Introduction 0000	Model	Data	Tables and Figures	Conclusion

International mortality modelling — An economic perspective

Declan French

Queens University Management School

SONIA Jan 26th 2015

Introduction 0000	Model	Data	Tables and Figures	Conclusion
Outline				

1 Introduction

- Overview
- Literature
- Theoretical background

2 Model

4 Tables and Figures

5 Conclusion

Introduction $\bullet \circ \circ \circ \circ$	Model	Data	Tables and Figures	Conclusion
Overview				
Overview				

- Recent literature on modelling multiple populations together.
- Motivation

Introduction $\bullet \circ \circ \circ \circ$	Model	Data	Tables and Figures	Conclusion
Overview				
Overview				

- Recent literature on modelling multiple populations together.
- Motivation
 - Demographic to improve the accuracy of forecasts in smaller populations

$\begin{array}{c} \mathbf{Introduction} \\ \bullet \circ \circ \circ \end{array}$	Model	Data	Tables and Figures	Conclusion
Overview				
Overview				

- Recent literature on modelling multiple populations together.
- Motivation
 - Demographic to improve the accuracy of forecasts in smaller populations
 - Actuarial mortality hedging instrument for pension plan priced according to mortality in different population.

$\begin{array}{c} \mathbf{Introduction}\\ \circ\bullet\circ\circ\end{array}$	Model	Data	Tables and Figures	Conclusion
Literature				
Literature				

• Using robust information from mortality trends for large populations may help to give more accurate or more reasonable forecasts in smaller populations for the purposes of public financing decisions or health care planning (Li and Lee, 2005; Jarner and Kryger, 2009).

Introduction $\circ \bullet \circ \circ$	Model	Data	Tables and Figures	Conclusion
Literature				
Literature				

- Using robust information from mortality trends for large populations may help to give more accurate or more reasonable forecasts in smaller populations for the purposes of public financing decisions or health care planning (Li and Lee, 2005; Jarner and Kryger, 2009).
- The mortality experience of the population used in pricing the hedging instrument may differ from the population of the pension plan (Li and Hardy, 2011; Dowd et al., 2011).

• Lee and Carter (1992)

$$m_{tx} = a_x + b_x \kappa_t + \varepsilon_{tx} \tag{1}$$

• Li and Lee (2005)

$$m_{tx} = a_x + B_x K_t + b_x \kappa_t + \varepsilon_{tx} \tag{2}$$

• Li and Hardy (2011)

$$\kappa_t = \alpha + \beta \kappa_t^* + \varepsilon_t \tag{3}$$

* denotes larger population

$\begin{array}{c} \text{Introduction} \\ \circ \circ \bullet \end{array}$	Model	Data	Tables and Figures	Conclusion
Theoretical backgrou	nd			
	11.1.	1.0		

Theoretical background 2

• Dowd et al. (2011) $\kappa_t^* = \kappa_{t-1}^* + \mu^* + \varepsilon_{t-1}^*$ $\Delta \kappa_t = \phi(\kappa_{t-1} - \kappa_{t-1}^*) + \mu + C\varepsilon_t^* + \varepsilon_t, \quad -1 < \phi < 0$

* denotes larger population error structure is also allowed to be correlated

Introduction 0000	Model	Data	Tables and Figures	Conclusion
Model 1				

• Mortality determined by age-varying level of technology and log of inputs

$$\boldsymbol{m} = \boldsymbol{\alpha} + \beta \boldsymbol{y} \boldsymbol{1}_{\boldsymbol{x}}^{\prime} \tag{4}$$

Introduction 0000	Model	Data	Tables and Figures	Conclusion
Model 1				

• Mortality determined by age-varying level of technology and log of inputs

$$\boldsymbol{m} = \boldsymbol{\alpha} + \beta \boldsymbol{y} \boldsymbol{1}'_{\boldsymbol{x}} \tag{4}$$

• Level of technology diffuses

$$\alpha_{t+1,x} = \alpha_{tx} + \pi(\alpha_{t+1,x}^* - \alpha_{tx}) \tag{5}$$

Introduction 0000	Model	Data	Tables and Figures	Conclusion
Model 1				

• Mortality determined by age-varying level of technology and log of inputs

$$\boldsymbol{m} = \boldsymbol{\alpha} + \beta \boldsymbol{y} \boldsymbol{1}_{\boldsymbol{x}}^{\prime} \tag{4}$$

• Level of technology diffuses

$$\alpha_{t+1,x} = \alpha_{tx} + \pi(\alpha_{t+1,x}^* - \alpha_{tx}) \tag{5}$$

• Lee-Carter in matrix form

$$\boldsymbol{m} = \boldsymbol{1}_{\boldsymbol{T}} \boldsymbol{a}' + \boldsymbol{\kappa} \boldsymbol{b}' \tag{6}$$

Introduction 0000	Model	Data	Tables and Figures	Conclusion
Model 2				

• Combining (4),(5) and (6) we get

$$\Delta \kappa_t = \phi(\kappa_{t-1} - \frac{b^*}{b}\kappa_{t-1}^*) - \phi \frac{\beta}{b}(y_t - y_t^*) + \sum_{m=1}^M \lambda_m \Delta \kappa_{t-1} + \phi C$$
(7)
Dowd et al. (2011) implicitly assuming $(y_t - y_t^*) = constant$

Introduction Model Data Tables and Figures Conclusion

Table 1 : Ten leaders in health technology patents -percentage of world total

Medical technolog	5y	Pharmaceuticals		
United States	53%	United States	47%	
Germany	8%	Japan	9%	
Japan	6%	Germany	8%	
United Kingdom	5%	United Kingdom	7%	
France	3%	France	4%	
Sweden	3%	Canada	3%	
Israel	3%	Italy	2%	
Netherlands	2%	Sweden	2%	
Switzerland	2%	Switzerland	1%	
Canada	2%	Australia	1%	

Patent counts — Patent applications filed under the Patent Co-operation Treaty by inventor's country of residence by classes of the International Patent Classification (OECD, 2013)

Introduction 0000	Model	Data	Tables and Figures	Conclusion
Data collect	tion			

- UK/US Male mortality data 1970-2008 Source : Human Mortality Database.
- Health production inputs Source : OECD Health Data 2012 .
 - Pharmaceutical expenditure
 - Smoking
 - Alcohol
 - Health expenditure
 - GDP

Introduction Model Data **Tables and Figures** Conclusion

Table 5 : Estimation of the cointegrating relationship

Dependent variable κ_{UK}	Model(2)	Model(3)
	$\operatorname{coeff.}(s.e.)$	$\operatorname{coeff.}$ (s.e.)
Constant	-80.82^{**}	-83.74^{**}
	(6.32)	(8.91)
κ_{USA}	1.09^{**}	1.06^{**}
	(0.02)	(0.06)
Pharmaceutical expenditure	-6.15^{**}	-8.48^{**}
	(2.15)	(1.95)
Smoking	-	-2.12
	-	(1.46)
Education	-173.98^{**}	-179.85^{**}
	(12.89)	(18.09)
Alcohol	-	-2.80
	-	(2.77)
Health expenditure	-	3.48
	-	(2.77)
GDP	-	-6.44
	-	(7.95)

Introduction Model Data Tables and Figures Conclusion

Cointegration tests and forecasts

Table 4 : Testing for cointegration between $\kappa_{UK,t}$ and $\kappa_{USA,t}$: Engle–Granger test statistics.

	Model(1)	Model(2)
Test statistic	-1.77	-4.75^{***}

Table 6 : Goodness of fit measures for forecasts of UK mortality rates, 1999–2008.

	1. Mean		2. Mean absolute		3. Root mean	
	percentage error		percentage error		square of the	
			(MAPE	E)	percent	age error
	UK	USA	UK	USA	UK	USA
Lee-Carter	3.6%	3.5%	10.6%	10.1%	12.7%	13.7%
Model	-0.7%	-	9.9%	-	12.4%	-

Introduction 0000	Model	Data	Tables and Figures	Conclusion
Summary				

• Mortality improvements in different populations are linked through technology diffusion

Introduction 0000	Model	Data	Tables and Figures	Conclusion
Summary				

- Mortality improvements in different populations are linked through technology diffusion
- I have developed a theoretical model which highlights the deficiencies in current approaches.

Introduction 0000	Model	Data	Tables and Figures	Conclusion
Summary				

- Mortality improvements in different populations are linked through technology diffusion
- I have developed a theoretical model which highlights the deficiencies in current approaches.
- An empirical analysis based on US and UK mortality data validates this approach.

Introduction 0000	Model	Data	Tables and Figures	Conclusion
Summary				

- Mortality improvements in different populations are linked through technology diffusion
- I have developed a theoretical model which highlights the deficiencies in current approaches.
- An empirical analysis based on US and UK mortality data validates this approach.
- Insights from this paper may help to provide better mortality models for related populations and also help to deepen understanding of the processes driving international longevity trends.