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Overview

Robotic loss reserving
What is it?
Why is it of interest?

Requirements of a robot
Main components of the robot
Robot supervision
Future development
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Robotic loss reserving – what is it?

P&C loss reserving
Estimation of liabilities for incurred but incomplete claims

Central estimate (i.e. mean value)
Stochastic properties (statistical distribution of the amount of
liability)

Robotic (or adaptive) loss reserving
Software that will produce this output over a sequence of 
valuation dates

Without human intervention
With no significant loss of accuracy due to lack of intervention
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Robotic loss reserving – why is it of 
interest?

Valuation revolving door
Many insurers now wish to conduct frequent liability valuations

e.g. quarterly
They may have 50 or more lines and sub-lines of business recognised 
for valuation purposes

These require separate identification of valuation liabilities because of 
structurally different models of the claim process

These may have many segments 
State, distribution channel, etc
These require separate identification of valuation liabilities for management 
and/or strategic reasons, e.g. profit measurement

These requirements mean that the performance of a quarterly 
valuation can take about 3 months

One valuation ends, another begins
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Robotic loss reserving – why is it of 
interest?

Valuation revolving door
Obvious advantages in automating such quarterly 
valuations
Once an insurer contemplates a move to monthly 
valuations, conventional actuarial valuation ceases 
to be feasible at all
A robot is the only option

6

Reserving by means of roll-forwards?

Rolling a valuation forward
Consider the case of full half-yearly valuations
Roll these forward to provide intermediate monthly valuations

Assume that each half-yearly valuation remains valid over the following 5 
months

Value of liabilities at any one of these months = 
Value at previous half-yearly valuation

less claims paid since then
plus allowance for claims incurred since then

Problem here is that the monthly series of loss reserves tends to 
run smoothly for 5-month periods with 6-monthly shocks

Roll-forwards not reliable
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Requirements of a robot
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Requirements of a robot

Must recognise changes in its environment
e.g. door is now closed instead of open as it was a 
minute ago

Must be able to respond appropriately to these 
changes

e.g. don’t attempt to pass through doorway without 
first taking action to open the door
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Requirements of a loss reserving robot

Must recognise changes in its environment, e.g.
The amplitude of the payment pattern tending to increase with 
increasing accident period
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Requirements of a loss reserving robot

Must recognise changes in its environment, e.g.
The amplitude of the payment pattern tending to increase with 
increasing accident period

example of Payment per Claim Incurred (PPCI) by accident year
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Requirements of a loss reserving robot

Must recognise changes in its environment, e.g.
The amplitude of the payment pattern tending to increase with 
increasing accident period
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Requirements of a loss reserving robot

Must recognise changes in its environment, e.g.
The amplitude of the payment pattern tending to increase with 
increasing accident period

example of Payment per Claim Incurred (PPCI) by accident year
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Requirements of a loss reserving robot

Must recognise changes in its environment, e.g.
The amplitude of the payment pattern tending to increase with 
increasing accident period

example of Payment per Claim Incurred (PPCI) by accident year
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Requirements of a loss reserving robot

Must recognise changes in its environment, e.g.
The tail of the payment pattern tending to extend with 
increasing accident period
Case estimates tending to develop more rapidly in more recent 
accident periods

Must be able to respond appropriately to these changes
Model of claim process must evolve over time to reflect these 
changes

Robot design
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Main components of the robot

Evolutionary 
Model 1

Evolutionary 
Model 2

Evolutionary 
Model m…

Estimates of loss reserve
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Main components of the robot

Evolutionary 
Model 1

Evolutionary 
Model 2

Evolutionary 
Model m…

Estimates of loss reserve

Bootstrap of 
Model 1

Bootstrap of 
Model 2

Bootstrap of 
Model m…

Distributions of estimates of loss reserve
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Main components of the robot

Evolutionary 
Model 1

Evolutionary 
Model 2

Evolutionary 
Model m…

Blender

Estimates of loss reserve

Bootstrap of 
Model 1

Bootstrap of 
Model 2

Bootstrap of 
Model m…

Distributions of estimates of loss reserve

Single estimate of loss reserve 
with distribution
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Main components of the robot

Evolutionary 
Model 1

Evolutionary 
Model 2

Evolutionary 
Model m…

Blender

Estimates of loss reserve

Bootstrap of 
Model 1

Bootstrap of 
Model 2

Bootstrap of 
Model m…

Distributions of estimates of loss reserve

Single estimate of loss reserve 
with distribution

Taylor & McGuire (2007)
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Main components of the robot

Evolutionary 
Model 1

Evolutionary 
Model 2

Evolutionary 
Model m…

Blender

Estimates of loss reserve

Bootstrap of 
Model 1

Bootstrap of 
Model 2

Bootstrap of 
Model m…

Distributions of estimates of loss reserve

Single estimate of loss reserve 
with distribution

Robot

supervision
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Evolutionary models

These are Dynamic Generalised Linear 
Models (DGLMs)
Model form is:

yt = h-1(Xt βt) + εt [GLM for period t]

Data 
vector

Link 
function

Design 
matrix

Parameter 
vector

Centred 
stochastic 

error
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Evolutionary models

These are Dynamic Generalised Linear 
Models (DGLMs)
Model form is:

yt = h-1(Xt βt) + εt [GLM for period t]

βt+1 = Gt βt + ηt [parameter evolution]

Data 
vector

Link 
function

Design 
matrix

Parameter 
vector

Centred 
stochastic 

error

Matrix
Centred stochastic 

perturbation
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Evolutionary models

These are Dynamic Generalised Linear 
Models (DGLMs)
Model form is:

yt = h-1(Xt βt) + εt [GLM for period t]

βt+1 = Gt βt + ηt [parameter evolution]

Data 
vector

Link 
function

Design 
matrix

Parameter 
vector

Centred 
stochastic 

error

Matrix (identity 
in our case)

Centred stochastic 
perturbation

e.g. row of a 
run-off 
triangle
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Forecasts 

Forecast of yt+1 by means of adaptive filter
Hence “adaptive reserving”

Notation:  let
Yt|s = E(Yt|data from 0,1,…,s)

Estimate
Yt|t = Yt|t-1 + Kt {yt - Yt|t-1}

or (depending on link function and error terms)
Yt|t = Yt|t-1 + Kt {[DIAG Yt|t-1]-1 yt – 1}

Gain 
matrix

Realised 
value of Yt
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Adaptive filter
This is a second order approximation to 
Bayesian updating of the parameter vector βt
(Taylor, 2008)
It holds for following cases

gammagammalog

gammaPoissonlog

normalnormalidentity

ηεh
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Adaptive filter
This is a second order approximation to 
Bayesian updating of the parameter vector βt
(Taylor, 2008)
It holds for following cases

gammagammalog

gammaPoissonlog

normalnormalidentity

ηεh

Kalman
filter
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Adaptive filter (cont’d)

Proceed in 3 stages updating 1-step-ahead forecast 
from Yt|t-1 to Yt+1|t

Update Yt|t-1 Yt|t as just illustrated
Also update Var[Yt|t-1] Var[Yt|t]
Extract updated parameter estimate βt|t
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Adaptive filter (cont’d)

Proceed in 3 stages updating 1-step-ahead forecast 
from Yt|t-1 to Yt+1|t

Update Yt|t-1 Yt|t as just illustrated
Also update Var[Yt|t-1] Var[Yt|t]
Extract updated parameter estimate βt|t

Update βt|t βt+1|t by means of formula for assumed 
parameter evolution (in our case βt+1|t = βt|t)

Also update Var[βt|t] Var[βt+1|t]
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Adaptive filter (cont’d)

Proceed in 3 stages updating 1-step-ahead forecast 
from Yt|t-1 to Yt+1|t

Update Yt|t-1 Yt|t as just illustrated
Also update Var[Yt|t-1] Var[Yt|t]
Extract updated parameter estimate βt|t

Update βt|t βt+1|t by means of formula for assumed 
parameter evolution (in our case βt+1|t = βt|t)

Also update Var[βt|t] Var[βt+1|t]
Update Yt|t Y t+1|t using βt+1|t

Also update Var[Yt|t] Var[Yt+1|t]
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Adaptive filter (cont’d)

Proceed in 3 stages updating 1-step-ahead forecast 
from Yt|t-1 to Yt+1|t

Update Yt|t-1 Yt|t as just illustrated
Also update Var[Yt|t-1] Var[Yt|t]
Extract updated parameter estimate βt|t

Update βt|t βt+1|t by means of formula for assumed 
parameter evolution (in our case βt+1|t = βt|t)

Also update Var[βt|t] Var[βt+1|t]
Update Yt|t Y t+1|t using βt+1|t

Also update Var[Yt|t] Var[Yt+1|t]
Iterate 
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Adaptive filter - examples

PPCI (actual and filtered)
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Adaptive filter - examples

PPCI (actual and filtered)
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Adaptive filter - examples

PPCI (actual and filtered)
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Adaptive filter - examples

PPCI (actual and filtered)
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Adaptive filter - examples

PPCI (actual and filtered)
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Adaptive filter - examples

PPCI (actual and filtered)
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Bootstrapping 

38

Bootstrapping a filter
Recall standard form of 
bootstrap for regression model Data Y

Residuals
R=Y-Xβ̂

R*=
Randomised 

residuals

Pseudo-data 
Y*=Xβ+R*^

Pseudo-
estimate β*^

Iterate 

Distribution 
of β̂
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Bootstrapping a filter
Recall standard form of 
bootstrap for regression model 
(adapted to filter)

Data Y

Residuals
Rt|t-1=Yt-Xtβt|t-1

Rt|t-1*=
Randomised 

residuals

Pseudo-data 
Yt*=Xtβt|t-1 +Rt|t-1*

Pseudo-estimate 
βt|t-1*, t=1,2,…

Iterate 

Distribution 
of βt|t-1
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Bootstrapping a filter
Recall standard form of 
bootstrap for regression model 
(adapted to filter)
Problem here is that bootstrap 
assumes components of 
residual vector R are 
independent
For a filter

Rt|t-1 = Yt – Xt βt|t-1
The components of Rt|t-1 are 
NOT independent because  
βt|t-1 has been calculated from 
Rt-1|t-2,   Rt-2|t-3,…

Data Y

Residuals
Rt|t-1=Yt-Xtβt|t-1

Rt|t-1*=
Randomised 

residuals

Pseudo-data 
Yt*=Xtβt|t-1 +Rt|t-1*

Pseudo-estimate 
βt|t-1*, t=1,2,…

Iterate 

Distribution 
of βt|t-1
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Bootstrapping a filter – correct version

Procedure provided by 
Stoffer & Wall (1991)
Let 

Lt|t-1 = Var [Rt|t-1]
Standardised innovations 
are i.i.d.

Data Y

“Innovations”
Rt|t-1=Yt-Xtβt|t-1

Standardised 
innovations

et|t-1 = L-1
t|t-1 Rt|t-1

et|t-1*= randomised 
standardised innovations
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Bootstrapping a filter – correct version

Procedure provided by 
Stoffer & Wall (1991)
Let 

Lt|t-1 = Var [Rt|t-1]
Standardised innovations 
are i.i.d.
Note there is no need for 
pseudo-data

Filter is updated from t-1 to 
t using innovations only

Data Y

“Innovations”
Rt|t-1=Yt-Xtβt|t-1

Standardised 
innovations

et|t-1 = L-1
t|t-1 Rt|t-1

et|t-1*= randomised 
standardised innovations

Pseudo-estimate 
βt|t-1*, t=1,2,…

Iterate 

Distribution 
of βt|t-1

One complete 
pass of filter
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Example results of bootstrapping

Using 3 forms of model
PPCI

Payments per claim incurred
Payment based

PPCF
Payments per claim finalised
Sensitive to the rate of 
settlement of claims

PCE
Projected case estimates
Sensitive to case estimates 

Accident
year Mean CV Mean CV Mean CV

1 8 240% 132 55% 22 105%
2 20 213% 242 47% 56 108%
3 58 169% 165 58% 23 98%
4 110 132% 268 47% 70 90%
5 242 107% 861 30% 317 62%
6 291 74% 1,216 27% 671 64%
7 678 57% 1,257 27% 799 44%
8 817 52% 1,672 27% 1,319 40%
9 2,259 48% 3,366 25% 2,040 32%

10 3,544 48% 3,510 22% 2,368 31%
11 6,366 48% 6,041 21% 5,480 31%
12 7,182 44% 6,742 20% 6,700 31%
13 8,544 43% 8,664 21% 7,234 33%
14 9,001 43% 9,015 21% 3,749 98%

Total ex 14 30,119 34,136 27,099
Total 50,988 42% 41,721 18% 29,366 22%

PPCI PPCF PCE

39,120 30,84843,151

44

Example results of bootstrapping

PPCI PPCF

Model blending
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Model blending – inputs 

Results after filtering and bootstrapping m 
models consist of:

m sets of estimates of liability by accident year
m associated sets of standard errors of prediction
Case estimates by accident year

47

Model blending

Let
Li

(j) = estimated liability for accident year i from 
model j

Take final estimates as
Li = ∑m

j=1 wi
(j) Li

(j)

with
wi

(j) ≥ 0
∑m

j=1 wi
(j) = 1
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Model blending - criteria

We would like
MSEP[L] to be small where L = ∑i Li

∑i Δ2 wi
(j) to be small for each j

Smooth weights for each model

∑i Δ2 [log Li/Ci] to be small where Ci denotes case 
estimates for accident year i

Smooth relation of final estimates to case estimates over 
accident years



17

49

Model blending – objective function

Problem addressed by Taylor (1985, 2000)
Minimise the objective function

Q = MSEP[L] + k1 ∑j ∑i Δ2 wi
(j) + k2 ∑i Δ2 [log Li/Ci]

with respect to the wi
(j), where k1, k2 are pre-

determined constants that assign weight to the 
smoothness criteria
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Model blending – example of results
Accident

year Mean CV Mean CV Mean CV Mean CV

1 8 240% 132 55% 22 105% 22 104%
2 20 213% 242 47% 56 108% 56 107%
3 58 169% 165 58% 23 98% 24 96%
4 110 132% 268 47% 70 90% 70 90%
5 242 107% 861 30% 317 62% 324 60%
6 291 74% 1,216 27% 671 64% 702 58%
7 678 57% 1,257 27% 799 44% 847 38%
8 817 52% 1,672 27% 1,319 40% 1,375 32%
9 2,259 48% 3,366 25% 2,040 32% 2,317 24%

10 3,544 48% 3,510 22% 2,368 31% 2,672 21%
11 6,366 48% 6,041 21% 5,480 31% 5,712 20%
12 7,182 44% 6,742 20% 6,700 31% 6,771 18%
13 8,544 43% 8,664 21% 7,234 33% 8,035 17%
14 9,001 43% 9,015 21% 3,749 98% 7,963 20%

Total ex 14 30,119 34,136 27,099 28,927
Total 50,988 42% 41,721 18% 29,366 22% 36,891 13%

PPCI PPCF PCE Blended

N.B. smaller than for any individual model

39,120 30,84843,151 36,890
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Model blending – example of results
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Robot supervision

53

Need for supervision

Robots affect business bottom line
Need for strict supervision
This takes the form of exception reporting

Using a range of diagnostics to test whether 
experience is deviating too far from model 
predictions
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Example of supervision diagnostics

* (5-10%)105%74.978.7Total 

*** (<1%)121%21.025.42007

:::::

:::::

(>10%)44%1.60.71991

Significance Actual: 
forecast

Forecast 
($M)

Actual 
($M)

Claim payments in latest periodAccident 
year
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Further development

56

Ample scope for further development

Filter has been applied to accident periods 
(rows)

Could investigate application to diagonals
This could filter superimposed inflation parameters
Project currently under way
Appears more difficult
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Further development (cont’d)

Test performance of GLM filter against obvious 
alternatives

MCMC
Project currently under way

Particle filters
Neural nets

See e.g. Mulquiney (2006)
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Further development (cont’d)

Filter applied here to aggregate claim models
Try application to micro-models (individual 
claims)

Excluding case estimate information (Taylor & 
McGuire, 2004)
Including case estimate information (Taylor, McGuire 
& Sullivan, 2007)

59

Questions?

60
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