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1 Abstract 
Under the European Union’s Solvency II regulations, insurance firms are required to use a 
one-year VaR (Value at Risk) approach.  This involves a one-year projection of the balance 
sheet and requires sufficient capital to be solvent in 99.5% of outcomes. The Solvency II 
Internal Model risk calibrations require annual changes in market indices / term structure for 
the estimation of the risk distribution for each of the Internal Model risk drivers. This presents 
a significant challenge for calibrators in terms of: 

• Robustness of the calibration that is relevant to the current market regimes and at the 
same time able to represent the historically observed worst crisis; 

• Stability of the calibration model year on year with arrival of new information; 

The above points need careful consideration to avoid credibility issues with the SCR 
calculation, in that the results are subject to high levels of uncertainty.  

For market risks, common industry practice to compensate for the limited number of historic 
annual data points is to use overlapping annual changes. Overlapping changes are dependent 
on each other and this dependence can cause issues in estimation, statistical testing and 
communication of the uncertainty levels around the risk calibrations. 

This paper discusses the issues with the use of overlapping data when producing risk 
calibrations for an Internal Model. A comparison of the overlapping data approach with the 
alternative non-overlapping data approach is presented. The comparison is made by 
comparing the bias and mean square error of the first four cumulants under four different 
statistical models. For some statistical models it is found that overlapping data can be used 
with bias corrections to give similarly unbiased results as non-overlapping data; but with 
significantly lower mean square errors. For more complex statistical models (e.g. GARCH) it 
is found that published bias corrections for non-overlapping and overlapping data sets do not 
result in unbiased cumulant estimates and/or leads to increased variance of the process. 

In order to test the goodness of fit of probability distributions to data sets it is common to use 
statistical tests.  Most such tests do not function when using overlapping data as overlapping 
data breaches the independence assumption underlying most statistical tests. We present and 
test an adjustment to one of the statistical tests (the Kolmogorov Smirnov goodness-of-fit test) 
to allow for overlapping data. 

Finally, we explore methods of converting "high" frequency (e.g. monthly data) to "low" 
frequency data (e.g. annual data). This is an alternative methodology to using overlapping 
data and the approach of fitting a statistical model to monthly data and then using the monthly 
model aggregated over twelve-time steps to model annual returns is explored. There are a 
number of methods available for this approach. We explore two of the widely used approaches 
for aggregating the time series.  
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2 Executive Summary 
2.1 Overview 
Under the European Solvency II regulations insurance firms are required to calculate a one-
year Value at Risk (VaR) of their balance sheet to a 1 in 200 level.  This involves a one-year 
projection of a market consistent balance sheet and requires sufficient capital to be solvent in 
99.5% of outcomes. In order to calculate 1-year 99.5th percentile VaR, a significant volume of 
1-year non-overlapping data is needed. In practice there is often a limited amount of relevant 
market data for market risk calibrations and an even more limited reliable and relevant data 
history for insurance / operational risks. 

Two of the key issues with the available market data are: 

• The dataset available may be relatively longer (e.g. for corporate credit spread risk, 
Moody’s Default and Downgrade data are available from 19191), but data may not be 
directly relevant or not granular enough for risk calibration. 

• Dataset may be very relevant to the risk exposure and granular as required, but data 
length is not sufficient, e.g. for corporate credit spread risk, Merrill Lynch or Iboxx data 
are available from 1996 or 2006 respectively. 

As a consequence, practitioners need to make expert judgements about whether to: 

• use overlapping data or non-overlapping data.  If overlapping data is used then is there 
any adjustment that can be made to the probability distribution calibrations and 
statistical tests to ensure that the calibration is still fit for purpose; or 

• use non-overlapping data with higher frequency than annual (e.g. monthly) and extract 
the statistical properties of this data which can allow us to aggregate the time series to 
lower frequency (e.g. annual) time series. 

In section 4 of this paper we consider adjustments to correct for bias in probability distributions 
calibrated using overlapping data.  In section 5 adjustments to statistical tests are defined and 
tested.  In section 6, the issues with using data periods shorter than a year and then 
aggregating to produce annualised calibrations are considered.  

2.2 Calibrating probability distributions using overlapping data  
Section 4 discusses the issues of probability distribution calibration using overlapping data.  
Adjustments to probability distribution calibrations using overlapping data in academic 
literature are presented and tested in a simulation study. We analysed the impact on cumulant 
bias and mean squared (MSE) for some of the well-known statistical processes, namely 
Brownian, Normal Inverse Gaussian (special case of Levy process), ARMA and GARCH 
processes under both overlapping and non-overlapping data approaches. We have analysed 
the impact on cumulants after applying corrections outlined by Heng/Sun/Nelken (2009) and 
Cochrane (1988).  The simulation study involves producing computer generated data and 
comparing the different approaches to estimating the known values of the cumulants. 

Cumulants are similar to moments and are properties of random variables. The first three 
cumulants: mean, variance and skewness are well-known and the same as the first three 
central moments. The fourth cumulant is the fourth central moment minus 3*variance^2.  The 
cumulants (and derived moments) are widely used in calibrating the probability distribution 
using Method of Moments style calibration approaches.  As with moments, the cumulants 

                                                           
1 Note: Many datasets may be available for circa 100 years which could be considered sufficient, however it is 
possible that there exists materially wide confidence interval in the 1-in-200 point. 
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uniquely define the calibration of a probability distribution within particular parameterised 
distribution families. 

The key conclusions from the simulation study for the processes outlined above are: 

• Using published bias adjustments both overlapping and non-overlapping data can be 
used to give unbiased estimates of statistical models where monthly returns are not 
auto correlated.  Where returns are auto correlated bias are more complex for both 
overlapping and non-overlapping data. 

• In general, overlapping data is more likely to be closer to the exact answer than non-
overlapping data. By using more of the available data, overlapping data generally gives 
cumulant estimates with lower mean square error than using non-overlapping data. 

2.3 Statistical tests using overlapping data 
In section 5, we have defined and tested an adjustment to a statistical test to allow for 
overlapping data. 

To test whether a probability distribution fitted to a data set is a good fit to the data, it is 
common to apply a statistical test. Many statistical tests have an assumption that the 
underlying data is independent, which is clearly not the case for overlapping data.   

Using the Kolmogorov Smirnov (KS) statistical test an adjustment is proposed to this test to 
allow for overlapping data. This adjustment is tested using simulated data and the results 
presented. 

The results of the testing indicate the proposed adjustment for overlapping data to the KS test 
has a rejection rate consistent with the test functioning as intended. 

2.4 Alternative to annual data  
An alternative to using annual data is to use a higher frequency “monthly” data and then 
“annualise” it (i.e. convert the results from the monthly data into annual data results). The 
issues with this approach are considered in section 6. Higher frequency data has the 
advantages of having more data points and no issues with overlapping data. The main 
disadvantage is the non-annual data needs to be annualised, which comes with its own 
limitations. We have considered the following possible solutions: 

• Use of non-overlapping monthly data and annualise using empirical correlation that is 
present in the time series (see section 6.2 for further details). The key points to note 
from the use of annualisation are: 

• This technique involves: 

o fitting a probability distribution to monthly data;   

o simulating a large computer-generated data set from this fitted 
model/distribution; and 

o aggregating the simulated monthly returns into annual returns using a 
copula or other relevant techniques. 

• It utilises all the data points and therefore would not miss any information that is 
present in the data and in absence of information on the future data trends would 
lead to a more stable calibration overall. 
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• In the dataset we explored, it improves the fits considerably in comparison to 
non-overlapping data or monthly annual overlapping data because of the large 
simulated data used in the calibration. 

• However, it does not remove the autocorrelation issue completely (as monthly 
non-overlapping data or for that matter any “high” frequency data could be 
autocorrelated) and does not handle the issues around volatility clustering. 

• Use of statistical techniques such as “temporal aggregation” (section 6.4). The key 
points to note from the use of temporal aggregation are: 

• Temporal aggregation involves fitting a time series model to monthly data; then 
using this time series model to model annual data;  

• It utilises as much data as possible without any key events being missed; 

• It improves the fit to the empirical data and leads to a stable calibration; 

• It can handle data with volatility clustering and autocorrelation;  

• However, it suffers from issues such as possible loss of information during the 
increased number of data transformations and is complex to understand and 
communicate to stakeholders. 

• Use of autocorrelation adjustment (or “de-smoothing” the data). This technique is not 
covered here as this is a widely researched topic (Marcatoo, 2003). However, a similar 
technique by (Heng Sun Nelken, 2009) has been used in section 4which corrects for 
bias in the estimate of the variance of the data. 

2.5 Conclusions 
The key messages concluded from this paper are: 

• There is a constant struggle between finding relevant data for risk calibration and 
sufficient data for a robust calibration; 

• Using overlapping data is acceptable for Internal Model calibration, however 
communication of uncertainty in the model and parameters to the stakeholder is 
important; 

• There are some credible alternatives to using overlapping data such as temporal 
aggregation and annualization, however these alternatives bring their own 
limitations and understanding of these limitations is key to using these alternatives. 
We recommend to considering the comparison of the calibration using both non-
overlapping monthly data annualised with overlapping annual data and discuss the 
advantages, robustness and limitations of both the approaches with stakeholders 
before finalising the calibration approach. 

2.6 Future Work 
Further efforts are required in the following areas: 

• Diversification benefit using internal models is one of the key discussion topics 
amongst industry participants. So far, we have only analysed univariate time 
series. Further efforts are required in terms of analysing the impact of overlapping 
data on covariance and correlation properties between two time-series.  
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• Similarly, the impact on statistical techniques such as dimension reduction 
techniques (e.g. PCA) needs investigation. Initial efforts can be made in terms of 
treating each dimension as a single univariate time series and apply various 
techniques such a temporal aggregation or annualisation and apply dimension 
reduction techniques on both overlapping and non-overlapping transformed data 
sets to understand the impact.  

• The impact on statistical tests other than the KS test have not been investigated.  
Nor has using different probability distributions than the Normal distribution for the 
KS test. Both of these areas could be investigated further using the methods 
covered in this paper. 

• Measurement of parameter and model uncertainty in the light of new information 
has not been investigated either for “annualization” method or for “temporal 
aggregation” method. 

  



8 
 

3 Overlapping Data: Econometric Literature Survey 
Within the finance literature, many authors have confronted the issue of having a scarcity of 
data with which to calibrate a multi-period econometric model. Several approaches have been 
developed which justify the use of historic observation periods that are overlapping. These 
approaches extend classical statistical theory, which often presumes that the various 
observations are independent of each other. It is often the case that the naïve statistics 
(constructed ignoring the dependence structure) are consistent (asymptotically tend towards 
the true parameters) like their classical counterparts but the standard errors are larger. 

Hansen & Hodrick (1980) examined the predictive power of 6-month forward FX rates. The 
period over which a regression is conducted is 6 months - yet monthly observations are readily 
available but clearly dependent. They derive the asymptotic distribution of the regression 
statistics using the Generalized Method of Moments (GMM, Hansen (1982)) which does not 
require independent errors. The regression statistics are consistent and GMM provides a 
formula for the standard error. This approach has proved influential, and several estimators 
have been developed for the resulting standard error: Hansen-Hodrick’s original, Newey & 
West (1987) and Hodrick (1992) being prominent examples. Newey & West errors have 
become the most commonly used in practice. 

However, the derived distribution of fitted statistics is only true asymptotically and the small-
sample behaviour is often unknown. Many authors use bootstrapping or Monte Carlo 
simulation, to help assess the degree of confidence to attach to a specific statistical solution. 
For example, one prominent strand of the finance literature has examined the power of current 
dividend yields to predict future equity returns. Ang & Bekaert (2006) and Wei & Weight (2013) 
show using Monte Carlo simulation that the standard approach of Newey & West errors 
produces a test size (i.e. probability of a Type I error) which is much worse than when using 
Hodrick (1992) errors. 

In addition to the asymptotic theory, there has also been work on small-sample behaviour. 
Cochrane (1988) examines the multi-year behaviour of a time series (GNP) for which quarterly 
data is available. He calculates the variance of this time series using overlapping time periods 
and computes the adjustment factor required to make this calculation unbiased in the case of 
a random walk. This adjustment factor generalises the n-1 denominator Bessel correction in 
the non-overlapping case. Kiesel, Perraudin & Taylor (2001) extend this approach to third and 
fourth cumulants. 

Müller (1993) conducts a theoretical investigation into the use of overlapping data to estimate 
statistics from time series. He concludes that while estimation of the sample mean is not 
improved by using overlapping rather than non-overlapping data, if the mean is known then 
the standard error of sample variance can be reduced by about 1/3 when using overlapping 
data. His analysis of sample variance is extended to the case of unknown mean, again with 
improvements of about 1/3, by Heng, Sun, Nelken et al (2009). Heng, Sun, Nelken et al also 
suggests an alternative approach of using the average of non-overlapping estimates. Like 
Cochrane and Müller, this leads to a reduction in variance of about 1/3 compared to using just 
non-overlapping data drawn from the full sample. 

Efforts have been made to understand the statistical properties and / or behaviour of the “high” 
frequency (e.g. monthly or daily data points) time series data to transform them into “low” 
frequency time series data (i.e. annual data points) via statistical techniques such as temporal 
aggregation. Initial efforts were made to understand the temporal aggregation of ARIMA 
processes and (Amemiya&Wu, 1972) lead the research in this area. (Feike_Drost_Nijman, 
1993) developed the closed form solutions for temporal aggregation of GARCH processes 
and described relationships between various ARIMA processes under “high” frequency and 
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their transformation under “low” frequency time series. (WSChan_etal, 2008) shows various 
aggregation techniques using equity returns (S&P500 data) and its impact on real-life 
situations. 
 
The Method of moments is not the only, and not necessarily the best, method for fitting 
distributions to data, with maximum likelihood being an alternative. There are some 
comparisons within the literature; we note the following points: 

• Maximum likelihood produces asymptotically efficient (lowest mean-squared error) 
parameter estimates, while in general the method of moments is less efficient. 

• Model mis-specification is a constant challenge, whatever method is used. Within a 
chosen distribution family, the moments may determine a distribution, but other 
distributions with the same moments, from a different family, may have different tail 
behaviour. For moment-based estimates, Bhattacharya’s inequality constrains the 
difference between two distributions with shared fourth moments, while as far as we 
know there are no corresponding results bounding mis-specification error for maximum 
likelihood estimates. 

• The method of moments often has the advantage of simpler calculation, and easy 
verification that a fitted distribution indeed replicates sample properties. 

• The adaptation of the maximum likelihood method to overlapping data does not seem 
to have been widely explored in the literature, while (as we have seen) various 
overlapping corrections have been published for method-of-moments estimates. For 
this reason, in the current paper, we have focused on moments / cumulants. 
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4 Simulation study – overlapping versus non-overlapping 
4.1 Background 
In this section, the results from a simulation study of the bias and mean square error present 
in the cumulant estimation using annual overlapping and non-overlapping data are presented.  
Cumulants are similar to moments (the first three cumulants are the mean, variance and 
skewness and are exactly the same for moments); further information about cumulants is 
given in the appendix. 

Using a methodology outlined in Jarvis et al 2016 monthly timeseries data are simulated from 
a known distribution (Reference model) for a given number of years data.  The first four 
cumulants based on annual data are then calculated by considering both non-overlapping 
annual returns as well as overlapping annual returns (overlapping by 11 out of 12 months).  
By comparing the results of these with the known cumulant values of the Reference model 
and averaging across 1000 simulations, the bias and mean square errors of the estimates can 
be compared.  This study is carried out using four different Reference models:   

• Brownian Process 

• Normal Inverse Gaussian Process 

• ARMA Process 

• Garch2 Process 

A high-level description of this process is: 

• Simulate a monthly time series of n years data from one of the four processes 
above; 

• Calculate annual returns using overlapping and non-overlapping data; 

• Calculate the first four cumulants of the annual returns (for overlapping and non-
overlapping data); 

• Compare the estimated cumulants with the known cumulants; 

• Repeat 1000 times to estimate the bias and mean square error of both overlapping 
and non-overlapping data. 

The analysis has been carried out for all years up to year 50 and the results are shown below.  
The results for the ARMA and Normal Inverse Gaussian are in Appendix B. 

4.2 Brownian process results 
This section shows the bias and mean square errors for the first four cumulants. 

                                                           
2 Garch (p,q) model specification is calibrated by making sure that |p+q|<1to ensure the time series remains 
stable. 
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4.2.1 First cumulant – the mean 

 

The plots above show the bias in the plot on the left and the mean square error on the plot on 
the right.  The overlapping and non-overlapping data estimates of the mean appear very 
similar and not obviously biased.  They also have very similar mean square errors across all 
years. 

4.2.2 Second cumulant – variance 
The second cumulant is the variance (with divisor n). 

 

The plot above on the left shows that the overlapping and non-overlapping estimates of the 
variance (with divisor n) are too low with similar bias levels for all terms.  This is more marked 
the lower the number of years data, and the bias appears to disappear as n gets larger. 

The plot on the left also shows the second cumulant but bias corrected, using a divisor (n-1) 
instead of n for the non-overlapping data and using the formula in (Heng, Sun, Nelken et al) 
for the overlapping data, as well as the Cochrane adjustment (Cochrane 1988) for overlapping 
data.  Both of these corrections appear to have removed the bias across all terms for 
overlapping and non-overlapping data. 
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The plot on the right shows the mean square errors for the two approaches, with overlapping 
data appearing to have lower mean square errors for all terms. 

4.2.3 Third cumulant 

 

Neither approach appears to have any systemic bias for the third cumulant. The mean square 
error is significantly higher for non-overlapping data than overlapping data. 

4.2.4 Fourth cumulant 

 

In this case the non-overlapping data appears to have a higher downward bias than 
overlapping data at all terms; both estimates appear biased.  The non-overlapping data has 
higher mean square error than the overlapping data. 

Plots of the bias and mean square error for the Normal Inverse Gaussian are given in Appendix 
B.  They are very similar to those of the Brownian process. 
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4.3 Garch results 
4.3.1 First cumulant – the mean 
 

 
 

The plots above show the bias in the plot on the left and the mean square error on the plot on 
the right. The overlapping and non-overlapping data estimates of the mean appear very similar 
after 20 years. Below 20 years, the data does show some bias under both overlapping and 
non-overlapping. They have very similar mean square errors after 10 years and below 10 
years non-overlapping data has comparatively marginally lower MSE. 

4.3.2 Second cumulant – variance 
The second cumulant is the variance (with divisor n). 

 
Both approaches have similar level of bias, particularly when available data is limited. The 
bias corrections now both overstate the variance particularly strongly for data sets with less 
than ten years data. The MSE for overlapping data appears to be materially lower than non-
overlapping data. 
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4.3.3 Third cumulant 
 

 
The non-overlapping data has both higher bias and MSE compared to overlapping data across 
all years. 

4.3.4 Fourth cumulant 

 
Non-overlapping data has lower bias compared to overlapping data, however overlapping data 
has lower MSE. 

4.4 Discussion of the simulation results 
The results above show the bias and mean square errors for the first four cumulants of each 
of the reference distributions.   

For the first cumulant the results are similar for all four reference distributions tested.  There 
is no obvious bias for either the non-overlapping or the overlapping data series.  The mean 
square error of the overlapping and non-overlapping series is at a similar level for both.  These 
results show that for estimation of the first cumulant both approaches perform similarly on the 
bias and mean square error tests and there is no need for any correction for bias. 

For the second cumulant the results vary for different reference models. 
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• For the Brownian and Normal Inverse Gaussian reference models, the non-
overlapping and overlapping are both downwardly biased to a similar extent.  In both 
cases the bias can be corrected for by using the Bessel correction for the non-
overlapping data, and the Cochrane (1988) or Heng Sun Nelken (2009) corrections for 
overlapping data.  The mean square error is lower for the overlapping data (due to the 
additional data included).  These results suggest that for the estimation of second 
cumulant the overlapping data performs better due to the lower mean square error, 
and so greater likelihood to be nearer to the true answer. 

  



16 
 

5 Statistical tests using overlapping data 
In this section the use of statistical tests with overlapping data is discussed.  An adjustment to 
a statistical test to allow for the use of overlapping data is proposed.  This adjustment is then 
tested using computer generated data. 

5.1 Statistical tests 
When fitting a probability distribution to a data set, it is common practice to assess its 
goodness of fit using a statistical test, such as the Chi Squared test (Bain et al 1992 p453), 
Anderson Darling test (Bain et al 1992 p458) or in the case of this paper the Kolmogorov 
Smirnov test (Bain et al 1992 p460). 

The Kolmogorov Smirnov test is based on calculating the largest Kolmogorov distance, which 
is the distance between a single data point and the points’ projected position on the probability 
distribution fitted to the data. 

The Kolmogorov Smirnov test is intended to compare the underlying data against the 
distribution the data came from where the parameters are known.  If the parameters 
themselves tested against in the KS test have been estimated from the data this introduces 
sample error.  This sample error is not allowed for in the standard KS test and a sample error 
adjustment is required which in the case of the Normal distribution is known as the Lillifors 
adjustment (Conover 1999). 

A description of this adjustment for sampling error for data from a Normal distribution is given 
below: 

1. Fit a Normal distribution to the data set of n data points and calculate the parameters 
for the Normal distribution;  

2. Measure the Kolmogorov distance for the fitted distribution and the data set, call this 
D; 

3. Simulate n data points from a Normal distribution with the same parameters as found 
in step 1. Re-fit another Normal distribution and calculate the Kolmogorov distance 
between this newly fitted Normal and the simulated data; 

4. Repeat step 3 1000 (or suitably large) times to generate a distribution of Kolmogorov 
distances; 

5. Calculate the percentile the distance D is on the probability distribution calculated in 
step 4.; 

6. If the distance D is greater than the 95th percentile of the probability distribution 
calculated in step 4, then it is rejected at the 5% level. 

The reason this approach works is because the Kolmogorov Smirnov distance is calculated 
between the data and a fitted distribution and then compared with 1000 randomly generated 
such distances.  If the distance between the data and the fitted distribution is greater than 95% 
of the randomly generated distances, then there is statistically significant evidence against the 
hypothesis that the data is from the fitted distribution. 

5.2 Adjustment for overlapping data 
If overlapping data is used instead of non-overlapping data then even if the non-overlapping 
data is independent and identically distributed, the overlapping data will not be, as each 
adjacent overlapping data point will be correlated.  This means overlapping data will not satisfy 
the assumptions required of most statistical tests, such as the KS test.  

However, it is possible to adjust most statistical tests to allow for the use of overlapping data.  
A method for doing so is shown here for the KS test.  The approach used is similar to that 
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described above to correct for sampling error; except that both the data being tested and the 
data simulated as part of the test are overlapping data.  The steps are: 

1. Fit a Normal distribution to the data set of n overlapping data points and calculate the 
parameters for the Normal distribution;  

2. Measure the Kolmogorov distance for the fitted distribution and the data set, call this 
D; 

3. Simulate n overlapping data points from a Normal distribution with the same 
parameters as found in step 1. Re-fit another Normal distribution and calculate the 
Kolmogorov distance between this newly fitted Normal and the simulated data; 

4. Repeat step 3 1000 times to generate a distribution of Kolmogorov distances; 
5. Calculate the percentile the distance D is on the probability distribution calculated in 

step 4; 
6. If the distance D is greater than the 95th percentile of the probability distribution 

calculated in step 4, then it is rejected at the 5% level. 

A key question is how to simulate the overlapping data in step 3 in the list above.  For levy 
stable processes such as the Normal distribution this can be done by simulating from the 
Normal distribution at a monthly timeframe and then calculating the annual overlapping data 
directly from the monthly simulated data. For processes which are not levy stable, an 
alternative is to directly simulate annual data and then aggregate into overlapping data using 
a gaussian copula with a correlation matrix which gives the theoretical correlation between 
adjacent overlapping data points, where the non-overlapping data is independent.  This 
approach generates correlated data from the non-levy stable distribution, where the 
correlations between adjacent data points are in line with theoretical correlations for 
overlapping data. (this last approach is not tested below).   

This adjustment works for the same reason as the adjustment described in section 5.1.  The 
Kolmogorov Smirnov distance is generated between the data and the fitted distribution.  This 
distance is then compared with 1000 randomly generated distances, except this time using 
overlapping data.  If the distance between the data and the fitted distribution is greater than 
95% of the randomly generated distances, then there is statistically significant evidence 
against the hypothesis that the data is from the fitted distribution. 

5.3 Testing the adjustments to the KS test using simulated data 
Using the same testing approach applied in section 4, defined in Jarvis et al (2016) the KS 
test and the adjustments described above have been assessed.  This approach to testing 
involves simulating data from known distributions, then fitting a distribution to the data, carrying 
out a statistical test and then assessing the result of the test against the known correct answer. 

The testing carried out has been: 

1. Test of the standard KS test.  This is done using non-overlapping simulated data from 
a Normal distribution with mean 0 and standard deviation 1.   

a. 100 data points are simulated from this Normal distribution.   
b. The KS test is carried out between this simulated data and the Normal 

distribution with parameters 0 for mean and 1 for standard deviation.   
c. The p-value is calculated from this KS test. 
d. Steps a, b and c are repeated 1000 times and the number of p-values lower 

than 5% is calculated and divided by 1000. 
2. Test of the KS test with sample error.  This test is done using non-overlapping 

simulated data from a Normal distribution with mean 0 and standard deviation 1.  The 
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difference between this test and test 1 is that step b in test 1 is using known parameter 
values, whereas this test uses parameters from a distribution fitted to the data. 

a. 100 data points are simulated from this Normal distribution 
b. The Normal distribution is fitted to the data using the Maximum Likelihood 

Estimate (MLE).   
c. The KS test is carried out between the simulated data and the fitted Normal 

distribution 
d. The p-value is calculated for this KS test 
e. Steps a, b, c and d repeated 1000 times and the number of p-values lower than 

5% is calculated and divided by 1000 
3. Test of the KS test with correction for sample error.  This test is done using non-

overlapping simulated data from a Normal distribution with mean 0 and standard 
deviation 1.  The difference between this test and test 2 is that step c is carried out 
using the KS test adjusted for sample error. 

a. 100 data points are simulated from this Normal distribution 
b. The Normal distribution is fitted to the data using the Maximum Likelihood 

Estimate (MLE).   
c. The KS test adjusted for sample error (as described in section 5.1) is carried 

out between the simulated data and the fitted Normal distribution 
d. The p-value is calculated for this KS test 
e. Steps a, b, c and d repeated 1000 times and the number of p-values lower than 

5% is calculated and divided by 1000 
4. Test of the KS test with correction for sample error applied to overlapping data.  This 

test is done using overlapping simulated data from a Normal distribution with mean 0 
and standard deviation 1.  The difference between this test and test 3 is that the 
simulated data in this test is from an overlapping data set. 

a. 100 data points are simulated from this Normal distribution 
b. The Normal distribution is fitted to the data using the Maximum Likelihood 

Estimate (MLE).   
c. The KS test adjusted for sample error (as described in section 5.1) is carried 

out between the simulated data and the fitted Normal distribution 
d. The p-value is calculated for this KS test 
e. Steps a, b, c and d repeated 1000 times and the number of p-values lower than 

5% is calculated and divided by 1000 
5. Test of the KS test with correction for sample error applied to overlapping data; and 

correction for overlapping data (as described in 5.2).  This test is done using 
overlapping simulated data from a Normal distribution with mean 0 and standard 
deviation 1.  The difference between this test and test 4 is that the KS test corrects for 
overlapping data as well as sample error. 

a. 100 data points are simulated from this Normal distribution 
b. The Normal distribution is fitted to the data using the Maximum Likelihood 

Estimate (MLE).   
c. The KS test adjusted for sample error (as described in section 5.1) is carried 

out between the simulated data and the fitted Normal distribution.  This was 
done with a reduced sample size of 500 in the KS test to improve run times. 

d. The p-value is calculated for this KS test 
e. Steps a, b, c and d repeated 500 times and the number of p-values lower than 

5% is calculated and divided by 500 
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5.4 Results of the simulation study on the KS test 
The results of the simulation study are the rejection rate for each statistical test.  For data 
generated randomly from a known distribution tested against a 5% level, we would expect a 
5% rejection rate.  The results from each of the tests described in 5.3 are: 

Test (as described in 
5.3) 

Result 

1 4.3% 
2 0% 
3 5.0% 
4 44% 
5 5.3% 

 

5.5 Discussion of the results 
This section discusses each of the test results presented in section 5.4. 

For test 1, the test assesses the rejection rate for the standard KS test applied as it is intended 
to be applied (i.e. compared against known parameter values).  The result of 4.3% compares 
to an expected result of 5%.  This may indicate the standard KS has a degree of bias. 

For test 2, the test assesses the rejection rate for the KS test applied using the sample fitted 
parameters with no allowance for sample error.  The rejection rate of 0% indicates that if 
sample error is not corrected for there is almost no chance of rejecting a fitted distribution. 

For test 3, the KS test is now corrected for sample error and the rejection rate of close to 5% 
indicates the KS test with sample error correction is working as intended. 

For test 4, the KS test with the sample error correction, applied to overlapping data.  The 
rejection rate is very high at 44% relative to an expected 5% level.  This indicates that applying 
the KS test with sample error correction to overlapping data will have a much higher rejection 
rate than expected. 

For test 5, the KS test with sample error and overlapping error correction is applied to 
overlapping data.  The 5.3% result of this test (closely in line with expected rate of 5%) 
indicates the overlapping error correction is working as expected. 

This test shows it is possible to achieve a rejection rate in line with expectations by adjusting 
the KS test for overlapping data as described in section 5.2. 
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6 Using periods shorter than annual data 
So far, we have discussed the issues with using overlapping data for the purpose of risk 
calibration and possible methods of correcting for the overlapping data including the 
adjustments made to the data as covered in sections 4 and 5.  

Alternatively, the industry participants have tried to use “high” frequency e.g. monthly or 
quarterly data to get to “low” frequency data, e.g. annual to meet the solvency II requirement 
of performing a 1-in-200 year calibration over a 1 year period. 

In this section, we consider the issues around these alternative approaches where time 
periods shorter than 1 year are used to derive the annual calibration. This avoids some of the 
problems with using overlapping data directly, considered in sections 4 and 5.  An example of 
this approach is to fit a model to monthly data, then extend this same model to also model 
annual returns. 

The approaches discussed in this section can be considered as possible alternatives to using 
annual non-overlapping and / or monthly annual overlapping data.  The uncertainties present 
in the approaches discussed in this section are also considered. 

6.1 Approaches using data periods shorter than annual 
Three possible approaches to using data periods shorter than a year for the calibration of VaR 
at an annual time frame are: 

• Use of non-overlapping monthly data but annualise them using autocorrelation that is 
present in the time series (section 6.2); 

o This technique involves fitting a probability distribution to monthly data.  
Simulation from a large computer-generated data set from this fitted 
distribution. Aggregating the simulated monthly returns into annual returns 
using a copula and the correlation; 

o It utilises all the data points and leads to a stable calibration; 
o It improves the fits considerably in comparison to non-overlapping data or 

monthly annual overlapping data; 
o However, it does not remove the autocorrelation issue completely and does not 

handle the issues around volatility clustering. 
• Use of statistical techniques such as “temporal aggregation” (section 6.3)  

o It involves fitting a time series model to monthly data; then using this time series 
model to model annual data;  

o Annualises the monthly data systematically in line with the monthly time series 
model fitted to the monthly data;  

o Utilises as much data as possible without any key events being missed; and 
o Improves the fit to the empirical data and leads to a stable calibration. 
o It can handle the data with volatility clustering and avoids the issue of 

autocorrelation. 
• Use of autocorrelation adjustment (or “de-smoothing” the data). This technique is not 

covered here as this is a widely researched topic (Marcatoo, 2003). However, we have 
tried using a similar technique by (HengSun_Nelken, 2009) which tries to correct the 
bias in the overlapping variance of the data. We have analysed the impacts of using 
this adjustment in section 4 of the paper and have not discussed further in this section. 

• The testing carried out in section 6 is based on empirical data where the underlying 
model driving the data is unknown.  As the model is unknown the bias and mean 
square error tests carried out in section 4 are not possible (as these require the model 
parameters to be known). 



21 
 

6.2 Annualisation Method 

Under this approach, we analyse the data points using monthly non-overlapping time steps 
but utilise the correlation present in the monthly time series data to create a large data set to 
perform an annual non-overlapping calibration. 

The key data analysis steps are as follows: 

• Calculate the monthly changes in the time series; 
• Calculate the empirical correlation between each 12 calendar month period by 

arranging all January changes in one column and February change in the next one 
and so and so forth and calculate the correlations; 

• Apply this correlation to generate a large number of monthly steps (e.g. 100k) and 
aggregate monthly steps to come up with annualised simulations depending upon 
whether we modelling the time series multiplicatively or additively. 

• The annualisation is performed using empirical marginal distributions and Gaussian 
(or even empirical copula) copula using an autocorrelation matrix for each of the time 
series to avoid any information loss due to fitting errors.  

• This technique has the advantage of fitting distributions based on a large sample 
leading to more stable results, however suffers from the fact that it still uses monthly 
data which may be auto correlated.  

We fit distributions to these annualised simulations. We present the use of this technique using 
Merrill Lynch (ML) credit data in this section where we compare the results of using annual 
overlapping data (without any aggregation approach) and using the above autocorrelation 
aggregation approach. 

6.2.1 Dataset Used  
Although methodology used for annualisation process is quite generic in nature and can be 
used for a wide range of datasets, we have used ML credit indices because of the following 
peculiarities of this dataset: 

• The dataset is limited (starting 1996) and therefore utilisation of information available 
in each of the data points is important; 

• This dataset has a single extreme market event (2008-09 Global credit crisis) and 
rest of the data is relatively benign. 

• Two significant challenges for calibrating to this data set are:  
o If we use annual non-overlapping dataset, we may lose the key events of 

2008-09 Global credit crisis where the extreme movements in spreads 
happened during June 2008 to March 2009 (9 month period); 

o If we use annual overlapping dataset, the data points used in the fitting 
process are more than the data points using annual non-overlapping dataset, 
however, not sufficient for generating a credible and robust fit at the 99.5th 
percentile point. 

6.2.2 Empirical Data Analysis 

In this section, the main purpose is to compare the results of some of the general tests applied 
to both annual overlapping and monthly non-overlapping data to check whether using monthly 
non-overlapping time series is more conducive to risk calibration or not.  
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We consider a practical example of the approach described in the previous section based on 
credit spread data. We first look at auto correlation function (ACF) and partial auto correlation 
function (PACF) plots3 using two of the ML credit indices UR30 (ML A rated index – all 
maturities) and UR40 (ML BBB rated index – all maturities). The term Annual Overlapping is 
used in this section to mean annual data overlapping by 11 out of 12 months of the year. 

The auto-correlation plots show the correlation between data points with different lags on the 
x-axis.  Similarly, for the partial auto-correlation plots.  Note that stationarity tests have been 
carried out in appendix C, section 11. 

 

                                                           
3 Autocorrelation Function (ACF) and Partial Autocorrelation (PACF) are standard techniques used for 
determining the order of ARIMA process and provides indications for stationarity property of the time series 
amongst their other uses. 
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Figure 1: Annual Overlapping vs. Monthly Non-Overlapping – A rating – All Maturities 

 

 

Explanation:  

Under the annual overlapping time series(top left diagram) the ACF starts at 1, slowly converges to 
0 (slower decay) and then becomes negative and exceeds the 95% confidence level for the first 9 
lags.  

Under the monthly non-overlapping time series (bottom left diagram) the ACF quickly falls to a very 
low number and beyond lag 2 for most time lags the autocorrelations are within the 95% confidence 
interval, for all practical purposes we can ignore the ACF after time lag 2. The  suggests that using 
monthly non-overlapping time-series is less auto-correlated than the annual overlapping time 
series.. 

Similarly the PACF for monthly non-overlapping data (bottom right) shows more time steps where 
autocorrelations beyond lag 2 are within the 95% confidence interval in comparison to the annual 
overlapping data (top right).  

The purpose of performing these tests is to show if using monthly non-overlapping time series is 
more conducive to modelling or not. 
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6.2.2.1 Fitting Results – QQ Plots – Hyperbolic Distribution 

We present the QQ plots for annual overlapping vs. monthly non-overlapping with 
autocorrelation using hyperbolic distribution.  

Figure 2: Annual Overlapping vs. Monthly Non-overlapping with Autocorrelation  

QQ Plots using Monthly Annual Overlapping QQ Plots using Monthly Non-overlapping with 
Annualisation using Autocorrelation 

 

 

 

 

Explanation: From the QQ plots (both using Hyperbolic distribution) between monthly annual 
overlapping and monthly non-overlapping with annualisation above, it is clear that using 
monthly non-overlapping data with autocorrelation appears to improve the fits in the body as 
well in the tails.  This is because the QQ plots show a much closer fit to the diagonal for the 
monthly non-overlapping data with annualisation. 

Note: We have used hyperbolic distribution as it is considereed one of the most sophisticated 
distributions. Similar conclusions can be drawn using more simpler distributions such as 
Normal distribution. 
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6.2.2.2 Conclusions  

Annualising monthly non-overlapping data using monthly auto-correlations can be a versatile 
alternative to annual overlapping data, particularly where data is limited. 

It is important to note that annualisation process is not always the ideal solution because the 
annualisation process also introduces uncertainty depending upon the aggregation approach 
used. However, this uncertainty can be reduced by using empirical distributions for the high 
frequency data (i.e. monthly process) where possible and use empirical or Gaussian copula 
where minimum number of parameter estimations are required in the annualisation process. 

6.3 Temporal Aggregation Methods 
Another alternative approach to using overlapping annual data is to use temporal aggregation.  
This is an approach where we construct a low frequency series (e.g. annual series) from a 
high frequency series (e.g. monthly / daily series). This is done by fitting a time series model 
e.g. Auto regressive, GARCH etc…) to the monthly data; which then gives all the information 
required to model the annual time series.   

Temporal aggregation can be very useful in the cases where we have limited relevant market 
data available for calibration and we want to infer the annual process from the monthly/daily 
process. 

6.3.1 Introduction 

Under the temporal aggregation technique, the low frequency data series is called the 
aggregate series, e.g. annual series.  The high frequency data series is called the 
disaggregate series, e.g. monthly series. Deriving a low frequency model from the high 
frequency model is a two stage procedure: 

• ARMA-GARCH models are given in terms of lag polynomials, where it is necessary 
to choose the polynomials orders. Temporal aggregation allows us to infer the 
orders of the low frequency model from those of high frequency. 

• After inferring the orders, the parameters of the low frequency model should be 
recovered from the high frequency ones, rather than estimating them. Hence, the 
low frequency model parameters incorporate all the economic information from the 
high frequency data. 

𝑌𝑌𝑡𝑡∗ =  𝑊𝑊(𝐿𝐿)𝑦𝑦𝑡𝑡 = �𝑤𝑤𝑗𝑗𝑦𝑦𝑡𝑡−𝑗𝑗

𝐴𝐴

𝑗𝑗=0

= �𝐿𝐿𝑗𝑗𝑦𝑦𝑡𝑡

𝑘𝑘−1

𝑗𝑗=0

 

Where W (L) is the lag polynomial of order A. W (L) = 1+L+..+L^ (k-1)  where k represents the 
order of aggregation. 

If the disaggregate time series 𝑦𝑦𝑡𝑡 were to follow a model of the following type 

∅(𝐿𝐿)𝑦𝑦𝑡𝑡 =  𝜃𝜃(𝐿𝐿)𝜀𝜀𝑡𝑡   

Where ∅(𝐿𝐿) and 𝜃𝜃(𝐿𝐿) are lag polynomials and 𝜀𝜀𝑡𝑡 is an error term. Then the temporally 
aggregated time series can be described by  

𝛽𝛽(𝐵𝐵)𝑦𝑦𝑡𝑡∗ = 𝜑𝜑(𝐵𝐵)𝜀𝜀𝑡𝑡∗ 

• We perform a time series regression model to estimate the coefficients of an ARMA 
or ARIMA model on monthly non-overlapping data; 
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• Annual estimates are constructed out of non-overlapping monthly observations. 

• Autocorrelation in the data is accounted for to make sure the estimates are valid; 
and 

• The standard goodness-of-fit techniques are valid 

The key limitations of temporal aggregation are as follows: 

• Temporal aggregation leads to loss of information in the data due to information 
that will be lost along the way during performing various data transformations. 
However, empirical work done using equity risk data shows that this loss of 
information has not been materially significant based on the quantile results 
observed under various approaches in section 6.3.2. 

• Rigorous testing and validation of the behaviour of the residuals will be necessary; 

• It is complex to understand and communicate. 

The main complication with using temporal aggregation technique is the fact that it involves 
solving algebraic system of equation which can get complex for complex time series models 
as models have higher orders, e.g. ARIMA (p,d,q) where p, d and /or exceed 3. 

6.3.1.1 Technical Details for AR(1) Process 
We study this technique using a simple example Auto Regressive AR(1) process. Assume that the 
monthly log- return 𝑟𝑟𝑡𝑡 follows an AR(1) process. (WSChan_etal, 2008)  

𝑟𝑟𝑡𝑡 =  ∅ 𝑟𝑟𝑡𝑡−1 +  𝑎𝑎𝑡𝑡  ,𝑎𝑎𝑡𝑡  ~ 𝑁𝑁(0,𝜎𝜎𝑎𝑎2 ) 

The annual returns are noted as 𝑅𝑅𝑇𝑇 and frequency is defined as m (where m=12 for annual 
aggregation). The lag-s auto-covariance functions of the m-period aggregated log return 
variable. 

𝐶𝐶𝐶𝐶𝐶𝐶[𝑅𝑅𝑇𝑇 ,𝑅𝑅𝑇𝑇+𝑠𝑠] = [𝑚𝑚 + 2(𝑚𝑚− 1) + 2(𝑚𝑚 − 2)∅2+. . +2∅𝑚𝑚−1] 
𝜎𝜎𝑎𝑎2

1 − ∅2
 𝑖𝑖𝑖𝑖 𝑠𝑠 = 0 

𝐶𝐶𝐶𝐶𝐶𝐶[𝑅𝑅𝑇𝑇 ,𝑅𝑅𝑇𝑇+𝑠𝑠] = [1 + ∅ + ∅2+. . +∅𝑚𝑚−1] �
∅𝑚𝑚(|𝑠𝑠|−1)+1

1 − ∅2
�𝜎𝜎𝑎𝑎2 𝑖𝑖𝑖𝑖 𝑠𝑠 = ±1, ±2. 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑅𝑅𝑇𝑇] = [12 + 22 + 20∅2+. . +2∅11] 
𝜎𝜎𝑎𝑎2

1 − ∅2
 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑠𝑠 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 = 12 

 

(1 − ∅∗𝐿𝐿)𝑅𝑅𝑇𝑇 =  (1 − 𝜃𝜃∗𝐿𝐿)𝑎𝑎𝑡𝑡∗ 𝑎𝑎𝑡𝑡∗ ~ 𝑁𝑁(0,𝜎𝜎𝑎𝑎∗
2  )  

∅∗ =  ∅𝑚𝑚 (for real life applications where for annualisation we use ∅12 it will be close to zero 
and therefore the process essentially becomes an MA (1) process). For  |∅∗| < 1, 

(∅𝑚𝑚 − 𝜃𝜃∗)
(1 − ∅𝑚𝑚𝜃𝜃∗)

1 − 2∅𝑚𝑚𝜃𝜃∗ + 𝜃𝜃∗2
=  ∅[1 + ∅ + ∅2+. . +∅𝑚𝑚−1]2/[𝑚𝑚 + 2(𝑚𝑚 − 1) + 2(𝑚𝑚 − 2)∅2+. . +2∅𝑚𝑚−1] 

6.3.1.2 Technical Details for GARCH (1, 1) Process 
Let 𝑎𝑎𝑡𝑡 = (𝑟𝑟𝑡𝑡 − 𝜇𝜇) is a mean corrected log return and follows Garch (1,1) process, then 

𝜀𝜀𝑡𝑡 =  𝑎𝑎𝑡𝑡/ℎ𝑡𝑡0.5  
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ℎ𝑡𝑡 =  𝜔𝜔 +  𝛽𝛽ℎ𝑡𝑡−1 + 𝛼𝛼𝑎𝑎𝑡𝑡−12  

 The m-month non-overlapping period can be “weakly” approximated by Garch (1,1) process 
with corresponding parameters: 

𝜇𝜇∗ = 𝑚𝑚𝑚𝑚 

𝜔𝜔∗ = 𝑚𝑚𝑚𝑚�
1 − (𝛼𝛼 + 𝛽𝛽)𝑚𝑚

1− (𝛼𝛼 + 𝛽𝛽) � 

𝛼𝛼∗ = (𝛼𝛼 + 𝛽𝛽)𝑚𝑚 −  𝛽𝛽∗ 

|𝛽𝛽∗| < 1     is the solution of the following quadratic equation: 

𝛽𝛽∗

1 +  𝛽𝛽∗2
=

(Θ(𝛼𝛼 + 𝛽𝛽)𝑚𝑚 − Λ)
(Θ(1 + (𝛼𝛼 + 𝛽𝛽)2𝑚𝑚) − 2Λ) 

Λ = �
�𝛼𝛼 − 𝛼𝛼𝛼𝛼(𝛼𝛼 + 𝛽𝛽)�(1− (𝛼𝛼 + 𝛽𝛽)2𝑚𝑚)

1 − (𝛼𝛼 + 𝛽𝛽)2 � 

Θ = 𝑚𝑚(1 − 𝛽𝛽)2 + �
2𝑚𝑚(𝑚𝑚 − 1)(1 − 𝛼𝛼 − 𝛽𝛽)2(1− 2𝛼𝛼𝛼𝛼 − 𝛽𝛽2)

(𝜅𝜅 − 1)(1 − (𝛼𝛼 + 𝛽𝛽)2) �

+ 4 �
(𝑚𝑚 − 1 −𝑚𝑚(𝛼𝛼 + 𝛽𝛽) + (𝛼𝛼 + 𝛽𝛽)𝑚𝑚)�𝛼𝛼 − 𝛼𝛼𝛼𝛼(𝛼𝛼 + 𝛽𝛽)�

1 − (𝛼𝛼 + 𝛽𝛽)2 �  

Where 𝜅𝜅is the unconditional kurtosis of the data. 

𝜅𝜅∗ = 3 +
𝜅𝜅 − 3
𝑚𝑚

+ 6(𝜅𝜅 − 1) �
�𝛼𝛼 − 𝛼𝛼𝛼𝛼(𝛼𝛼 + 𝛽𝛽)�(𝑚𝑚 − 1 −𝑚𝑚(𝛼𝛼 + 𝛽𝛽) − (𝛼𝛼 + 𝛽𝛽)𝑚𝑚)

𝑚𝑚2(1− 𝛼𝛼 − 𝛽𝛽)2(1− 2𝛼𝛼𝛼𝛼 − 𝛽𝛽2) �  

 

6.3.2 UK Equity Case Study Temporal Aggregation – Garch (1,1) 
In this section, we present and example of the temporal aggregation method applied to UK 
(FTSE All Share Total Return) index data using the Garch model fitted to monthly data. 

The calculation steps applied are as follows: 

• We calculate excess of mean log monthly non-overlapping returns of the data; 

• We fit a Garch (1,1) model these excess of mean log returns and derive the fitted 
parameters of Garch model; 

• Calculate the temporally aggregated parameters for the annual time series; 

• Compare the (simple) quantiles of empirical annual-non-overlapping, empirical 
annual overlapping and Temporally aggregated Garch (1,1) process. 
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Table 1: Key Quantiles – Monthly Annualised vs. Monthly Annual Overlapping Data 

Percentiles  Empirical  

Non-overlapping 

Empirical  

Monthly Annual  

Overlapping 

Temporally  

Aggregated  

Garch (1,1) 

99.9% 99.9% 119.8% 121.8% 

99.5% 97.9% 84.3% 85.6% 

99.0% 73.5% 59.2% 66.0% 

98.0% 33.4% 39.3% 50.8% 

97.5% 27.1% 35.3% 46.4% 

95.0% 24.7% 26.9% 34.5% 

90.0% 18.7% 20.8% 24.0% 

80.0% 14.8% 14.8% 14.2% 

75.0% 11.3% 11.8% 11.0% 

50.0% 3.2% 2.6% 0.0% 

25.0% -8.0% -8.7% -10.0% 

20.0% -11.9% -11.7% -12.5% 

10.0% -18.4% -19.5% -19.4% 

5.0% -32.2% -29.2% -25.7% 

2.5% -35.2% -35.9% -31.9% 

2.0% -37.5% -37.6% -33.8% 

1.0% -47.6% -45.0% -39.9% 

0.5% -52.0% -56.4% -46.1% 

0.1% -55.3% -58.1% -60.5% 

 

From the comparison of the key quantiles in the table above, we conclude: 

• On the extreme downside and upside, temporally aggregated Garch (1,1) process 
leads to stronger quantiles in comparison to annual non-overlapping and annual 
overlapping time series; 

• In the “body” of the distribution temporally aggregated Garch (1,1) process leads 
to weaker quantiles in comparison to annual non-overlapping and monthly annual 
overlapping time series; 

The calibration parameters of Garch (1, 1) process fitted to monthly non-overlapping and 
temporally aggregated Garch (1, 1) are outlined in Table 5. 
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Table 2: Table of parameters 

Parameter Monthly Non-overlapping Temporally Aggregated 
parameter (Annual, m=12) 

Mu 0 0 
Omega 0.00014 0.01591 
Alpha 0.1475 0.1656 
Beta 0.8071 0.4070 
Dof 5.954 4.945 
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7 Conclusions 
This paper has considered some of the main issues with using overlapping data as well as 
looking at the alternatives.   

Section 4 presented the results of a simulation study designed to test whether overlapping or 
non-overlapping data is better for distribution fitting.  For the models tested, overlapping data 
appears to be better as biases can be removed (in a similar way to non-overlapping data), but 
overlapping makes a greater use of the data, meaning it has a lower mean square error.  A 
lower mean square error suggests distributions fitted with overlapping data are more likely to 
be closer to the correct answer. 

Section 5 discussed the issues of statistical tests using overlapping data as well as presenting 
a methodology for using statistical tests with overlapping data.  This methodology was tested 
and the adjustment for overlapping data was found to correct the statistical tests in line with 
expectations. 

Section 6 presented alternative methods for model fitting, by fitting the model to shorter time 
frame data and then aggregating the monthly model into an annual model.  This approach 
was successfully tested in a practical example. 

The overall conclusions from this paper are:  

• Overlapping data can be used to calibrate probability distributions and is expected to 
be a better approach than using non-overlapping data, particularly when there is a 
constant struggle between finding relevant data for risk calibration and maximising 
the use of data for a robust calibration. However, communication of the uncertainty in 
the model and / or parameter uncertainty to the stakeholder is equally important.  

• Some credible alternatives exists to using overlapping data such as temporal 
aggregation and annualization, however these alternatives bring their own limitations 
and understanding of these limitations is key to using these alternatives. We 
recommend to considering the comparison of the calibration using both non-
overlapping monthly data annualised with overlapping annual data and discuss the 
advantages, robustness and limitations of both the approaches with stakeholders 
before finalising the calibration approach. 
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9 Appendix A 
In this section, we provide the mathematical definitions and descriptions of the technical terms 
used in the paper4. 

9.1 What Are Cumulants of a Random Variable? 
9.1.1 Definitions 
Cumulants are properties of random variables. The first two cumulants: mean and variance, 
are well-known. The third cumulant is also the third central moment. For a random variable X 
with mean µ, the first four cumulants are: 

𝜅𝜅1 = 𝜇𝜇 = 𝔼𝔼(𝑋𝑋) 

𝜅𝜅2 = 𝔼𝔼(𝑋𝑋 − 𝜇𝜇)2 

𝜅𝜅3 = 𝔼𝔼(𝑋𝑋 − 𝜇𝜇)3 

𝜅𝜅4 = 𝔼𝔼(𝑋𝑋 − 𝜇𝜇)4 − 3𝜅𝜅22 

Higher cumulants theoretically exist but are less often encountered. We restrict our discussion 
to first four cumulants only. 

9.2 Statistical Properties of Cumulants 
9.2.1 Additive Property 
The cumulants satisfy an additive property for independent random variables. If X and Y are 
statistically independent and n≥1 then  

𝜅𝜅𝑛𝑛(𝑋𝑋 + 𝑌𝑌) = 𝜅𝜅𝑛𝑛(𝑋𝑋) + 𝜅𝜅𝑛𝑛(𝑌𝑌) 

For a Normal distribution, the third and subsequent cumulants are zero.  

9.2.2 Skewness and Kurtosis  
The skewness and kurtosis of a random variable are defined in terms of the cumulants, as 
follows: 

Skewness = 𝜅𝜅3
𝜅𝜅2
3/2 

Kurtosis =𝜅𝜅4
𝜅𝜅22

  

Skewness and kurtosis are both shape attributes, which are unchanged when a random 
variable is shifted or scaled by a positive multiple. 

It is a consequence of the additive property that, for sums of independent identically distributed 
random variables, the skewness and kurtosis tend to zero as the number of observations in 
the sum tends to infinity. This observation is consistent with the central limit theorem. 

9.3 Using Cumulants to Estimate Distributions 
9.3.1 Empirical Cumulants 
Given a number n of data points, the empirical distribution puts a mass of n-1 on each 
observation. 

The empirical cumulants are the cumulant estimates based on the empirical distribution, which 
we will denote with a tilde (~). The first empirical cumulant 𝜅̃𝜅1 is the sample average. Other 

                                                           
4 Source: http://mondi.web.elte.hu/spssdoku/algoritmusok/acf_pacf.pdf 

http://mondi.web.elte.hu/spssdoku/algoritmusok/acf_pacf.pdf
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empirical cumulants are defined similarly. For example, the empirical variance (second 
cumulant) is the average squared deviation between each observation and that sample 
average. The empirical fourth moment 𝜅̃𝜅4 is the average fourth power of deviations, minus 
three times the squared empirical variance. 

9.3.2 Distribution fitting with Cumulants  
We can use the empirical cumulants, or modifications thereof, to estimate distributions. The 
methodology is to find a distribution whose cumulants match the cumulants estimated from a 
data sample (i.e. as with the method of moments a probability distribution is uniquely defined 
by its cumulants). 

Common practice (see EEWP 2008 and Willis Towers Watson (WTW)5 risk calibration survey 
2016) for market risk models is to pick a four-parameter distribution family, closed under 
shifting and scaling. EEWP 2008 showed distributions from the Pearson IV family and the 
hyperbolic family. In this paper we show examples based the NIG (Normal Inverse Gaussian) 
family. In each case, the procedure is the same: 

- Estimate the mean, variance, skewness and kurtosis from the historical data; 
- Pick a four-parameter distribution family; 
- Evaluate whether the estimated (skew, kurtosis) combination is feasible for the chosen 

family. If not, adjust the historical values by projecting onto the boundary of the feasible 
region; 

- Find the distribution matching the adjusted historical skewness and kurtosis; 
- Match the mean and variance by shifting and scaling; 
- Compare the fitted distribution to the historic data, either by inspection of histograms 

or more formal statistical tests. If the fit is not good enough then think of another four-
parameter family and repeat from the third step above. 

  

                                                           
5 WTW risk calibration survey 2016 suggests 4 parameter distributions such as Hyperbolic and EGB2 are widely 
used by UK insurers. Please note WTW risk calibration survey 2016 is not a publicly available document, 
however, can be made available if requested after permission from Wills Towers Watson. 
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10 Appendix B – Simulation study – additional results 
This section shows additional results from the simulation study in section 4. 

10.1 Normal Inverse Gaussian results 
The results for the Normal Inverse Gaussian Reference model are shown below.  These 
results are very similar to the Brownian case. 

10.1.1 First Moment – the mean 

 

The plots above show the bias in the plot on the left and the mean square error on the plot on 
the right.  The overlapping and non-overlapping data estimates of the mean appear very 
similar and not obviously biased.  They also have very similar mean square errors across all 
years.  Very similar conclusions to the Brownian case. 

10.1.2 Second cumulant – variance 
The second cumulant is the variance (with divisor n). 

 

Very similar conclusions as for the Brownian case. 
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• Overlapping and non-overlapping data both give biased estimates of the second 
cumulant to a similar extent across all terms 

• The bias correction factors (using divisor n-1 for non-overlapping variance and the 
Nelken formula for overlapping variance) appear to remove the bias.  This is 
evidence the Nelken bias correction factor works for other process than just 
Brownian motion. 

• The plot on the right shows the mean square errors for the two approaches, with 
overlapping data appearing to have lower mean square errors for all terms. 

10.1.3 Third cumulant 

 

Neither approach appears to have any systemic bias for the mean.  The mean square error is 
significantly higher for non-overlapping data than overlapping data. 

10.1.4 Fourth cumulant 

 

In this case the non-overlapping data appears to have a higher downward bias than 
overlapping data at all terms; both estimates appear biased.  The bias does not appear to tend 
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to zero as the number of years increases, but it rises above the known value.  The non-
overlapping data has higher mean square error than the overlapping data. 

10.2 ARIMA results 
10.2.1 First cumulant – the mean 
 

 
 

The plots above show the bias in the plot on the left and the mean square error on the plot on 
the right. The overlapping and non-overlapping data estimates of the mean appear very similar 
and unbiased. They also have very similar mean square errors after 10 years but overlapping 
data appears to have marginally higher MSE below 10 years. 

 

10.2.2 Second cumulant – variance 
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The plot above on the left shows that the overlapping and non-overlapping estimates of the 
variance (with divisor n) are too low with similar bias levels for all terms. This is more marked 
the lower the number of years data, and the bias appears to disappear as n gets larger. 

The plot on the left also shows the second cumulant, but bias corrected, using a divisor (n-1) 
instead of n for the non-overlapping data and using the formula in Heng Sun Nelken et al as 
well as in Cochrane 1988 for the overlapping data. Both of these corrections appear to have 
removed the bias across all terms for overlapping and non-overlapping data. The MSE is very 
similar for both overlapping and non-overlapping data. 

10.2.3 Third cumulant 
 

 
 

It is important to note that neither approach appears to have any materially different bias. Non-
overlapping data has higher MSE compared to overlapping data. 

10.2.4 Fourth cumulant 
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Non-overlapping data has lower bias compared to overlapping data but overlapping data has 
lower MSE. 
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11 Appendix C – Stationarity tests 
Phillips-Perron Test (PP Test): (PhillipsPerron, 1988) 

Phillips-Perron Test involves fitting the following regression model: 

𝒚𝒚𝒕𝒕 =  𝜶𝜶 + 𝝆𝝆𝝆𝝆𝒕𝒕−𝟏𝟏 + 𝜹𝜹𝜹𝜹 + 𝒖𝒖𝒕𝒕 

The results are used to calculate the test statistics proposed by Phillips and Perron. Phillips 
and Perron’s test statistics can be viewed as Dickey–Fuller statistics that have been made 
robust to serial correlation by using the Newey–West (1987) heteroskedasticity- and 
autocorrelation-consistent covariance matrix estimator. Under Phillips-Perron unit root test the 
hypothesis are as follows: 

H null:  The time series has unit root (which means it is non-stationary) 

H Alternative:  The time series does not have unit root (which means it is stationary) 

Kwiatkowski-Phillips-Schmidt-Shin Test (KPSS Test): (D. Kwiatkowski, 1992) 

The KPSS Test has been developed to complement unit root tests as the last have low power 
with respect to near unit-root and long-run trend processes. Unlike unit root tests, Kwiatkowski 
et al. provide straightforward test of the null hypothesis of trend and level stationarity against 
the alternative of a unit root.  

For this, they consider three-component representation of the observed time series ADF Time 
Series as the sum of a deterministic time trend, a random walk and a stationary residual: 

𝑌𝑌𝑡𝑡 = 𝛽𝛽𝛽𝛽 + (𝑟𝑟𝑡𝑡 + 𝛼𝛼) + 𝑒𝑒𝑡𝑡 

=  𝑟𝑟𝑡𝑡−1 + 𝑢𝑢𝑢𝑢 is a random walk, the initial value 𝑟𝑟0 =  𝛼𝛼 serves as an intercept, t is the time index, 
𝑢𝑢𝑡𝑡 are independent identically distributed (0,𝜎𝜎𝑢𝑢2). Under KPSS test the hypothesis are as 
follows: 

H null:  The time series is trend/level stationary (which means it does not show trends) 

H Alternative:  The time series is not trend/ level stationary (which means it does show trends) 

Ljung-Box Q Test: (Ljung&Box, 1978) 

Ljung-Box Q test is whether any of a group of autocorrelations of a time series are different 
from zero. Instead of testing randomness at each distinct lag, it tests the "overall" randomness 
based on a number of lags, and is therefore a portmanteau6 test. Under Ljung-Box Q test the 
hypothesis are as follows: 

H null:  The time series is independent 

H Alternative:  The time series is not independent and has positive or negative strong serial 
correlation 

                                                           
6 A portmanteau test is a type of statistical hypothesis test in which the null hypothesis is well specified, but 
the alternative hypothesis is more loosely specified 
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The statistic under Ljung-Box test is calculated as follows: 

𝑄𝑄 = 𝑛𝑛(𝑛𝑛 + 2)�
𝜌𝜌�𝑘𝑘2

𝑛𝑛 − 𝑘𝑘

ℎ

𝑘𝑘=1

 

Where n is the sample size, 𝜌𝜌�𝑘𝑘2 is the sample autocorrelation at lag k, and h is the number of 
lags being tested. Under null hypothesis, 𝑄𝑄 ~ 𝜒𝜒ℎ2 where h degrees of freedom. 

These tests have been applied to the corporate bond indices with the results presented below: 

The credit spread data is subject to a number of different stationarity tests. If the process is 
stationary, it is more conducive for a robust calibration because its statistical properties remain 
constant over time (e.g. the mean, variance, autocorrelation etc. do not change). If the process 
is not stationary, the variation in the fitting parameters can be significant as the new 
information emerges in the new data or in some cases the model may no longer remain valid. 
This point is important for stakeholders because the stability of the SCR depends upon the 
stability of the risk calibrations. 

There are various definitions of stationarity in the literature, we present “weak” stationarity 
definition here, we believe it is widely used, however, stronger forms may be required, for 
example, when considering higher moments. 

A process is said to be covariance stationary or “weakly stationary”, if its first and second 
moments are time invariant, i.e. 

𝐸𝐸(𝑌𝑌𝑡𝑡) = 𝐸𝐸(𝑌𝑌𝑡𝑡−1) = 𝜇𝜇        ∀𝑡𝑡 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌𝑡𝑡) = 𝛾𝛾0 < ∞       ∀𝑡𝑡 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌𝑡𝑡 ,𝑌𝑌𝑡𝑡−𝑘𝑘) = 𝛾𝛾𝑘𝑘 < ∞       ∀𝑡𝑡 ,∀𝑘𝑘 

The third condition means that the autocovariances only depend on the decay in the time but 
not in the time itself. Hence, the structure of the series does not change with the time. 

A number of statistical tests for stationarity are defined in Appendix C. the results of these 
tests together with a discussion of these results are presented below. 
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Table 3: Credit Indices – Monthly non-overlapping data - stationarity and unit-root tests 

 

 
Monthly 

Non-
overlapping 

data 
annualised 

Monthly 
Annual 

Overlapping7 

P-
values8 UR30 UR40 UR30 UR40 

PP 
Single 
Mean 
Test 

1% 1% 1% 1% 

PP 
Trend 
Test 

1% 1% 7% 6% 

KPSS 
Trend 24% 67% 59% 72% 

KPSS 
Level 15% 26% 67% 75% 

Ljung-
Box 90% 13% 0% 0% 

 

Table 4: PP and KPSS Tests 

                                                           
7 Note: no adjustment has been applied to this stationarity test for overlapping bias 
8 Note: p-value are used to determine statistical significance in a hypothesis test. Intuitively, Higher p-values 
than the threshold indicate the data is likely with a true null hypothesis and Lower p-values than a threshold 
indicate the data is unlikely with a true null hypothesis. Typically, a 5% threshold is used in many applications. 
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Result p-value Conclusion 
Phillips-
Perron Test 
(PP Test) 

Stationary 1% The p-value is less than 5% which suggests that we 
reject the null hypothesis of the time series having a unit-
root. This is strong evidence of stationarity in the time 
series. 
Both Monthly non-overlapping annualised data and 
monthly annual overlapping data both have similar 
results supporting that both time series don’t support 
presence of unit-root. 

KPSS Trend 
Stationarity 
Test 

Stationary 15%-75% The p-value is greater than 5% which means we are 
unable to reject the null hypothesis. This means the time 
series is trend stationary. 
Both Monthly non-overlapping annualised data and 
monthly annual overlapping data both have similar 
results supporting that both time series are trend 
stationary. 

KPSS Level 
Stationarity 
Test 

Stationary 15%-41% The p-value is greater than 5% which means we are 
unable to reject the null hypothesis. This means the time 
series is level stationary. 
Both Monthly non-overlapping annualised data and 
monthly annual overlapping data both have similar 
results supporting that both time series are level 
stationary. 

Ljung-Box 
Test 

Not 
Independent 

>10% The p-values are greater than 5%. We are able to reject 
the null hypothesis and conclude that the time series 
does not show serial correlation. 
Monthly non-overlapping annualised data do not show 
serial correlation, however we are unable to reject the 
hypothesis for monthly annual overlapping. 

The key implications of these tests are: 

• The stationarity tests support (or are unable to reject) the hypothesis that the time
series are stationary under both monthly non-overlapping annualised data and monthly
annual overlapping data.

• It is important to note that the Ljung-Box test suggests that the data has serial
correlation for monthly annual overlapping data however; we are able to reject the
hypothesis for monthly non-overlapping annualisation approach.

The purpose of doing these tests is to show that using monthly non-overlapping annualised 
data can be a better alternative if we can annualise it rather than using monthly annual 
overlapping data. 
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