 market conditions are determined by µ(t) t=1 to 12. 

 expected demand is determined by the expected business flow N(t) for each month 

and by the insurer’s demand function. 

 Strategy 5: “charge the re-forecast demand-driven price each month” 

 a variable charge r(t), recomputed at the end of each month based on 

1. actual writings to date and remaining capacity inventory. 

2. anticipated market conditions and expected demand for rest of the year. 

 r(t) is determined using dynamic revenue management for each month. 

 market conditions are determined by µ(t) t=1 to 12. 

 expected demand is determined by the expected business flow N(t) for each t=1 to 12 

and by the insurer’s demand function. 
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The behaviour of these 5 strategies is illustrated on the example detailed in graph [5] and [6]. 

Graph [5] shows the simulated path for the business flow N(t); the total business flow is $ 

1.869m. Graph [6] plots the values of r(t) under the 5 strategies.   

 

Graph 5: Simulated Monthly Business Flow
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Graph 6: r(t) By Strategy
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 Strategy 1 is a flat r(t)=15% for the year. 

 Strategy 2 is a linear decrease in r(t) from 10% down to 5%, reflecting the evolution of 

µ(t) over the months. 

 Strategy 3 is a flat 7.6% for the year; 7.6% being the revenue management optimum for 

the year based on the weighted average µ(t) for year (which is 8.1%). 

 Strategy 4 is the revenue management optimum strategy based on the initial expectations 

for N(t). 

 Strategy 5 is also the revenue management optimum but re-parameterised at time t based 

on the remaining capacity inventory (we assumed that the anticipations for the demand 

functions, business flow and market conditions are not changed over the year). 

 

We can note that Strategy 5 suggests higher r(t) than Strategy 4: this results from the higher than 

expected business flow, which translates into a lower capacity inventory sold at a higher price. 
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Results 
 

Table [1] compares the results for the 5 strategies over 1,000 simulations. For each simulation, 

the business flow N(t) is the only stochastic variable as we have assumed that the demand 

function was deterministic.  

 

Table 1 Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 

      

r  15.0% 8.1% 7.6% 7.6% 7.6% 

K $m 65 920 973 977 995 

Π $m 9.7 71.6 73.0 74.8 75.5 

      

 

with:  
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We note first that none of the strategies achieves the market return of 8.1% (i.e. weighted average 

µ(t)). This is due to the fact that the expected business flow of $ 1.8bn is low in relation to the $ 

1.0bn capacity; the company has to provide a discount on the market return to sell more and 

maximise its expected profits. 

 

Comparing the different strategies, we can observe that: 

 

 Strategies 2-5 based on market conditions are superior to Strategy 1, which is based on 

shareholders’ expectations over the cycle. 

 Strategies 3-5 based on market conditions and expected demand are superior to Strategy 

2, which only integrates market conditions. 
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 Strategies 4-5 are superior to Strategy 3, as they are refined to include the monthly 

patterns in capacity demand and market conditions. 

 Strategy 5 is superior to Strategy 4, because capacity charges are set dynamically to 

incorporate the latest capacity inventory information. 

 

As could have been expected intuitively, the optimal pricing strategy is the dynamic revenue 

management approach. 
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Insurance Cycle Applications 
 

 

In this section, we detail practical applications of the revenue management approach to the 

management of the insurance cycle. 

 

Optimal Pricing Strategy 
 

We can use our model to investigate the optimal pricing strategy for the different stages of the 

insurance cycle. For this purpose, we have computed the optimal pricing strategy for various level 

of µ(t), kept constant for the year7.  

 

Graph [7] plots the average required return r* and graph [8] the PV Profit Π* in $ m for different 

level of market returns µ(t). They illustrate how an insurer can adapt to the different market 

conditions over the insurance cycle, in order to maximise its expected profits. 

 

Graph 7: Average Charge r* by Market Returns µ 
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Graph 8: PV Profit Π* by Market Returns µ 
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We can observe that the optimal approach to negative market returns consists in setting r so that it 

captures and maximises the returns on the few accounts with a positive return. In practice this 

means a low but positive capacity charge.  

 

                                                 
7 all the other parameters as in the case study. 
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Optimal Capacity Strategy 
 

As discussed in introduction, a revenue management framework similar to the one presented can 

be utilised to optimise the insurer’s amount of capacity to achieve a target return on equity for its 

shareholders over the cycle8. For this purpose, we have computed the optimal capacity strategy in 

order to achieve a 15% return on equity for various level of µ(t), kept constant for the year9.  

 

Graph [9] plots the capacity S* and graph [10] the PV Profit Π* in $ m for different level of 

market returns µ(t).  

 

Graph 9: Capacity S* by Market Returns µ 
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Graph 10: PV Profit Π* by Market Returns µ 
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These graphs illustrate how an insurer can adapt to the different market conditions over the 

insurance cycle, in order to meet a target return on equity for its shareholders.  

 

Although adjusting capacity is more problematic than adjusting capacity charges, one could 

envisage that this could be partially achieved through a flexible reinsurance programme and/or a 

proactive capital management policy (e.g. dividends, buybacks, flexible debt/equity 

arrangements…). 

 

We can remark that the adjustments required to achieve the 15% target return on equity are fairly 

dramatic; and it becomes impossible for the insurer to achieve a 15% return on equity when the 

market returns are lower or equal to 5%.  

 

                                                 
8 all the other parameters as in the case study. 
9 all the other parameters as in the case study. 
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Strategic Marketing Decision 
 

We can also use our revenue management framework to assess the outcome of strategic 

decisions. For instance, we can compare the impact of a marketing campaign to increase business 

flow by 25% at different times in the insurance cycle10.  

 

Graph [11] plots the marginal increase in sales and [12] shows the marginal benefit of the 

campaign in $ m for different level of market returns µ(t). 

 

Graph 11: Marginal Sales K* by Market Returns µ 
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Graph 12: Marginal Profit Π* by Market Returns µ 
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We can note that the improvement in sales resulting from the increased business flow is the most 

significant when the market returns are between 0.0% and 5.0%, and nil above that level because 

the inventory would have been entirely sold without the marketing efforts.  

 

The marginal profit, however, is most impacted for market returns greater than 5.0%, as the 

insurer is able to sell all its capacity and attract a higher return on it. 

                                                 
10 all the other parameters as in the case study. 
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Conclusion 
 

 

Our investigation has provided very insightful results, which challenge some of the current 

pricing practices. For an insurer deploying a fixed amount of insurance capacity over a period of 

time, we constructed revenue management strategies based on market conditions and expected 

demand, and observed that: 

 

 these strategies were superior to other strategies based on the target return to shareholders 

or market conditions alone; as a result: 

 companies should vary their capacity charge over time, as market conditions change.  

 multi-line companies should adopt specific capacity charges for each business 

segment.  

 pricing analyses should not be done independently of market conditions and expected 

demand; on the contrary, intelligence and research in these fields should be a key part 

of the pricing strategy.  

 dynamic strategies delivered better results than static ones: 

 integrating anticipations of future market conditions helps maximise the return on a 

limited insurance capacity by ensuring that it is sold at the best rates. 

 regular re-parameterisation helps integrate the latest information on capacity 

inventory and adjust the strategy accordingly. 

 an insurer can maximise its expected profits over the insurance cycle by adapting its 

capacity charge to market conditions, and expect a profit even when market returns are 

negative. 

 alternatively, this insurer can target a return on equity to its shareholders and adjust its 

capacity accordingly. 

 

To derive these conclusions we have used a revenue management framework, similar to those 

developed in other industries (e.g. airlines, hotels…). In these industries, revenue management 

has an essential piece of the pricing strategy. This framework proved very valuable and practical, 

and we are expecting that insurers will start implementing these techniques to enhance their 

competitive strategy.  
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