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SOME OBSERVATIONS ON INVERSE PROBABILITY 
INCLUDING A NEW INDIFFERENCE RULE 

BY WILFRED PERKS, F.I.A. 
Assistant Actuary of the Pearl Assurance Company, Ltd. 

[Submitted to the Institute, 27 January 1947] 

‘If the first button is buttoned wrongly, the whole vest sits askew’ 
—Attributed to BRUNO by HAROLD CHAPMAN BROWN 

INTRODUCTION 
THE main object of this paper is to propound and discuss a new indifference 
rule for the prior probabilities in the theory of inverse probability. Being 
invariant in form on transformation, this new rule avoids the mathematical 
inconsistencies associated with the classical rule of ‘uniform distribution of 
ignorance’ and yields results which, particularly in certain critical extreme 
cases, do not appear to be unreasonable. Such a rule is, of course, a postulate 
and is not susceptible of proof; its object is to enable inverse probability to 
operate as a unified principle upon which methods may be devised of allowing a 
set of statistics to tell their complete and unbiased story about the parameters of 
the distribution law of the population from which they have been drawn, 
without the introduction of any knowledge beyond and extraneous to the 
statistics themselves. The forms appropriate for the prior probabilities in 
certain other circumstances are also discussed, including the important case 
where the unknown parameter is a probability, or proportion, for which it is 
desired to allow for prior bias. Before proceeding to the main purpose of the 
paper, however, it is convenient to provide some background to the subject. 
Reference is first made to certain modern writers to indicate how the problem 
with which inverse probability is concerned occupies a central place in the 
foundations of scientific method and in modern philosophy. In quoting from 
these writers I am not to be taken as suggesting that they necessarily support the 
inverse probability approach to the problem. The next section of the paper 
contains some brief comments on the direct statistical methods which have been 
devised in recent times to side-step induction and inverse probability, and this is 
followed by a few remarks on the various definitions of probability. 

The paper is thus concerned with fundamental questions of a controversial 
nature, and has little, if any, immediate practical aspect, at any rate so far as 
applied actuarial science is concerned. No apology for this limitation is offered. 
On the contrary, it is suggested that the time is more than ripe for actuaries to 
re-examine the fundamental bases of their processes; indeed, there are not 
lacking signs of a general stirring of interest in these questions. Much of the 
spectacular progress made in other sciences (including statistics) in recent years 
has its origin in a reconsideration of fundamental ideas, and we find that 
probability theory is coming more and more to occupy a central place not only in 
general philosophy and scientific method but also in particular sciences such as 
physics and biology. Actuarial science has always been rooted in the doctrine of 
probability, as our charter so clearly expresses and as so many general writers on 
probability theory acknowledge, and it is perhaps not too fanciful to suggest 
that, with the common root of probability, actuarial science and these other 
disciplines have much in common and much to contribute to each other. 

Richard Kwan
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286 Some Observations on Inverse Probability 
The most fundamental question of science is, of course, the problem of 

induction. In the form of statistical inference, induction is the essence of 
actuarial science; in logic, it may be expressed as arguing from the particular to 
the general; in everyday life it is learning from experience. As Whitehead puts 
it on p. 30 of his Science and the Modern World: ‘The things directly observed 
are almost always only samples’ and ‘This process of reasoning from the sample 
to the whole species is induction. The theory of induction is the despair of 
philosophy-and yet all our activities are based upon it.’ On p. 48 of The 
Philosophy of Bertrand Russell (Vol. v of the Library of Living Philosophers), 
Reichenbach says: ‘I think our analysis of the problem of induction must be 
attached to the form of inductive inference which has always stood in the fore- 
ground of traditional inductive theories: the inference of induction by enumera- 
tion.’ Dr Sheppard, commenting on Chrystal’s unfortunate onslaught on 
inverse probability (T.F.A. Vol. XII, p. 26), says: ‘But he could not have been 
expected to foresee that, within thirty or forty years of his writing, the funda- 
mental ideas of inverse probability would lie at the basis of a great deal of 
scientific work.’ In his Advanced Theory of Statistics, Kendall writes: ‘One 
thing, however, is clear-anyone who rejects Bayes’s postulate must put some- 
thing in its place. The problem which Bayes attempted to solve is supremely 
important in scientific inference and it scarcely seems possible to have any 
scientific thought at all without some solution however intuitive and however 
empirical, to the problem.’ 

These quotations serve to show how crucial is the problem with which inverse 
probability is concerned. As there still seems to remain in some quarters a 
lingering idea that there is something ‘not quite nice’, something unsound, 
about the whole concept of inverse probability, it is perhaps desirable at this 
early stage to state, quite categorically, that, on any theory of probability, 
Bayes’s theorem of inverse probability is not nowadays in question (see Prof. 
Sir Edmund Whittaker’s paper in T.F.A. Vol. VIII, p. 163). In terms of known 
prior probabilities the theorem is indisputable. It is over the postulate to be 
adopted when the prior probabilities are not known that all the difficulties and 
controversy arise and, of course, it is only by the introduction of some such 
postulate that inverse probability can operate as a process corresponding to in- 
duction. Even Neyman, who is one of the leading exponents of, and a brilliant 
contributor of, new theorems and processes in the direct systems devised to 
side-step induction and inverse probability (see later), accepts Bayes’s theorem 
as ‘legitimate’ when the prior probabilities are known (Journal of the Royal 
Statistical Society, Vol. CV, p. 299). Unfortunately, he is so out of sympathy 
with what inverse probability claims to do that he classes its uses in other cases 
as ‘illegitimate’ and supports this classification by an example which is an 
outrage on the method. In this example (p. 299) of successive breeding from 
two Mendelian hybrids, he completely ignores the critical information which 
inverse probability would use, namely the relative numbers of recessives 
which result from the cross-breeding. When the prior probabilities are known 
(the ‘legitimate ’ case) these numbers add no further knowledge, but when 
the prior probabilities are unknown, they are of critical importance. 

Fisher also recognizes inverse probability as legitimate when the prior 
probabilities are known, but he refers to such a case as ‘trivial’ (Statistical 
Methods, p. 9), and otherwise he rejects inverse probability ‘ as founded upon an 
error’. He is, however, willing to make certain probability statements about the 
unknown parameters in terms of the sample statistics, but he distinguishes such 
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statements from ordinary probability statements and from inverse probability 
statements by referring to them as ‘fiducial probability’ statements. It is 
remarkable how similar to inverse probability results Fisher’s brilliant contribu- 
tions to statistics often are, without departing from various direct principles. 

There are, of course, many other modern writers for and against inverse 
probability (including particularly Keynes in his Treatise on Probability), but 
enough has been said by way of quotation to show the growing importance 
assumed by the subject in recent years. It only remains to refer to the principal 
modern exponent of inverse probability-Prof. Harold Jeffreys. In his book 
The Theory of Probability (1939), he has done much to rehabilitate the theory 
of inverse probability, to show its power in coping with and elucidating modern 
statistical problems and to provide a method corresponding to the process of 
‘learning from experience’, to the process of induction. It was from a study of 
this work that this paper originated and the main purpose of the paper is an 
endeavour to remove some of the remaining difficulties in the subject which 
Jeffreys leaves unresolved in his book.* 

DIRECT SYSTEMS 
It is beyond the scope of this paper to discuss at length the various direct 

systems of statistical estimation and significance tests, but brief reference to 
similarities with and distinctions from inverse probability may be useful. On 
the general question of confining estimation to direct methods, it is important to 
appreciate that the exponents of those systems are aware that they never leave 
the purely conceptual sphere-the realm of pure mathematics. Neyman is at 
great pains (see his Lectures at the Graduate School of the U.S. Department of 
Agriculture) to point to the dangers of using what he calls ‘picturesque 
language’ in probability questions. On p. 296 of J.R.S.S. Vol. CV, he says about 
the set theory of probability that ‘ the probability is our conception. . . but these 
conceptions imitate some real observable phenomena’, and on p. 294 he says 
that ‘the method of approach of von Mises has the advantage of frankly and 
directly attacking the problem of a model of the phenomena of the outside 
world’. He adds that as far as he can see, ‘from the point of view of applications 
both theories are equivalent ‘. There seems to be something suggestive about his 
use of the epithet ‘subjective’ for Jeffreys’s theory of probability-almost that 
his own approach is ‘objective’. He insists (p. 323) that he uses the word 
‘probability’ only in one connexion—probability of an object A having a 
property B-and yet I cannot believe that he identifies what is purely con- 
ceptual with the purely objective. It may be noted that in a particular problem 
(p. 323) he uses the label ‘objects’ for ‘random selections’. He refers to his own 
theory (based on the mathematical theory of sets-see later) as ‘classical’. Can 
there be here an appropriate analogy with pre-Einstein physics, a return to crude 
materialism— naïve realism, as Jeffreys put it ? The answer that would no doubt 
be given is that the application of the mathematical model to the ‘real’ world 
must be subject to the test of experience. But without prescribing a test 
external to the model we are in a conceptual circle. If the test is in terms of 
conceptual operations, such as infinite random selections, the circle is complete. 
If the test is in terms of physical operations it is, I think, clear that it never can be 
powerful enough to determine the issue at its fundamental level which remains 
obscured by the inevitable sampling uncertainty. Fisher (p. I of The Design of 

* See Addendum on p. 311. 
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Experiments) appears to accept the difficulty frankly by confining the science of 
statistics to a branch of pure mathematics, leaving the practical problem of 
scientific inference as a ‘ question of the right use of human reasoning powers’ on 
which the mathematical statistician, ‘ as such, speaks with no special authority’. 
This attitude is the antithesis of Laplace’s attitude, which is summed up in the 
well-known quotation: ‘ La théorie des probabilités n’est que le bon sens réduit 
au calcul.’ The actuary, as a practising statistician, knows that Fisher’s escape is 
not possible-he is forced by the nature of his work to make inferences for 
practical purposes. Whitehead puts the position well in his Science and the 
Modern World (p. 70) : ‘ The great characteristic of the mathematical mind is its 
capacity for dealing with abstractions; and for eliciting from them clear-cut 
demonstrative trains, entirely satisfactory so long as it is those abstractions 
which you want to think about.’ If we read this in conjunction with what he 
says about materialism–‘ The doctrine which I am maintaining is that the whole 
concept of materialism only applies to very abstract entities, the products of 
logical discernment –and with what he says about induction–‘ Induction pre- 
supposes metaphysics. In other words it rests upon an antecedent rationalism’ 
–we have, I suggest, the philosophy of deductive estimation in a nutshell. 

It is, I think, clear that all the direct methods involve at some stage the 
introduction of an arbitrary principle of some kind. It is not suggested that 
these principles may not be highly plausible-they often are; that may be why 
the results to which they lead are closely similar to the results of inverse prob- 
ability applied to the same problems. What is important is that arbitrary 
principles are introduced and that some of them have an affinity with the in- 
difference rule in inverse probability. The simplest case is the principle of 
maximum likelihood, although Fisher appears to deny any logical affinity in this 
case. However, when the possible values of the unknown parameter are discrete, 
maximum likelihood and maximum posterior probability (using Bayes’s 
indifference rule) give ‘the same answer and are equivalent’ (Kendall, The 
Advanced Theory of Statistics, Vol. I, p. 178). When the permissible values of the 
unknown parameter are continuous, differences can arise, and indeed incon- 
sistencies can arise, within inverse probability, if Bayes’s postulate is applied to 
different functions of the unknown parameter (see Kendall, p. 179). Kendall 
explains how this arises, but he does not overcome the embarrassment of 
choice; he is, of course, discussing the matter from the point of view of maximum 
likelihood. Later in this paper, a general solution of this difficulty is put forward. 

I need say nothing about such notions as unbiased statistics, efficient statistics 
and the like; the arbitrary principles involved are obvious. On the other 
hand, the introduction of an arbitrary principle (and its nature) in the use of 
‘ Student’s’ rule and of confidence intervals generally is not so clear. The plain 
object of ‘ Student’s’ distribution and confidence intervals is to provide methods 
by which the statistics can be allowed to speak for themselves and to exclude 
extraneous information, an object which they have in common with the in- 
difference rule in inverse probability. In his paper entitled Mathematics and 
Agronomy (see Collected Papers) ‘ Student’ states that ‘the tables are calculated 
to give the odds correctly if all the available information is contained in the 
sample’. He adds characteristically that ‘in fact, tables can only be an aid to, 
and not a substitute for, common sense’ -an outlook of special appeal to any 
actuary. Jeffreys (p. 310) points out the significance of the words ‘unique 
sample’ in the heading of ‘ Student’s’ tables and goes on to trace the point in 
‘ Student’s ’ and Fisher’s demonstrations where he suggests that the assumption 
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of an indifference rule is implicit. The argument is difficult, but this, at any rate, 
is clear, namely, that Jeffreys, by using his special rule for the prior probabilities 
of a standard deviation (see later), produces the t-distribution by inverse 
probability principles. 

For confidence intervals generally there is a further difficulty. The principle 
of confidence intervals may be stated as follows. If in a long series of sampling 
experiments a statement is made that the universe parameter is contained 
within a pair of limits, defined by certain specified rules in terms of the statistics 
of each sample, the statement will, in the long run (presumably in the proba- 
bility sense), prove to be right in about k %. of the cases, where k can be fixed at 
will ‘and the appropriate rules are deduced accordingly. This k % statement is 
referred to as a ‘confidence statement’ and the word ‘probability’ is avoided. 
From the standpoint of the frequency theory of probability, however, it would 
seem that k does represent a probability provided that we take our stand before 
we have made a particular sample (i.e. before we know the result of the sample). 
I find it difficult to escape the conclusion that we have here a peculiar form of 
prior probability about a statement expressed in terms of the actual statistics 
and the unknown parameter. The whole theory of confidence intervals is a 
brilliant piece of deduction, but the difficulty to me is that the confidence state- 
ment has still to be made when we know the result of the sample, notwithstanding 
that, except in certain special cases, this additional knowledge may modify the 
probability of the correctness of the statement. The amount of this modifica- 
tion may be quite small in the usual cases of application, and it may be that it 
would be argued that it is only on the basis of inverse probability as derived from 
a theory of probability such as that of Jeffreys that the distinction has meaning. 
On the other hand, it may not be unreasonable to suggest that it is precisely 
because the confidence interval results differ so little (and not at all in certain 
cases) from inverse probability results that they do in fact inspire confidence. 

It is clear that the direct schools present for choice an embarrassing array of 
methods of estimation; and some of them involve confusions and differences 
when estimates of more than one parameter at a time are required. They approach 
perilously near to inverse probability in places and yet remain purely deductive 
and conceptual. A satisfactory basis for inverse probability-a resolute attack 
on any remaining doubtful points-would avoid these difficulties and would 
include the problem of inductive inference as an integral part of statistical 
method instead of leaving it as an unsystematized process beyond the science of 
statistics. 

DEFINITIONS OF PROBABILITY 
Laplace’s definition of probability was to the effect that, if an event can happen 

in m ways and fail in n ways and all (m + n) ways are mutually exclusive and 
equally likely, the probability of the happening of the event is m/(m + n). The 
common objections to this definition are (I) that the inclusion of the words 
‘equally likely’ makes the definition circular, and (2) that it is difficult to bring 
within the definition such cases as loaded dice. There may be added a third: 
that it confines probabilities to the rational numbers. 

The neo-classical school (the principal exponents in English are Cramer, 
Neyman and Wilks) overcome the second and third of these objections by an 
appeal to the mathematical theory of sets and claim to avoid the first objection– 
at any rate they exclude the words ‘equally likely’ from their definition in terms 
of sets. It seems to me that the ratio of the measures of two sets, however 
defined, remains a ratio until the notion of selection at random is introduced, 
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and this notion would appear to include the notion of ‘equally likely’. This is, I 
think, what Jeffreys means when he says that this school implicitly introduces 
the notion of ‘ reasonable degree of belief’ before the ink in which the definition 
is written is dry. He also points out that if x is a measure of a set so is f(x), 
where f (x) is a monotonic function of x, so that the definition without ‘equally 
likely ’ lacks precision. 

Now I want to suggest that the objection that the words ‘equally likely’ 
involve circularity is itself an invalid objection. For this purpose I quote from 
Hans Reichenbach (p. 29, loc. cit.) as follows: ‘ Russell’s definition of number is 
based on the discovery anticipated in Cantor’s theory of sets, that the notion of 
“ equal number” is prior to that of number. Using Cantor’s concept of similarity 
of classes, Russell defines two classes as having the same number if it is possible 
to establish a one-to-one co-ordination between the elements of these classes.’

Without pursuing here the steps by which the integers are developed out of 
this notion, it seems clear that any identification of a ratio of measures of sets 
with probability involves the identification of probability with number and 
hence of equal probability with equal number, so that ‘equally likely’ is a 
notion prior to probability. Thus the incorporation of ‘equally likely’ in the 
neo-classical definition would not involve circularity, but would treat ‘equally 
likely’ as a primitive notion, as in effect Jeffreys maintains. Going back to the 
Laplace definition we see that the statement that ‘an event can happen in m 
ways and fail in n ways all of which are mutually exclusive and equally likely’ is 
a meaningful statement about these (m + n) ways, although it actually tells us 
nothing about the strength of the probability until we add that there are no 
other ways, or, to express it in a better way, that one of them must happen. As 
this statement about the (m + n) ways is meaningful without saying anything 
about the measure of probability until a further statement is added, it is suggested 
that with this addition the definition is not circular. This addition has, of 
course, always been assumed to be implied in the definition. 

Turning now to the frequency definitions there seem to me to be two fatal 
objections. First, they confine probabilities to the rational numbers, and yet 
their advocates pass over to the irrational numbers in continuous probability 
problems without justifying this step. The second objection turns on the 
assumption that the relative frequency tends to a limit as the number of trials 
tends to infinity. Jeffreys points out that this process to a limit is not the 
ordinary mathematical limiting process, and that for the expression of any such 
limit to be sound it must be expressed in probability terms and we have a 
circular definition with a vengeance ! (See also Elements of Probability, by Levy 
and Roth, p. 142.) 

The difficulty may be put in a somewhat different way, based on an argument 
by Jeffreys (p. 51). Suppose that the probability of the happening of an event 
is .5. Then if we write I for a success and o for a failure, the probability of m 

successes in m + n trials is , and it is clear that all the possible 

arrangements of an (m + n) sequence of 1'S and 0’s are equally likely, viz. 

0 0 0 0 0 0 ( m+ n terms) 
1 0 0 0 0 0 
0 1 0 0 0 0
1 1 0 0 0 0
10 1 0  0  0
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and so on to the other extreme case of 
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1 1 1 1 1 1 (m + n terms) 
Now von Mises’s definition is based on a special class of such sequences 

as (m+n) tends to infinity and excludes all the others. The relative frequency 
definitions all in principle start by denying these admittedly remote but 
‘possible’ cases for the purpose of the definition and then proceed to adopt 
theorems which make allowance for the possibility of their happening. 

The fact that probabilities other than the very special cases of o, ½  and 1 
require more complicated sets of sequences for their expression and that 
infinite sequences involve difficulties of ordering does not in any way mitigate 
the foregoing criticism. Rather does it show the need for basing mathematical 
probability on the theory of sets. But as already indicated, by so doing, and it is 
suggested that it is inevitably the case with mathematical probability, the 
starting-point is a set of equally likely, mutually exclusive and exhaustive 
alternatives. Without the postulation of such a set, or, what comes to the same 
thing in principle, the postulation of a set of values for the parameters in a 
probability law, the mathematics cannot become more than a piece of symbolism. 
Where these values come from or the justification for adopting them is a 
question going beyond the mathematics; it is a problem of statistical estimation 
in general and of inverse probability in particular. 

The frequency definitions originated in an attempt to base probability 
theory on observed facts, but it seems clear now that, being born in the atmo- 
sphere of nineteenth-century materialism, this approach was doomed from the 
start. It contemplated that probability had an objective reality and yet it 
thrived in a scientific climate of determinism. It identified probability with a 
ratio in an aggregation of entities and perforce denied its essential nature as 
pertaining to a single event (see Freeman, Part 11). Laplace’s penetration has 
been impugned (p. 20 of Fisher’s Statistical Methods), but, consistent with a 
deterministic outlook, he clearly saw that probability is essentially relative to 
knowledge. The actuary who varies his rating of a life for life assurance when he 
acquires fresh knowledge of his health and history cannot logically deny this 
principle, although he can torture himself and substitute a hierarchy of hypo- 
thetical groups of lives to which he successively allocates a life as his knowledge 
of the risk changes. 

The drastic limitation of the field of application of the neo-classical theory of 
probability is very simply illustrated in the following way. 

Onp. 124 of Wilks’s MathematicalStatistics he makes the following statement: 
‘After we have drawn a ball the randomness of the process is over, the particular 
ball drawn is either black or white, and probability statements aside from the 
trivial one that p =0 or 1, are no longer possible’ (my italics). Now suppose that 
A is throwing a symmetrical six-sided die and B is betting with C that the side 6 
will appear. He will base his bet on the probability p = 1/6 If, immediately 
after throwing the die, A puts his hand on it thus obscuring B’s and C’s view of 
the result, the random process is over and the result is either a six or it is not. 
But B and C will still happily bet on the result of A disclosing the die on the 
basis of the same probability p= 1/6 Further, if A peeps at the die (his truth- 
fulness is implicit and can be subsequently checked) and announces that the 
result is an even number, B and C will bet on the basis that the probability is . 
If he announces that the result is in the top third (i.e. 5 or 6) the probability 
(to B and C) is . Thus, in simple games of chance, probability varies with the 
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degree of knowledge of the result after the random process is over, and no 
theory is adequate which fails to take account of the effect of such knowledge on 
the probability. 

It is, I think, clear that the foregoing examples of the obscured die, with 
partial disclosure of the result, can be embraced in the set theory or in a relative 
frequency theory, but to permit this would be to renounce the claim that the 
theory is ‘objective’, unless the word ‘objective’ is confined to ‘conceptual 
objects’ or ‘objects of thought’. Probability regarded solely as a property of a 
common-sense object and an undefined random process (see p. 2 of Wilks’s 
Mathematical Statistics) not only drastically confines the scope of the theory but 
also requires the acceptance of a naive metaphysic. To permit the incursion of 
the knowledge of the observer as affecting the probability is to descend the 
slippery slope and there is no stopping point short of the limiting position of 
complete absence of knowledge involving the need for indifference rules. 

It is clearly not inconsistent with the modern principle of indeterminism to 
postulate an objective chance without asserting the possibility of ever being 
able to measure it with complete precision, and probability then becomes a 
problem of estimation relative to a body of knowledge. In so far as this know- 
ledge is confined to statistical knowledge a precise process of inverse probability 
should be possible of attainment. Without some such approach probability 
cannot come into its rightful focus as the centre of a calculus of observations and 
as the essential basis for scientific method. To confine it to pure mathematics is 
to sterilize it and to deny its essential function. The following further quotations 
from Reichenbach and Russell seem to me to express clearly what is at stake: 

‘Russell has repeatedly emphasized the need for inductive methods and 
recognized the peculiar difficulties of such methods. He thus makes it clear that 
he does not belong to the category of logicians who claim that the cognitive 
process can be completely interpreted in terms of deductive operations, and 
who deny the existence of an inductive logic. It is indeed hardly understandable 
how such utterances can be made, in view of the fact that knowledge includes 
predictions, and that no deductive bridge can lead from past experiences to 
future observations. A logic which does not include an analysis of inductive 
inference will always remain incomplete.’ (Reichenbach, p. 47, loc. cit.) 

‘But it seems clear that whatever is not experienced must, if known, be known 
by inference. I find that the fear of solipsism has prevented philosophers from 
facing this problem, and that either the necessary principles of inference have 
been left vague, or else the distinction between what is known by experience and 
what is known by inference has been denied. If I ever have the leisure to under- 
take another serious investigation of a philosophic problem, I shall attempt to 
analyse the inferences from experience to the world of physics assuming them 
capable of validity, and seeking to discover what principles of inference, if true, 
would make them valid. Whether these principles, when discovered, are 
accepted as true, is a matter of temperament; what should not be a matter of 
temperament should be the proof that acceptance of them is necessary if solip- 
sism is to be rejected.’ (Russell, p. 16, loc. cit.) 

Even if space permitted, I should not wish to attempt! to summarize Jeffreys’s 
exposition of his theory of probability or his criticism of the other theories. His. 
work calls for first-hand study. I will confine myself to the quotation of his first 
axiom: ‘Given p, 4 is either more or less probable than r, or both are equally 
probable; and no two of these alternatives can be true.’ Thus ‘equal probability’ 
is taken as a primitive notion. 
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I conclude this section of the paper by expressing the view that no theory of 
probability can escape an antecedent philosophy and metaphysic, and that, as, 
in the theory of relativity, objectivity and subjectivity are subsumed in a theory 
about observations, about the relation between the observer and the ‘object’ of 
observation, so probability theory must be a theory about observations rather 
than about objects or about pure concepts if it is to correspond adequately 
with scientific inference. 

THE INVERSE PROBABILITY THEOREM
The general inverse probability theorem is expressed by Jeffreys in the 

following form:
Posterior probability Prior probability x Likelihood.

It is assumed that a sample has been obtained at random from a population 
distributed according to a probability law. The form of this probability law is 
assumed to be known, but the values of the parameters in the law are assumed to 
be unknown. This is the essential position in estimation problems and is common 
to the deductive methods and inverse probability. The assumption of the proba- 
bility law rests on a question of significance, and, as Jeffreys puts it, every 
estimation problem assumes that a prior significance problem has been solved. 
This paper does not pursue the application of inverse probability to signi- 
ficance testing. 

Assuming a particular set of values of the parameters, the likelihood expresses 
the probability of the sample arising on the basis of the probability law with these 
values of the parameters. The prior probability expresses the probability that 
these parameters have these particular values before the result of the sample is 
known. The posterior probability expresses the probability that the parameters 
have these particular values after the result of the sample is known. The sign 
is used to indicate that a constant multiplier may be necessary to ensure that 
the sum of the posterior probabilities for all possible sets of values of the 
parameters is equal to unity. 

Thus, if we know the law and also the values of the prior probabilities the 
theorem is clearly based on the product rule for compound probabilities and 
there is nowadays no dispute on its validity in these conditions (see Whittaker’s 
paper On some disputed questions in probability, T.F.A. Vol. VIII, p. 163). 

THE BAYES-LAPLACE POSTULATE
The difficulties and controversy arise in the vital cases where the prior 

probabilities are not known and where, if it is desired to use the theorem, an 
assumption must be made regarding the values of these prior probabilities. In 
particular, the critical problem turns on the question of whether formal 
mathematical expression can properly be given (and, if so, what mathematical 
form should be assigned) to these prior probabilities when, before the sample is 
taken, we are in a state of complete ignorance, or when it is appropriate for us to 
assume that we are in complete ignorance, about the values of the parameters, 
subject only to any necessary limitations implicit in the underlying probability 
law itself (such as that the parameter must lie between o and I or between o and 
). It has been argued by some that complete ignorance cannot be expressed in 
mathematical terms, a view which has been summed up in the tag ex nihilo nihil. 

19-2 
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As Jeffreys points out, such an attitude forbids any theory to start at all, and I 
would add that it denies the possibility of ever devising a process by which a set 
of statistics can be allowed to speak for themselves, without the introduction of 
external information. For my part, I reject this view entirely. I also reject the 
idea that we can properly obtain any guidance on the point from experience; for 
example, that we can in the binomial case obtain any guidance from the 
distribution of observed statistical ratios on the lines suggested by Karl Pearson 
and criticized by Jeffreys. 

To meet the difficulty Bayes, with a great deal of doubt, suggested (and 
Laplace, apparently with little sign of doubt, adopted) the ‘indifference rule’ 
that each set of values of the parameters should be given equal prior proba- 
bilities. 

Before proceeding to discuss the difficulties involved in this rule and my 
proposal for overcoming them, it is convenient to set out the well-known results 
in the classic case of the binomial law. I shall confine attention to the case where 
the parameter in the binomial law can take any value in the continuum from 
o to I. Indeed, this paper will be confined to the problem of continuous para- 
meters which provide the basis for most of the difficulties in the subject. 

THE BINOMIAL LAW 
Let us assume that samples are drawn from a population and that the proba- 

bility of a success at each drawing is x and the probability of failure is 1—x. Let 
us further assume that there have been m successes out of n trials. For any given 
value of x the likelihood is then given by the binomial law, viz. 

Writing px for the prior probability and Pxdx for the posterior probability, 

where and 

It will be noted that cancels from numerator and denominator. Thus it is 

immaterial whether we express the likelihood as above or as xm (1– x)n–m, 

without the multiplier . The latter form is more usual and, in principle, is 

the more correct form of the likelihood. The identity of the results arises from 
the fact that m/n is a ‘sufficient statistic’ in the binomial case. But the treatment 
of all cases of m successes out of n as similar samples, without regard to the order 
of successes and failures, is a question of significance rather than of estimation; 
that is to say, for some purposes the order is relevant to significance. 

If in the above expression for Pxdx we adopt the Bayes-Laplace rule, we have 
px = 1 and the classic result (see Whittaker’s paper) follows : 

we then have
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The mean value of the Px distribution is (m + 1)/(n + 2). This represents the 
probability of the next trial being a success since the total probability of a 

success next time is If m = n the probability of a success next time is 

(n+ 1)/(n+2), h f t e amous rule of succession. If m = n/2 this probability is .5 
and if m = o, it is 1/(n + 2). 

The mode of the Px distribution gives the maximum posterior probability, 
namely m/n, and this is, of course, identical with the maximum likelihood. 

There is one further result needed in the sequel and that is the probability 
that, after n successes inn trials, the next (n + I) trials will all be successes. This 
result, due to Karl Pearson, is obtained from 

since m = n and n - m = o, and the probability works out at .5. 

THE DIFFICULTIES ARISING FROM THE 
BAYES-LAPLACE RULE 

If all parameters had a possible range of - to co, and before sampling we
had no reason to prefer one value rather than any other, the Bayes Laplace rule 
might have withstood much of the criticism to which it has been subjected and 
inverse probability might have contributed much more to the theory of statistics 
than it has. At any rate, in cases of unlimited possible variation (such as a mean 
in a normal universe) the Bayes-Laplace indifference rule does not seem to have 
led to much difficulty. The difficulties arise in the cases where the range of 
possible variation is limited either at one end (e.g. in the case of a standard 
deviation or variance which cannot be less than zero) or at both ends (e.g. in the 
case of a proportion or a probability for which the possible range is o to I). These 
difficulties may be grouped under two headings : 

(I) The rule can lead to unreasonable, or unacceptable, results ; 
(2) The rule can lead to inconsistent results. 
At one time, the rule of succession was regarded as a logical justification for 

induction, for scientific inference. But Pearson’s result of .5 for the probability 
that the next (n + I) trials will be successes, after n successes in n trials, is clearly 
too low and unacceptable as a representation of the scientific process of experi- 
mentation to test a proposed scientific law. As Jeffreys says (p. 102), the result 
does not correspond with anybody’s way of thinking. The rule of succession 
itself is hard to accept. It assigns a probability to the next trial which implies the 
assumption that the actual run observed is an average run and that we are 
always at the end of an average run. It would, one would think, be more reason- 
able to assume that we were in the middle of an average run. Clearly a higher 
value for both probabilities is necessary if they are to accord with reasonable 
belief. Having in mind the limitation of variation of the probability parameter 
to the range o to I, Jeffreys considers the possibility of transforming to another 
variable with an infinite range both ends and of applying the Bayes-Laplace 
rule to this other variable. He illustrates this by the transformation 

y=log{x/(1 -x)}. 
This yields the form pydy = dy = dx/x ( I - x) =pxdx for the prior probabilities 
and the resulting probability for the next trial, after m successes in n trials, is 
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m/n, or certainty when m=n and impossibility when m=o. As Jeffreys 
remarks, these results go too far in the other direction, and we still have un- 
reasonable results for the extreme cases. Jeffreys does not pursue this particular 
aspect of the subject further. 

The other group of difficulties is even more serious. It arises from the fact 
that if we transform the variable non-linearly and apply the Bayes-Laplace rule 
to the transformed variable we necessarily obtain results which are discrepant 
with those obtained by applying the rule to the original variable. This would not 
be serious if we could be sure that a particular variable was of unique relevance 
to our problem, that in each problem there was, so to speak, some known 
absolute metric. Einstein has taught us to beware of such assumptions, but it 
does not need any excursion into relativity to see that the choice between say a 
variance and a standard deviation, as the form of expression of an unknown 
parameter, is quite arbitrary. The separate application of the Bayes-Laplace 
rule to these two parameters obviously yields discrepant results for the posterior 
probabilities. Jeffreys successfully overcomes the difficulty in this case by 
means of an ad hoc rule for the prior probabilities whenever the possible range of 
the parameter is from o to . This rule is pxdx=dx/x, so that if we write 
y = xn we have dy/y dx/x. By this rule it is immaterial whether we use the 
variance or the standard deviation as our parameter. The rule is not, of course, 
invariant for other forms of transformation and is quite independent of the 
rules for parameters which are either limited at both ends or unlimited at both 
ends. 

THE NEW INDIFFERENCE RULE
The limited invariance of this rule of Jeffreys for parameters with a range 

limited at one end, coupled with the brilliant results achieved by him, including 
the derivation of important statistical distributions (e.g. the t-distribution and 
the x-distribution) and the elucidation of important modern statistical notions 
(e.g. the notion of ‘sufficient statistics’) by inverse probability processes, 
suggests that there is much more in this matter than a mere lucky ad hoc rule. 
Clearly what is wanted is a unified rule which embraces this ad hoc rule and 
which can be applied to all kinds of parameters and is invariant to all forms of 
transformation. Such a rule would comply with the general process of minimiza- 
tion of postulates, i.e. it would satisfy the simplicity postulate (Ockham’s 
razor) which Jeffreys rightly stresses as of fundamental importance to science. 
The provision of such a rule would then fall to be tested by the results to which it 
leads. Like any other postulate it is not a matter for proof; its acceptability 
turns on its fruitfulness, on the reasonableness and consistency of the results to 
which it leads. 

Bearing in mind that the prior probabilities are assigned to particular small 
intervals in the range of possible variation of the parameters and not to points or 
particular values of the parameters, the rather obvious need is to assign equal 
probabilities not to equal arbitrary intervals but to equal ‘standardized’
intervals. The more or less intuitive approach which led to this conception is 
indicated in the next section by reference to the notion of confidence intervals. 
In this section the new rule is stated and some of its properties are examined. 
The new rule may be stated as follows: 
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where x is a parameter in a probability law of any form, which can take any value 
in a given continuum, whether unlimited, limited at one end or limited at both 
ends. x is the large sample standard error of X. Where x is the mean of a 
binomial distribution, or a mean or a standard deviation of a normal distribution, 
or, more generally, where x is a parameter for which there is a ‘sufficient statistic’ 
(i.e. a statistic which contains the whole of the information in a sample relevant 
to the parameter), then, provided that the parameter is a function of the uni- 
verse distribution of the same form as the statistic is of the sample distribution, 
x is the large sample standard error of that statistic. In cases where there is no 

‘sufficient statistic’ the meaning of x is somewhat vague, but it seems reason- 
able to define it as the large sample standard error of whatever ‘consistent’ 
statistic is used as relevant to the parameter. If we transform the rule dx/ x, 
by y = f(x) we then have 

That this rule is invariant on transformation (i.e. that it retains its form on 
transformation) is clear from the differential equation which connects the large 
sample standard error of a function of a statistic with the standard error of the 
statistic itself (e.g. see Kendall, p. 208) and can be shown in the following simple 
way. 

Suppose that we have a set of large sample statistics xi (e.g. a set of means or 
standard deviations) measured from the universe parameter and that y = f(xi) 
is a function of the statistic xi which is capable of expansion by Taylor’s theorem, 
so that 

Then in the limit for large samples 

and 

Hence 

In the case of a normal universe, it is known that sample means and standard 
deviations are independent. Thus writing x for the mean as a parameter with an 
unlimited range of possible variation, x is independent of x and the new rule 
reduces to the Bayes-Laplace rule pxdx dx. 

The standard error of a standard deviation is 
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For a normal universe this reduces to / (2n) and so the new rule, in this case, 
reduces to Jeffreys’s ad hoc rule for parameters limited at one end viz., 

It should be noted, therefore, that Jeffreys’s rule applies only when the standard 
error reduces in this way and Jeffreys’s suggestion that dx/x should be used for 
parameters with a range of o to co is not universally appropriate. Fortunately, 
his important results for normal universes and certain other cases are not 
affected. 

In the case of a probability parameter where the law of variation is the 
binomial, the standard error is x½ (1 - x)½/ n and the new rule gives 

or 

This is a U-shaped distribution, with a finite area, a mean of .5 (complying with 
the requirement that the probabilities of success or failure at the first trial should 
be equal) and infinite ordinates at the end-points x = o and x = 1 .* 

It is of interest to note that it is a special case of the form xr (1 - x)s suggested 
by Hardy (in the correspondence reprinted from the Insurance Record (1889) in 
the same volume of T.F.A. as Whittaker’s paper) as suitable for expressing a 
degree of prior knowledge, because of its cocked-hat shape when r and s are 
positive and because of the facility with which it combines with the likelihood 
function. In the discussion on Whittaker’s paper Lidstone refers to the possi- 
bility of using negative values of r and s to provide U-shaped curves for cases 
where high probabilities near the extremes would be appropriate. Neither of 
them, however, contemplated putting r = s = -½ to obtain an indifference rule 
in place of the Bayes-Laplace rule, which of course results from r = s = o. 

Probability theory has for so long been constructed on the basis of confining 
probabilities to the continuum o to 1, with o representing impossibility and 1 
representing certainty, that we are inclined to regard this as somehow necessary 
instead of as a quite arbitrary procedure imposed by the mind in order to 
facilitate the working in the mathematical superstructure. Jeffreys illuminates 
this point in his own approach on an axiomatic basis. He shows that the 
commencing value o is a necessary consequence of his axioms and of the adoption 
of the addition rule as a convention; but the adoption of 1 as the other limit is 
also conventional and he shows that for some purposes it may not even be the 
most convenient convention. 

Since the distinction between ‘success’ and ‘failure’ is a matter of nomen- 
clature (q and p entering symmetrically into probability expressions) and since 
for ‘impossibility’ we can speak of ‘certainty of failure’, a limit at either end is 
clearly a matter of convenience rather than of necessity. An obvious transforma- 
tion to a continuum unlimited at one end would be to use as a scale of probability 
the odds against an event, i.e. if x is the usual probability, the reciprocal of the 

* In connexion with the problem of a finite universe in which the only possible 
values of x are o/N, 1/N, z/N, . . . , N/N, Jeffreys gives cogent reasons for special weight 
being given to the extreme values o/N and N/N and suggests certain arbitrary rules for 
this purpose. It is interesting to note that if we use 1/N x½ (1 -x)½ for the prior proba- 
bilities of the intermediate values of x and split the balance of the total probability 
equally between the two extreme values of x (o/N and N/N), the requirements of the 
discrete case as indicated by Jeffreys (p. 109) are met and in the limit the new rule for 
the continuous case is reached. 
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odds against the event is x/(1 – x) which has a range of 0 to (cf. the American 
actuarial symbol kx = qx/px). Enough has been said perhaps to indicate that the 
application of the Bayes-Laplace rule to probability intervals in the continuum 
0 to 1 is a quite arbitrary procedure and that the new rule has the important 
merit of avoiding the necessity of an arbitrary choice of continuum in this most 
important case in which difficulties have arisen out of the Bayes-Laplace 
postulate. 

Certain transformations of the probability parameter yield illuminating 
results. First there are three trigonometrical transformations which produce 
uniform distributions in terms of angles, viz. 

(1) Put x = sin2 , then 

(2) Put 2x- 1 =sin , then 

(3) Put 8x(1-x) - 1 = sin , then

The standard error of where is defined as in (1) is given by Fisher (p. 39 of 
Statistical Methods) as proportional to 1/ n and independent of , and it is clear 
that this applies also to transformations (2) and (3). A little reflexion will, it is 
suggested, show that there is something quite natural about a uniform distribu- 
tion of probability of equal angles round the full circle as in transformation (3). 
This result certainly lends support to the new rule as a ‘reasonable’ postulate. 

If we make a further transformation and put 
y=tan , where sin =zx-1,

we obtain 

Thus we have transformed to a parameter with unlimited range both ends. The 
resulting distribution for the prior probabilities is of the Cauchy type. The area 
is finite, the mean, mode and median are all zero (equivalent to x = .5) and the 
standard deviation diverges. Our state of ‘prior ignorance’ is thus characterized 
by appropriate ‘indifference’ to the likelihood of success or failure at the first 
trial with an unlimited uncertainty otherwise as to the value of the parameter. 
This seems to sum up in appropriate mathematical form the essential features 
required to represent the attitude of ‘indifference’ or ‘prior ignorance’ for the 
probability parameter. Hitherto, the confinement of the probability parameter 
to the range o to 1 has obscured this essential feature, namely a fixed mean 
equivalent to a total prior probability of .5 combined with unlimited un- 
certainty. This position is to be sharply distinguished from the corresponding 
position in the case of the mean and standard deviation parameters in a normal 
universe. In both of these cases not only is unlimited uncertainty required but 
also the mean value of the prior probability distribution must be indefinite. The 
new rule has the remarkable property of meeting all of these requirements. 

The suggested solution of the problem of an appropriate form for the prior 
probabilities for the probability parameter by an invariant rule seems to be 
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somewhat analogous to Einstein’s solution of the relativity problem. In 
Einstein’s case, velocities had hitherto been allowed an infinite range from 
– to and his solution turned on the introduction, as a postulate, of a 
constant velocity for light waves which in the theory becomes the maximum 
velocity. Our probability problem seems to have been confused by an obstinate 
refusal to make appropriate allowance for the mathematical effect of an 
arbitrary finite range or for assigning constant values for certainty and im- 
possibility in all circumstances. But the analogy does not stop there. In the 
invariant Lorentz transformation used by Einstein in the special theory of 
relativity, the expression 1/ ( 1 - v2/c2) appears. z, is the relative velocity and c 
is the constant velocity of light so that the maximum value of v2/c2 = 1. If in the 
new indifference rule pxdx = dx/ x½ (1 - x)½ we make the linear transformation 
2x-1=r (so that when x = o , r = - 1; when x = ½, r =o; and when x= r ,r=1)
we obtain the form prdr = dr/ (1 - r2) which is in the same form as the Lorentz 
expression, Now the maximum velocity v 2 = c2 is associated with radiation— 
matter as such cannot reach the maximum. Modern thought refuses to accept 
the idea of ‘action at a distance’ so that physical causation must be associated 
with radiation, that is, with the maximum velocity v2/c2= 1. In philosophy 
causation connotes ‘invariable sequence’ and in probability theory ‘invariable 
sequence’ connotes 'certainty’, which in its turn is represented by r2 = 1. This 
chain of associated ideas and this similarity of mathematical form may of 
course, be nothing more than suggestion, but the chain can be pursued a little 
further. Zero velocity (v2/c2 = o) seems to be associated with complete random- 
ness and disorder (e.g. at the absolute zero of temperature). Complete in- 
difference and randomness seem to be associated with x = ½ (r = 0). Finally, it 
may be worth noting that E. A. Milne in his work on the special theory of 
relativity (Relativity, Gravitation and World Structure) shows that the constant 
speed of light is conventional, that it arises out of the conventional way in which 
velocities are measured as the ratio of distance intervals to time intervals. On 
p. 39 he says: ‘We see that the famous “postulate of the constancy of light” is at 
bottom a convention.’ This may be compared with the conventional constancy 
for expressing certainty and impossibility in probability theory. 

In the case of the correlation parameter in a normal surface, as with the 
probability parameter, Jeffreys uses the uniform prior probability distribution, 
for want of a better form. The new rule gives dp/( 1- p2) for the prior probability 
distribution of the correlation parameter. The introduction of the new rule in 
the correlation case would produce small changes in Jeffreys’s results (see p. 139 
of his book). In certain other cases (such as the unknown range of a rectangular 
distribution and a standard deviation made up of two parts one of which is 
known and the other unknown) Jeffreys’s ad hoc rule dx/x is covered by the new 
general rule. 

CONFIDENCE INTERVALS
Let us assume that we have a probability law containing a parameter which 

can take any value in a continuum limited at both ends (e.g. o to 1). The diagram 
is arranged to indicate the possible values of the parameter (x) on the vertical 
axis and the possible sample values (y) on the horizonta1 axis—the samples are 
assumed to be all of the same number. It is further assumed that the ‘expected’ 
or mean sample value is equal to x. Then the diagonal line between the axes 
represents the mean values applicable to the successive values of x. 

The curved lines are a sufficient representation of the confidence belt 
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applicable to a confidence percentage of k. For larger values of k the belt would 
be fatter and for smaller values it would be thinner. The construction of the belt 
is sufficiently explained by the typical horizontal line ABCDE, applicable to a 
particular value of x. The intervals BC and CD together contain k% of the proba- 
bility distribution and this applies to the horizontal line applicable to any other 
value of x. The value of k can be any figure we care to fix from o to 100, and 
the intervals BC and CD need not necessarily contain equal frequencies. If M 
represents a sample value of y, then AJ is the interval which is asserted in the 
confidence statement as containing the true value of the probability parameter 
x, with a ‘confidence of k%'. Now, if the probability law is such that fixed 
distances from the mean measured in terms of standard deviations contain 
fixed proportions of the total probability, independently of the value of x, then 

the equalization of the interval BC (or KF) for a particular value of x with the 
corresponding interval BC (or KF) for another particular value of x can be 
effected by standardizing them both, i.e. by dividing each by the standard 
deviation ( x) of the probability distribution applicable to the particular value 
of x. Thus we can compare y/ x for different values of x. Since BC = BG 
(and KF = GF) similar comparisons in respect of the corresponding intervals 
BG (and GF) can be made, i.e. comparisons of x/ x. When n becomes very 
large, and assuming the applicability of the central limit theorem, the intervals 
BC and KF, and BG and GF become smaller and smaller even if k approaches 
100%. In these conditions the points A and J come close together, and in the
limit for a fixed value of M (i.e. for a given sample) we are concerned with a 
single value of x for x for standardizing BC, BG, KF and GF and we reach 
dx/ x as the expression of intervals containing equal proportions of the proba- 
bility distribution. 

The foregoing is vague and confused; it does not purport to prove anything. 
If inverse probability is to conform to the process of induction, an unprovable 
postulate must be involved, otherwise we achieve the seemingly impossible 
task of reducing induction to deduction. The above discussion is merely 



302 Some Observations on Inverse Probability 
intended to indicate the line of intuitive thought which first suggested the new 
indifference rule. I had in mind that, for a fixed standard deviation, the con- 
fidence belt applicable to the mean of a normal universe is a pair of straight 
lines parallel to the diagonal between the x and y axes. For different values of k, 
we have a sort of mesh of parallel probability lines. In this case, the uniform 
distribution of the prior probabilities works well and gives the same results as 
the confidence statement. A similar position seems to arise with the t-distribu- 
tion, provided that Jeffreys’s rule is used for the prior probabilities applicable to 
the standard deviation parameter. This suggests that in other problems in 
order to obtain the same equivalence we need to transform the parameter so 
that the confidence belt takes a similar parallel form. In large samples, this is 
just what the new rule achieves in conditions in which the central limit theorem 
applies (it is worth noting that Whittaker in his paper repeatedly stresses the 
assumption of ‘statistical regularity’), and it is precisely the extreme cases of the 
large sample results of the Bayes-Laplace rule applied to the probability para- 
meter in the binomial law which have been impugned as unreasonable. The use 
of the same rule for small samples seems to be a reasonable postulate to make, 
because there is no reason to adopt a different prior probability distribution as 
between large and small samples. Our prior attitude to the various possible 
values of the unknown parameter is the same in both cases. It may be observed 
that a very lucid and precise treatment of confidence intervals is contained in 
Chapter VI of Wilks’s Mathematical Statistics and that their equivalence with 
the results of inverse probability on the new indifference rule in the case of 
large samples seems to be implied in the results obtained by the appeal to the 
central limit theorem on pp. 127–130. 

The idea of the confidence interval diagram as a probability mesh and the 
need to secure parallelism by transformation gives support to the idea that the 
problem is basically similar to that of the ‘world structure’ in relativity theory. 
In the case of the binomial probability parameter, the transformation to a 
uniform distribution of prior probabilities round a full circle suggests a con- 
fidence picture in the form of a sphere with an orthogonal mesh of great circles, 
generated by rotating two planes at right angles to each other (one for the 
parameter and the other for sample values , where sin = 8y ( 1 -y) - 1). The 
confidence lines for large samples would then be lines of latitude parallel to an 
‘equator‘. 

SOME RESULTS BY THE NEW RULE 
If we have made n drawings from a binomial universe and have achieved m 

successes, then the new rule pxdx = dx/ x½ (1 - x)½ yields the following distribu- 
tion of the posterior probabilities 

The mean value of this distribution, which is the total, posterior probability 
of the next trial being a success, works out at (m + ½)/(n + 1) compared with the 
Bayes-Laplace result (m + 1)/(% + 2). 

The maximum posterior probability works out at (m - ½)/(n - 1), compared 
with the Bayes-Laplace result ( = the maximum likelihood value) of. m/n. If 
m = n, the maximum posterior probability is, of course, 1. If m = o, the maximum 
posterior probability is o. If we desire to make a point estimate of the parameter, 
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the maximum posterior probability would be the appropriate choice. If, 
however, we want to obtain a pair of limits containing the ‘true’ value with a 
fixed posterior probability A say, we must evaluate a and b in the integral 

and no doubt we should wish to minimize (b-a). 

It is worth noting that if we assume that x is such that our sample result m/n is 
the most probable result (i.e. the mode of the binomial distribution (x + 1-X)n) 
the possible values of x range from m/(n + 1) to (m + 1)/(n + 1). The mean value 
or the value in the middle of the range of these possible values is, of course, 
(m + ½)/(n + 1). This result lends some support to the value given by the new 
rule for the probability at the next trial as a ‘not unreasonable’ result. Actually 
m/n lies between (m + ½)/(n + 1) and (m - ½)/(n - 1). For those who have an 
instinctive feeling for m/n as the ‘best’ estimate, there is perhaps some point in 
asking why they prefer to identify the sample result with the mean rather than 
with the mode. It seems to be precisely because the binomial law is a discrete 
probability law with slightly discrepant mean and mode that all the mathe- 
matical difficulty in applying inverse probability to this case has arisen. 

If m = ½n, the total posterior probability of success next time is .5 so that the 
rule conforms to the obvious position that we still have no reason to favour 
success rather than failure. 

If m = n, the total posterior probability of success next time is (n + ½)/(n + 1) 
compared with the Bayes-Laplace result (n + 1)/(n + 2). This provides a new 
rule of succession and expresses a ‘reasonable’ position to take up, namely, that 
after an unbroken run of n successes we assume a probability for the next trial 
equivalent to the assumption that we are about half-way through an average 
run, i.e. that we expect a failure once in (2n + 2) trials. The Bayes-Laplace rule 
implies that we are about at the end of an average run or that we expect a failure 
once in (n + 2) trials. The comparison clearly favours the new result from the 
point of view of ‘reasonableness’. 

If m=o, the total posterior probability of success next time works out at 
½/(n + 1), wh h ic is a much more reasonably remote result than the Bayes- 
Laplace result 1/(n + 2). 

As mentioned earlier, the indifference rule considered by Jeffreys (i.e. 
pxdx dx/x (1 - x)) to go too far in the other direction, compared with Bayes- 
Laplace, produces m/n for the total posterior probability of success at the next 
trial. Thus, the results of the new rule lie ‘reasonably’ between the two extremes. 

On the Bayes-Laplace basis, K. Pearson produced the result that after n 
successes in n trials the total posterior probability that the next (n + 1) trials 
will all be successes is exactly .5, whatever the value of n. 

On the new rule the corresponding probability that the next n will all be 
successes is 

Putting n = 1, 2, 3, . . . , successively we obtain the results 3/4, 35/48, 
693/960, . . . , rapidly tending to the limiting value of 1/ 2 as n tends to infinity. 
This is clearly more ‘reasonable’ than either the Bayes-Laplace result or the 
result on the alternative rule rejected by Jeffreys which gives certainty as the 
probability. It clearly provides a very much better correspondence with the 
process of induction. Whether it is ‘absolutely’ reasonable for the purpose, i.e. 
whether it is yet large enough, without the absurdity of reaching unity, is a 
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matter for others to decide. But it must be realized that the result depends on 
the assumption of complete indifference and absence of knowledge prior to the 
sampling experiment. When this assumption is not appropriate other con- 
siderations apply, and some discussion of this aspect is given in the next section. 
One other result in this connexion may be of interest. The new rule yields .5 as 
the total posterior probability that the next 3n trials will all be successes, after 
having obtained n successes in n trials. In this form, the new rule certainly 
seems to have gone a long way to dispose of one of the principal objections to 
inverse probability, namely that the Bayes-Laplace rule of succession produces 
results which do not correspond with anybody’s way of thinking. 

It is worth noting that the new result (m + ½)/(n + 1) conforms to the general 
form quoted by Jeffreys as obtained by W. E. Johnson, namely (m + k)/(n + 2k). 
It also fits Makeham’s empirical ‘general’ formula (m + rp)/(n +r) (J.I.A. Vol. 
XXIX, p. 250). Unfortunately, Makeham’s work is marred by serious confusions 
of thought. At that time? because of the constant reference to balls in urns there 
had often been a confusion. between the prior probability distribution and the 
prior probability of each particular ball being of a particular colour. Makeham 
speaks of p as the ‘antecedent probability’ but goes on to treat it also as the 
unknown universe parameter. This confusion is pursued in a note by E. L. 
Stabler(J.I.A. Vol. xxx, p. 239). Having regard to the way in which Makeham 
reached his ‘general’ formula, it is remarkable that it covers all the cases which 
can arise from Hardy’s form xr (1+ x)s for the prior probabilities. 

It is plain that the results of the new rule differ but little from the classical 
results. It would be illogical, however, for those who object to inverse proba- 
bility because of the results yielded by the Bayes-Laplace rule, to object to the 
new rule on the basis that the modifications necessary to reach 'reasonable’ and 
consistent results are very small. As Jeffreys has pointed out, the effect of any 
normal change in the prior probability distribution is equivalent to the effect of 
one more observation and is a fraction only of the statistical uncertainty of the 
result. The discrepancies have been arithmetically minute, but the theoretical 
difficulties have profoundly retarded the development of the fertile seeds sown 
by Bayes and Laplace and only in recent years nursed into maturity by Jeffreys. 

THE PROBLEM OF COMPOUND EVENTS, ASYMMETRICAL
ALTERNATIVES AND ‘THE MIDDLE’ 

It has long been known (e.g. see Keynes) that the application of the same 
indifference rule to compound events as to the elementary events of which they 
are compounded produces inconsistent results. On the basis of the Bayes- 
Laplace rule, if we have had n successes in n trials, the probability that the next 
n trials will all be successes is 2/3 for n= 1, 3/5 for n=2, 4/7 for n= 3, rapidly 
tending to 5 as n becomes large. If now we regard n trials as a single compound 
trial, n successes in the n trials as a single compound success, and one or more 
failures in n trials as a single compound failure, and apply the Bayes-Laplace 
indifference rule to these compound events, the probability of n successes in 
n trials after n successes in n trials becomes the probability of 1 compound success 
in 1 trial after 1 compound success in 1 trial, and the inconsistent answer of 2/3 
results whatever the value of n. The reason for the inconsistency is obvious: 
the application of the Bayes-Laplace indifference rule both to elementary and to 
compound events represents two different postulates. 

The new rule does not, of course, avoid this inconsistency, although the 
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discrepancy is considerably reduced. The corresponding results as already 
indicated are 3/4 for n= 1, 35/48 for n=2, 231/320 for n=3, rapidly tending 
to 1/42 ( .707) as n becomes large. 

Let us consider the basis for adopting an indifference rule at all. It is assumed 
that before taking a sample we have the possibility of only two alternatives and 
that we have no reason whatever to suppose that one alternative is more likely to 
occur than another. This attitude of mind would seem to be appropriate only if 
the two alternatives are logically symmetrical. This idea of logical symmetry 
may be illustrated in the following way. If an urn can contain only two kinds of 
balls, white and red, in unknown proportions, the alternatives white and red are 
logically symmetrical. If, on the other hand, the urn contains white and not- 
white balls (i.e. balls of any colour other than white), the alternatives white and 
not-white are logically asymmetrical. That the, assumption of ‘indifference’ 
between two alternatives is reasonable only when they are symmetrical has been 
pointed out by a number of writers on inverse probability. It is precisely for 
this reason that when we are dealing with compound events it is inappropriate to 
adopt an indifference rule for their prior probabilities. The alternatives— 
n successes (or failures) and one or more failures (or successes)-are clearly 
asymmetrical. If this distinction is maintained and the indifference rule is 
confined to elementary symmetrical events the inconsistencies are avoided and 
we have to seek some other ay of dealing with asymmetrical alternatives. 

Now let us consider the possibilities of biased rules for the prior probabilities. 
If we assume pxdx dx/x as the expression of a biased rule and write y=xn, 
corresponding to a compound success made up of n sub-events, we have 
dy = nxn-ldx so that pydy dy/xn = dy/y. Thus we can contemplate a chain of 
events, a compound event made up of sub-events, a sub-event made up of sub- 
sub-events, and so on, and at each stage we have a biased prior probability rule 
in the same form dx/x. Similarly, if we assume pxdx dx/(1 - x) as the expres- 
sion of bias in the other direction and write (1 - y) = (1 - x)n, we have 

and pydy dy/(1-y), with a corresponding chain of rules of the same form. 
These two biased rules dx/x and dx/(1- ) x represent the two limiting cases of 

the general expression dx/x1-r (1 - x)r which includes the new indifference rule 
as a special case when r = ½. The mean value of the distribution dx/xl-r (1 - x)r 
is r, so that this rule is a convenient way of giving the mildest possible preference 
to the value x = r before taking the sample, without reaching unreasonable results. 

Applying the rule dx/x, the total posterior probability of a success at the next 
trial, after m successes in n trials, is m/(n + 1). On the rule dx/(1 - x) this proba- 
bility is (m + 1)/(n + 1). The former rule is a J-shaped curve expressing a bias in 
favour of x = o, while the latter expresses a bias in favour of x = 1. The very small 
difference between the resulting posterior probabilities (of the order of (a) the 
difference between the mean and the mode of the binomial distribution or 
(b) I/ n times the standard deviation of the binomial distribution) clearly 
illustrates the size of the gnat which the opponents of inverse probability are 
unable to swallow and also the pertinent remark by Jeffreys that the effect of any 
ordinary change in the prior probabilities is of the order of the effect of one more 
observation. 

It is of interest to note that the arithmetic mean between the results of the 
two limiting biased rules is the same as the result of the new indifference rule. 
This suggests that if we know that our two alternatives are asymmetrical but 
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have no reason to assign a ‘direction’ to the asymmetry, i.e. to choose which 
alternative to bias, we might apply to the two biased results the simple in- 
difference rule of assuming them to be equally likely, i.e. 

and so obtain the same result as using the new indifference rule at the beginning. 
In applying inverse probability to actual observations of natural events, we 

are faced with the difficulty of determining which events are elementary and 
which are compound. It is one thing to speculate, as in certain modern philo- 
sophies, about a world structure made up of elemental events, but it is another 
to determine whether a particular defined event is elementary or compound. If 
we are sure that there are only two precisely defined alternatives and we have no 
reason to bias one way or the other, the line of argument in the preceding 
paragraph may resolve the difficulty. It seems clear, however, that in the 
scientific sphere the problem often poses itself inescapably in one of two forms; 
either there is a ‘middle’ which we cannot entirely distribute in advance by 
definition of two symmetrical alternatives, or our alternatives are asymmetrical. 
This is particularly so at the microscopic level, and seems to be connected with 
the uncertainty principle in quantum physics. The following quotation from 
Reichenbach (loc. cit., p. 45) brings out the point clearly: 

‘Now the results of quantum mechanics can be so interpreted that when 
we insist upon constructing the language of physics in a two-valued manner 
it will be impossible to satisfy the postulate of causality, even when an 
extension of causal connexions to probability connexions is admitted. The 
violations of the principle of causality are of another kind; they consist in 
the appearance of an action at a distance. On the other hand, it can be 
shown that causal anomalies disappear when the statements of quantum 
mechanics are incorporated into a three-valued logic. Between true and 
false statements we then shall have indeterminate statements; and the 
methods by which the truth-values of statements are derived from 
empirical observations are so constructed that they will classify any 
quantum mechanical statement in one of the three categories.’ 

We are familiar with the notion that our knowledge of the external world is 
never certain. Whitehead (loc. cit., p. 30) says ‘But in general, with more com- 
plex instances, complete certainty is unattainable.’ Einstein quotes Hume as 
follows: ‘Whatever in knowledge is of empirical origin is never certain.’ If, 
when we are considering two alternatives which cannot be precisely defined 
as symmetrical alternatives, we adopt the rule dx/(1 - x) for the prior proba- 
bility of success A (failure being not-A), and also the rule dx/x for the prior 
probability of failure B (success being not-B), where (A + B) is not exhaustive 
and does not therefore succeed in distributing the ‘middle’, we bias our prior 
probabilities in each case in favour of the alternative which includes the 
‘middle’. We then obtain for our posterior probabilities, after m cases of A and 
(n -m) cases of B in n trials, the values m/(n + 1) and (n - m)/(n + 1) We thus 
leave a probability of 1/(n + 1) as the expression of the limit of uncertainty to 
cover the ‘middle’ and of the fact that we can not be sure that a third alternative 
‘neither A nor B’ will not turn up, however large n may be. If we distribute the 
‘middle’ equally between the two we return to the results by the new indifference 
rule. Is it mere nonsense to suggest that in some such way the theory of inverse 
probability may be made to embrace the principle of uncertainty in quantum 
physics or that the idea of the elementary event and the quantum of action are 
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associated? It may be so, but that philosophy, inductive logic, quantum theory 
and probability theory are all intimately interlocked is a commonplace of 
modern thought. 

The above suggestions for dealing with asymmetrical alternatives or the 
‘middle’ have the merit that the same process can be employed when there are 
any number of alternatives and an undistributed middle. Thus if out of n trials 
we have m1, m2, m3,... results of the various kinds and no case of the ‘middle’, 
a separate application of the dx/x rule to each alternative yields m1/(n + 1), 
m2/(n + 1), etc., leaving 1/(n + 1) for the middle. The combination of two or more 
alternatives and the use of the dx/x rule yields (m1 + m2 + . . . )/(n + 1) and the 
whole system is consistent. 

There is one other application of the biased rules which is worth mentioning. 
If we have developed a hypothesis by reasoning from known ‘facts’ and from 
other well-supported theories and have devised an experiment to test its 
truth, a single success will usually clinch the matter from the practical point of 
view, If in such circumstances we adopt the rule dx/( 1 - x), our total posterior 
probability is always certainty, until we get a failure in the routine, when the 
rule gives appropriate expression to the probability of success next time. If, on 
the other hand, we pose a hypothesis which we have every reason to regard with 
suspicion, the adoption of the rule dx/x will produce a posterior probability of 
zero until a success appears. These results seem to bring within the scope of 
inverse probability the probability basis of the scientific process of well- 
designed experiment to test hypotheses with high or low prior probability. 

The fact that by appropriate choice of the prior probability we can range 
from extreme bias in one direction through indifference to extreme bias in the 
other direction and obtain ‘acceptable’ results differing between the extremes 
by 1/(n + 1) only is surely an advantage over the direct systems, which like 
indifference rules are designed as processes for allowing the statistics to speak 
for themselves. At any rate it is clear that the maximum likelihood solution 
(m/n) outrages reasonable belief when m = n. One remarkable feature of the 
results by the two extreme prior probability rules is that they coincide with the 
extreme values of x which yield the mode for the sample value, while, as has 
been already mentioned, the new indifference rule produces the mean value of 
all possible values of x which result from identifying the sample value with the 
mode. 

THE PROBLEM OF MULTIPLE SYMMETRICAL 
ALTERNATIVES 

The solution of the binomial problem and the discussion of the problem of 
asymmetrical alternatives have suggested a general solution of the case of 
multiple symmetrical alternatives, i.e. the multinomial problem. This problem 
was examined by Lidstone (T.F.A. Vol. VIII, p. 182). He extended the Bayes- 
Laplace postulate, giving all possible distributions of the multiple parameters 
(x1 + x2 + x3 + . . . + xi = 1) equal prior probabilities. If we divide the alternatives 
into two groups of equal number 

(e.g.
thus reducing the problem to the binomial case with symmetrical alternatives,alternatives, 
the extended postulate does not reduce to a uniform prior probability distribu- 
tion of y. The resulting distribution is heaped up towards y = 5 and the heaping 
up increases as i increases. There is thus a critical inconsistency between the 
multinomial and binomial cases if the uniform distribution is used for both. 

AJ 20 

and
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This inconsistency is shown clearly in the posterior probability produced by 
Lidstone. If in n trials there have been m1, m2, . . . , mt, . . . , mi results of the 
various possible kinds, Lidstone’s result (given also by Jeffreys, p. 113) is 
(mt + 1)/(n + i) for the posterior probability of a result of kind t at the next trial. 
It is clear that the posterior probability of a result of any kind from x1 to xi/2 at 
the next trial is then (m1 + m2 + . . . + mi/2 + i/2)/(n + i) compared with the direct 
binomial result, on the Bayes-Laplace postulate, of 

In fact for large i the usual result given by Lidstone and Jeffreys is quite un- 
acceptable from the point of view of reasonableness and consistency. 

Now, if, instead of adopting the Bayes-Laplace postulate for the prior proba- 
bilities of a given alternative, we treat the problem as one of two asymmetrical 
alternatives for which, as there are i component alternatives altogether, we 
require a prior probability distribution with a mean value of 1/i, we can use the 
rule px dxdx/x1–r (1–x)r and put r = 1/i. Given, therefore, n trials with mt 
results of a particular kind out of i kinds, this rule yields (m1 + 1/i)/(n + 1) as the 
posterior probability of a result of this particular kind at the next trial. More- 
over, if we select k component alternatives as a group of successes and the 
remaining (i-k) component alternatives as a group of failures, the appropriate 
rule dx/x1-k/i ( 1 - x)k/i yields the result (m + k/i)/(n + 1). These results are com- 
pletely consistent inter se and with the binomial case of two symmetrical alter- 
natives. The entire results lie between the extremes m/(n + 1) and (m + 1)/(n + 1) 
and in the limit when i tends to infinity and k tends to zero we reach the limit of 
bias represented by the rule dx/x. At the other extreme, when k tends to 
infinity with i, we reach the other limit of bias represented by the rule dx/( 1 - x). 

It remains to consider the meaning of these results and the underlying 
composite prior probability distribution. Consider the original binomial rule 
pxdx dx/x½  (1 - x)½ . This may be regarded as a case of two related parameters, 
x1 and x2, where x1 + x2 = 1. We can therefore write the original rule in the form 

where x1 + x2 = l. 
This suggests that for the case of multiple symmetrical alternatives we should 

adopt the rule 

where 
We can now suppress xi and give effect to the equation of condition by writing 

Following the example given by Lidstone (loc. cit., p. 184), and integrating 
with respect to xi-1 and putting y = xi–1/(1–x1–x2–…–xi–2) so that
dxi–1 = dy(1–x1–x2–…–xi–2), we obtain
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Proceeding in this way to eliminate stage by stage all the variables except x1 we 
arrive finally at the result 

which is the form used above for the case of two asymmetrical alternatives. 
If we stop eliminating variables at the previous stage we have 

By putting x1 + x2 = y we can obtain the distribution appropriate to y as follows : 

Writing so that dx, = ydz we reach 

In a similar way it can be shown that if y = x1 + x2 + . . . + xk the distribution of y 
is which is the form used above for grouping the alternatives 

into two groups. 
The general rule px1x2 . . . dx1 dx2 ...dx1dx2 ... /xlx2 . . . subject to the con- 

dition x1+x2+...= 1 covers all the cases considered. 
The prior probability rule used in the above development for the multiple 

parameters in the multinomial distribution seems to have its interpretation in 
terms of co-variance of the second order, that is, in terms of the square root of 
the second order product-moment ( µ2. 2. 2... (i terms)) ½ , which for large samples is 
proportionate to xl x2x8 . . . xi . In the case of independent variables, the second 
order co-variance reduces to the product of the separate variances and there is 
no conflict with Jeffreys’s practice (or the principle of the product rule) of 
multiplying together the prior probabilities of two or more independent 
parameters. 

I have not succeeded in obtaining an interpretation of the multiple parameter 
rule in terms of circular measure to parallel the uniform distribution of angles 
for the binomial case. 

THE CASE OF TIME RATES 
Time rates (e.g. mortality rates and most other actuarial rates) are clearly 

concerned with compound events. Survival is a continuing process and we can 
subdivide our time interval indefinitely. The difficulties arising out of this 
feature have been discussed by Hardy, Lidstone and others (T.F.A. Vol. VIII, 
pp. 174, 195); and Calderon (J.I.A. Vol. xxxv, p. 170) has endeavoured to meet 
the difficulty by defining an elementary time interval as the average time required 
in a given experience to cover exactly one death. Jeffreys uses the rule dx/x for 
such cases, following the example of Haldane who used this rule for the problem 

20-2 
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of estimating the rate of emission of particles from radioactive material. If we 
assume that the probability law, when the time interval is made very short, is the 
Poisson distribution, and adopt the new indifference rule, we obtain dx/x½  for 
the prior probabilities, where x is the unknown Poisson parameter. The resulting 
mean posterior probability is ( + ½ )/nE, where is the observed number of 
events (e.g. deaths), E is the exposed to risk in years and n is the number of unit 
time intervals in a year. Clearly the difficulty discussed by Hardy remains. The 
difficulty is, however, resolved by appreciating that time rates involve asym- 
metrical compound events, so that indifference is inappropriate. Remembering 
that our time interval is reduced indefinitely, the parameter x must be known to 
be biased towards zero. If it were not so, we should not be sampling at all 
because the whole system would take on an ‘explosive’ character. Thus the 
conditions suggest the biased rule dx/x in support of Haldane’s assumption. 
The mean posterior probability is then /nE whatever time unit we use and 
Hardy’s difficulties disappear. Thus, in effect, for time rates we return full 
circle to m/n as our estimate. 

CONCLUSION 
It is obvious that in writing this paper I am greatly indebted to Jeffreys’s 

work. I am also indebted to various members of the Institute with whom I have 
discussed probability questions from time to time and in particular to Mr H. 
Hosking Tayler with whom I carried on a long correspondence on philosophic 
aspects of probability theory, but I do not suggest that they support inverse 
probability in general or any part of this paper in particular. Whatever there 
may be in the paper of worth which has its origin elsewhere, I alone am re- 
sponsible for any mistakes and in particular for the somewhat reckless and 
ill-informed excursions outside my limited actuarial sphere. In permitting 
these excursions to appear at all, I have had in mind the motto which is reputed 
to have appeared in Government Offices in America during the war—  
‘ Remember that the turtle makes progress only when he sticks his neck out’. 



Including a New Indifference Rule 

… (1) 

311 

ADDENDUM 
When the first proofs of this paper became available I sent a copy to Prof. 

Jeffreys who kindly supplied me with a copy of a paper of his own which had 
appeared a week earlier (mid-October 1946) in the Proceedings of the Royal 
Society. This paper, entitled An invariant form for the prior probability in 
estimation problems, adopts a somewhat different and more general approach to 
the problem of an invariant rule. He reaches the same prior probability distribu- 
tions for the binomial and Poisson laws as I do, but he does not give any 
posterior results or discuss the problem of asymmetrical alternatives, com- 
pound events and the ‘middle’, or time rates or the multinomial distribution. 
I understand that he has done further work on the subject which has not yet 
been published. 

Also while this paper was in the hands of the printers Vol. II of Kendall’s 
Advanced Theory of Statistics appeared. In Chap. 20 he discusses the various 
cases in which Jeffreys’s results are identical with Fisher’s fiducial distributions 
and raises the question of what prior probability distribution of the correlation 
parameter in a normal distribution would be necessary to produce a posterior 
probability distribution for p which would be identical with the fiducial 
distribution. The prior probability distribution of p by my new rule is 
dp/(1 – p2). If we apply Fisher’s transformation 

the distribution of is uniform, as is obvious from the fact that the large 
sample standard error of z (where z = tanh-1 r = ½  {loge (1 + r) –loge (1 –r)}) is 
independent of 

Now Jeffreys gives Fisher’s distribution of r in the form 

where Sn–1 (pr) is a series in terms of (pr) and n, which is barely distinguishable 
from unity for quite small values of n. 

On applying the and z transformations and following Jeffreys’s procedure 
we obtain the distribution for x 

Since the prior probability distribution of 5 is uniform, the substitution in 
(1) of d for dz produces the posterior probability distribution of 

Now, as n increases, Sn–1, tends to unity and the product of the first two 
terms in the denominator over the significant part of the ranges of and z also 
tends to unity. It therefore appears that for large n the fiducial distribution is 
identical with the posterior distribution. Unfortunately, Kendall does not 
give the fiducial distribution which he discusses, and I confess to having an 
insufficient understanding of fiducial probability even to be sure whether 
there is an explicit fiducial distribution in this case for small n, notwithstanding 
that r is sufficient for p and z for 

The point is important because of the general question of whether inverse 
probability, while having a much wider field of application, can be shown to 
embrace fiducial probability in all cases, both for large and for small samples. 
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It will be seen that the maximum likelihood and the maximum posterior 

probability of are identical, as obviously will be so in all cases where a 
transformation is made so that the prior probability distribution of the 
transformed parameter is uniform. Unlike the maximum posterior probability, 
the maximum likelihood is invariant to transformation, because the likelihood 
does not include the differential elements. It might be. suggested that this 
invariant property confers on the maximum likelihood a superiority in prin- 
ciple over the maximum posterior probability, but my own view, for what it is 
worth, is that an estimate should have regard both to the basic assumptions 
regarding prior knowledge (i.e. indifference or specific bias) and to the purpose 
of the estimate. If we desire to estimate x, we naturally wish to obtain the 
most probable value of x and not the most probable value of y, where y = f (x) 
is the transformation necessary to produce a uniform prior probability distribu- 
tion. In those cases where fiducial probability and posterior probability based 
on the new indifference rule are identical, interval estimations by the two 
methods are identical, although if ‘ shortest interval ’ estimation is desired, we 
again have to select the form in which to express the parameter by reference to 
our purpose, because shortest intervals are not invariant under transformation. 

Finally, the transformation relation of my new indifference rule will be 
recognized as being identical in form with Fisher’s rule for obtaining the 
‘ amount of information’ (Im) with respect to m from the ‘amount of informa- 
tion ’ (I,) with respect top, where p is a function of m. This is given on p. 209 
of The Design of Experiments as follows: 

Im and Ip respectively being defined as the reciprocals of the sampling variances, 

so that 
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ABSTRACT OF THE DISCUSSION 
Mr Wilfred Perks, in introducing the paper, explained that after studying 

Prof. H. Jeffreys’s paper in the Proceedings of the Royal Society and the early chapters of 
Vol. 11 of M. G. Kendall’s Advanced Theory of Statistics, both of which had appeared 
after his paper was written, he had reached the conclusion that the new indifference 
rule might be better expressed in terms of the square root of the minimum variance 
integral. That would have the advantage of making the rule more definite and precise 
without altering its essential content and properties and without making any change 
in the particular cases discussed in the paper. M. G. Kendall showed in his book that in 
certain cases fiducial probability and inverse probability were equivalent. He personally 
thought that a degree of equivalence might be shown also in the binomial case. He had 
somehow missed in the literature the expression for the tail of a binomial distribution 
in the form of the incomplete beta function, which showed that the construction of 
a posterior probability belt on the biased rule dx/x produced the lower curve in the 
binomial confidence belt, whilst the rule dx/(1– x) yielded the upper curve. The 
interesting thing was that the new indifference rule which arose from his general rule 
and also from Prof. Jeffreys’s invariant rule produced a posterior probability belt 
which lay snugly just inside the confidence belt. It would be remembered that the 
confidence belt gave a probability inequality, whereas the posterior probability belt 
purported to give a probability equality. That seemed to suggest that inverse probability 
and the direct methods might be made equivalent in the binomial case, bearing in 
mind that m/n was a sufficient statistic. 

He wished particularly to refer to the illustration of the obscured die on p. 291, 
because he felt he had not brought out the point sufficiently clearly. If he invited 
someone to call heads or tails to the tossing of a coin at even odds, it would not matter 
to that person whether he called before or after the coin was tossed. Even if the coin 
were laid upon the table it would still be a fair bet. The same applied to odds of g to I 
against a specified digit in the case of a digit from a set of random numbers or in a 
particular decimal place in provided that the caller did not know the answer. 
It was precisely that type of case which the modern schools of probability excluded 
from their theories; but it seemed to him that a unified theory of probability was 
bound to include such cases if it was to provide a basis for scientific method and 
induction. Hume’s analysis of the induction problem had, as far as he knew, never 
been broken. Induction could not be developed solely out of the usual logical principles. 
Russell’s verdict in History of Western Philosophy, published about two months 
previously, was that induction was an independent logical principle incapable of being 
inferred either from experience or from other logical principles, and that without that 
principle science was impossible. To bring that principle into the body of probability 
theory an independent postulate was required which had to be consistent with the 
direct probability of pure mathematics. An independent postulate which was con- 
sistent with the direct probability of pure mathematics was the object of importing an 
invariant indifference rule. 

Dr L. Solomon, F.F.A., in opening the discussion, said that the main subject 
of the paper— important to actuaries as well as to statisticians— was estimation. As 
a simple example, there was the familiar problem: If m lives died out of n exposed to 
risk, what could be said about the rate of mortality-about what used to be called the 
‘true underlying’ rate? Several systems had been developed for providing answers 
to that type of question. The author had ardently embraced one of those systems and 
had classed the rest as heresies. Without going into lengthy detail, he could only state 
his contrary opinion that several independent theories, logically sound and self- 
consistent, could exist dealing with the subject of probability, just as several geometries 
existed. He believed, too, that more than one consistent and practical system of estima- 
tion could be built up on them. The author had not been wholly fair to the confidence 
interval method or the fiducial probability method of estimation, and he considered 
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that the author’s strictures against the frequency and measure theories of probability 
would not seriously endanger them. 

The differences between the several theories arose in the first instance from the old 
arguments about the scope of probability, to which the author had briefly referred. 
There were such statements as: ‘ Burma will be an independent republic within six 
months ‘, ‘ The decimal in the 950th place of is 3 ‘, or ‘ The philosopher Gionardo 
Bruno had blue eyes ‘. What was the probability that each of those was true? If prob- 
ability were interpreted as a measure of belief, it was possible in principle to give an 
answer. The statistician who adopted the frequency theory, however, regarded those 
questions as meaningless, and was not seriously embarrassed by his inability to answer 
them. It was the same difference in attitude that arose with regard to the concept of 
prior probability distributions, especially when arguing inductively from the result of 
a single experiment. If there were n lives exposed to risk, the actuary postulated that 
they were all subject to a uniform rate of mortality, q. Most people would agree that 
it was useful to consider those n lives as a random sample from a hypothetical universe 
containing an infinite number of lives all subject to the same q. The inverse probability 
stand-point could be summarized thus: ‘Before we start to experiment or observe we 
must know the probability that the true q lies within any prescribed limits. Then we 
use the results of observation and experiment to modify such prior probabilities and 
to obtain the so-called posterior probability distribution. By operations upon the 
posterior distribution we are able to answer various questions and make various pre- 
dictions.’ The opposing point of view, i.e. that of the frequency school, regarded the 
idea of a prior distribution as involving a whole infinite population of populations, 
each member possessing its own appropriate true value of q; that idea he found, in very 
many cases at least, unacceptable, and even meaningless. The frequency school pro- 
ceeded to develop other methods of making inductive statements-‘direct systems’, 
as the author called them-which enabled consistent and useful statements and pre- 
dictions to be made and which successfully circumvented the difficulties of the prior 
probability distribution. 

He wished to explain what he meant by ‘ circumvent ‘. If there were no prior prob- 
ability distribution for the parameter in question, the direct systems provided a rational 
means of answering practical questions. In certain cases, moreover, especially when 
repeated experiments were involved, the idea of the prior distribution might be accept- 
able to the statistician-the supporter of the frequency school-but the mathematical 
form of the prior probability might be unknown to him. In that case the direct systems 
still satisfied the criteria they were designed to satisfy. From that point of view they 
were invariant to the mathematical form of prior probability distribution. He suggested, 
therefore, that if a person had any doubt whatever about the legitimacy of the prior 
probability concept he was bound to accept one of the direct systems. On the other 
hand, if he found he could embrace the faith of inverse probability, he would doubtless 
find the solace and the satisfaction which he deserved. That difference in attitude had 
led in the past to much argument, brilliant debate and bitter invective. It was a pity 
from some points of view that the supporters of those two separate, self-consistent 
theories could not go their separate ways, in peace. 

He had used the expression ‘self-consistent’. That was the key to much of the 
author’s work. In the practical application of his ideas the prior probability concept 
was not enough; it was necessary to use a specific mathematical formula which ex- 
pressed the nature of the prior knowledge or, as was so often the case, of the prior 
ignorance. One such formula was embodied in the famous Bayes’s postulate, but 
although that seemed logically satisfying to some it led, as the paper showed, to in- 
consistencies. The main merit of the paper was that it put forward an alternative which 
successfully avoided one group of inconsistencies, namely those associated with 
transformation of the parameters which were to be estimated. The new indifference 
rule was arbitrary in form and it was expressed with perhaps misleading symmetry. 
At the foot of p. 296 the x in was not the same as the x appearing elsewhere. The x 
in was that function of the observations which was used to estimate the parameter 
referred to by the other x on the left-hand side of the relation. As for the estimating 
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function, the author had suggested the sufficient statistic when it existed. That was fair 
enough, since the existence and the form of the sufficient statistic was independent 
of the prior probability distribution. Indeed a supporter of the frequency school 
might think that having found the sufficient statistic he had completed his job. That 
enabled him to answer all the questions which arose in practice and he might go so far 
as to regard the author’s indifference rule with complete indifference! As for the 
distributions which did not admit of a sufficient statistic, he was not at all clear what 
should be done. The author had suggested the use of whatever consistent statistic was 
finally adopted, but how was one to know which consistent statistic to use without 
working out the posterior probability on the basis of the specific prior distribution or 
without bringing in alien criteria? 

Apart from that difficulty-and perhaps the author would remove it-he was not 
worried by the arbitrary nature of the new indifference rule. It might, however, be 
worth stressing the statement that the intuitive arguments on pp. 300–302 proved 
nothing. All methods of estimation contained an arbitrary element, largely because 
there were no universally accepted rules of inductive logic. Since an arbitrary formula 
had to be adopted, it seemed reasonable to adopt one which removed some of the 
posterior inconsistencies. That was, in fact, the achievement in the first part of the 
paper, and, viewed in its proper focus, it was a very solid and valuable achievement. 

He had one more comment to make on that section of the paper, and perhaps it was 
somewhat of a debating point. The author had repeatedly quoted Prof. Jeffreys’s 
observation that the numerical effect of a change in the prior probability was trivial. 
He could not quite reconcile that with two other statements. The Bayes-Laplace rule 
was said to produce results which ‘ do not correspond with anybody’s way of thinking’, 
whereas a change in the prior probability distribution produced the author’s indifference 
rule, which was put forward as eminently acceptable. 

He found the second part of the paper, i.e. that dealing with compound events, 
asymmetrical alternatives and the multinomial distribution, exciting, stimulating, but 
far from clear. As he saw it, in certain experiments prior knowledge was available as 
a guide, and full use had to be made of it; in inverse probability terms, a biased prob- 
ability distribution was used. That had led the author to discuss logically asymmetrical 
alternatives, which he had illustrated but not explained. Again, on p. 305 the author 
had quoted the basis for applying an indifference rule, but personally he did not see 
how that basis allowed an indifference rule to be applied to estimate, for example, the 
parameters of a normal distribution. Yet that had been done in the earlier part of the 
paper. 

One formula was quoted on p. 305 from the infinity of possible forms which might 
express bias. A special case of that formula was the binomial indifference rule, and the 
two extreme cases were obviously of particular importance because they were discussed 
fully later on. He admitted the algebraic convenience of the author’s formula, but 
asked in what way it really did express the bias that existed in the type of problem under 
discussion. Furthermore, the formula contained the index r, and it was stated that by 
using the index r the mildest possible bias was given to a preconceived idea that x = r. 
Why was it the ‘mildest possible’ bias? 

With regard to the two extreme cases, expressed by dx/x and dx/( 1 – x), there would 
seem first to be a convergence difficulty if they were treated as probability distributions 
over the whole range 0–1, and if dx/x were used it seemed to give to small values of x 
a tremendous bias rather than the mildest possible bias. The virtue of those forms, 
of course, was that they were invariant under some -though not all-transformations 
of the parameter. That made them convenient or attractive for use in problems where 
it was virtually certain that a correct prediction would be made, e.g. in discussing the 
probability that the sun would rise tomorrow or that the result of a physical experiment 
would be consistent with the second law of thermodynamics. They did not, however, 
apply to problems of near certainty, and they would not be appropriate in discussing, 
say, the probability that there would be no insolvencies among insurance companies in 
the following year. Thus far he thought he could see the main line of argument, though 
he had difficulty over details; but at the foot of p. 306 there followed an example which 
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left a probability of 1/(n+ 1) unaccounted for. To his inexpert first glance that seemed 
to reflect a mere inconsistency of specification, but apparently that was not so. It 
appeared to have deep philosophical significance; it had affinities with tripartite logics 
and with the quantum theory. He was puzzled, especially by the last analogy. The 
‘uncertainty principle’ in quantum mechanics stated that the product of two measured 
quantities should be less than a fixed constant. The author’s ‘middle’, if he might so 
describe it, tended to zero with n, the number of observations. He thought that many 
of the analogies in the paper were incomplete, and he was not convinced of the relevance 
of some of them. 

Mr H. W. Haycocks said it was unfortunate that the paper did not give a precise 
definition of probability. He did not think it was mere coincidence that both Keynes 
and Jeffreys had also been criticized on those grounds. Both Russell and Ramsey 
had remarked that Keynes left an uncomfortable gap between probability and fact, 
so that it was far from clear why a rational man would act upon probability. More 
recently, Prof. Carnap, in a paper entitled Two concepts of probability, had remarked 
that the axiom system of Prof. Jeffreys’s recent theory was so weak that it did not 
constitute an explicit definition of probability. 

It was clear from the paper that the author was concerned with some logical concept 
which could be called for the time being ‘logical probability‘. In fact, it was necessary 
to go to the philosophers and logicians to get some idea of the concept he had in mind. 
The point at issue emerged clearly from the statement to which the author had referred 
in his introductory remarks, i.e. Russell’s statement on Hume, in which Russell said 
that the most important section of Hume’s treatise was the one called Of knowledge and 
probability. Russell said that by ‘probability’ Hume did not mean the sort of knowledge 
contained in the mathematical theory of probability. That knowledge was not itself 
probable in any special sense; it had as much certainty as knowledge could have. What 
Hume was concerned with was uncertain knowledge, such as was obtained from 
empirical data by inferences which were not demonstrative. Hume was concerned 
really with all forms of inference. 

It was stated by Ramsey in his well-known essay on probability that there might well 
be two concepts of probability—one which was of interest to logicians and one which 
was of interest to statisticians and scientists. That suggestion had been taken up in 
much more detail by Prof. Carnap in his papers Inductive logic and Two concepts of 
probability. He styled one ‘logical probability’ and the other ‘frequency probability’. 
Logical probability he preferred to call ‘degree of confirmation’, and it measured 
a degree of partial implication between premises and conclusion. Thus it could be seen 
that there was a degree of partial implication between the two statements, ‘The penny 
will fall heads or tails’ and ‘The penny will fall heads’. If there were no reason to 
prefer either result, i.e. if the evidence in favour of heads was equal to that in favour of 
tails, the logical probability or degree of confirmation could be defined as one-half. 
That, however, said nothing whatever about relative frequency. Frequency probability, 
on the other hand, corresponded to what was meant in vague language by relative 
frequency in the long run. For a scientific theory a more precise definition was required, 
but a simple statement of probability in that sense was factual and empirical and said 
something about the facts of nature in the same way as did a scientific law. 

He wished to examine the paper in the light of those remarks. The author had 
assumed a population having a distribution of known form. It was strange, bearing in 
mind that the author was considering the problems of induction, that he had given no 
clue as to the way in which scientists knew the form of the law they wished to test. 
The author had postulated a form of law, but the value of the parameter was unknown. 
He had then considered the possible range of the parameter and had given to each 
value within the range a weight which was a compound of so-called prior knowledge 
and a measure of the likelihood of a sample for that value of the parameter. He had thus 
set up a hypothetical parameter distribution and had taken the mean of that distribution 
as his estimate. It was important to note precisely what that distribution was. The 
variables were possible values of the parameter and the weights were what might be 
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termed the weight of the evidence which, so to speak, pointed to the particular value 
of the parameter. For instance, in the case of maximum likelihood the weights were 
simply the likelihoods; the prior distribution was ignored. If the value of the sample 
were taken as the value of the parameter, then a weight of 1 was given to the sample 
value and of zero to all the others. It was clear from the author’s illustrations that that 
method gave results which were very similar to the other so-called direct methods. 

It would clarify the position to consider what was done with the estimate when it was 
obtained. If the probability law was to be more than merely descriptive, the insertion 
of the value of the parameter would enable the scientist to control future data; the law 
would enable him to predict relative frequencies in which he was interested. That 
was obviously the case in physics, biology and, he thought, in actuarial work. Thus the 
parameter was a physical constant like the gravitational constant or the specific heat 
constant. 

Unfortunately, perhaps, those frequencies were often called probabilities, but, as he 
had explained, in ordinary usage the word ‘probability’ had two very different meanings. 
It added to the confusion when frequencies formed part of the evidence for logical 
probabilities. That gave rise to the idea that logical probability had some connexion 
with relative frequency and perhaps ought to be regarded as a relative frequency. The 
connexion lay in the possibility that a logical probability might be a relation between 
evidence containing a statement of relative frequency and a conclusion which might 
also refer to a relative frequency. He pointed out that the term ‘prior distribution of 
probabilities’ should not be used if probability were defined only as logical probability, 
for that would imply variables that were logical probabilities and weights that were also 
logical probabilities and would lead to the assertion that there was a relation between 
evidence and a degree of confirmation, which was a logical absurdity. 

The greatest confusion of that kind arose in connexion with the binomial law, since 
there the parameter varied from o to 1 and was usually called a probability. It then 
happened that the posterior probability became identified with the value of the para- 
meter, and the two different concepts became indistinguishable, thus leading to un- 
ending verbal argument. He thought that the author had fallen into that confusion. 
As an illustration, if two urns contained red and white balls, the first in equal proportions 
and the second in unknown proportions, he asked what was the degree of confirmation 
or logical probability between the evidence and the statement that a ball drawn at 
random would be red. In either case a reasonable answer would be one-half, which 
simply meant that the weight of evidence in favour of red was equal to the weight of 
evidence in favour of white. That was just a conventional definition. If, however, 
a probability law were required which would enable statements to be made about 
relative frequencies in large samples, then for the first urn he would adopt (½ + ½)n, that 
being an induction from experience. He regarded induction as one of the three funda- 
mental bases of knowledge; the other two being perception and memory. Induction 
could be justified on the ground that it was found to be successful in practice. The 
adoption of the binomial law in the case of the first urn meant that the parameter of the 
law-he was not talking about the probability—was equal to one-half, and, as it 
happened, it was also equal to the degree of confirmation or logical probability as 
defined. In the case of the second urn, while the logical probability was one-half, he 
could only say with confidence that the law was of the binomial form. He could say 
nothing whatever about the parameter; it was impossible to estimate on the basis of 
complete ignorance. 

His fundamental difficulty with the author’s theory was to attach any meaning to his 
formal structure, and he was not sure from the author’s comments on the frequency 
school whether the author denied frequency theory altogether. The author had said 
that his prior distribution was just a postulate, and in that case it had to be judged by 
the results; but that could only be done if there were some interpretation whereby the 
final probability numbers could be related to fact. In the case of formal logic it was 
intuitive that a simple implication was valid argument. A simple partial implication, 
such as the one in connexion with the author’s illustration concerning a coin, was also 
intuitive; but in the case of a complex formal structure, then either the premises had 
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to have a meaning or the final results had to correspond with something else which 
influenced attitude towards experience. The latter way out seemed to be the one taken 
by those who identified logical probability with rational degree of belief. The author 
had not made that identification, but on a number of occasions he had appealed to 
reasonableness. If, however, the definition was to mean anything more than simply that 
logical probability was logical probability it was necessary to have methods of measuring 
actual degrees of beliefs and methods of confirming the theory. Consistency within 
a formal system was not enough; there had also to be consistency with fact. Ramsey 
remarked in his essay that inconsistency might even be an advantage, for it was better 
to be right sometimes than never right. 

He was not sure whether the author was correct in his method of formulating the 
prior distribution. The prior distribution, being the reciprocal of the minimum variance, 
was clearly a property of the probability law, and the author did not say how he knew 
the form of that law. Given the probability law, the prior distribution could be dis- 
pensed with as an unnecessary concept and the weight could be taken as the likelihood 
multiplied by a reliability factor measured by the minimum variance of the estimator. 
The weight would then become merely a function of the sample and the assumed law. 
The method would then be one of an arbitrary set of methods. The pragmatist, however, 
would not worry about that objection as he would judge the whole ‘set-up’ by the 
effectiveness of the law in making predictions. He realized that the comparison of 
derivations from a model with observation statements involved another logical pro- 
cedure, but the paper did not proceed as far as that stage. 

Mr M. E. Ogborn wished to join issue with the previous speakers and to support, 
to a limited extent, what the author had written. 

Bayes was a minister who was interested in mathematical problems. He had not 
produced the theorem known by his name during his lifetime. The man who had 
actually given it to the world was Price, who came into possession of Bayes’s papers 
after Bayes had died; he worked up Bayes’s theorem from the papers and sent it to the 
Royal Society. In his own office there was a book which for some time he had not been 
able to place, but when visiting the Royal Society in connexion with another matter 
he had realized that the handwriting in the book appeared to be identical with other 
specimens of Bayes’s handwriting. He thought it was, in fact, one of Bayes’s note- 
books. 

He felt it was a mistake to postulate two different concepts of probability. To his 
mind the value of Bayes’s theorem was the linking-up of the probabilities on the basis 
of one state of knowledge with the probabilities on the basis that further information 
was available. There was an example of that, he thought, in Actuarial Mathematics, by 
H. Freeman (p. 353). A player having been dealt a hand of 13 cards, the problem was 
to find the chance that the hand contained at least two aces, or-if the player said he had 
one ace-the chance that he had at least one further ace, or—if the player said he 
had the ace of hearts—the chance that he had at least one further ace. The prob- 
abilities could be built up step by step, and the same procedure was followed when 
dealing with other probability questions. In the usual statistical approach to a prob- 
ability question, the solution started with a concept of randomness. Strictly, the 
solution should start with all the different states of which randomness was only one. 
The probabilities should be computed on the basis of the various states including that 
of randomness, and then should be combined. To start with the concept of randomness 
was a convenience which simplified the problem. 

On p. 295 the author had raised some objections to the Bayes-Laplace rule, the first 
such objection being that the rule could lead to unreasonable or unacceptable results. 
He spoke without a great deal of knowledge of the theorem, but he wondered whether 
the fact that it led to unreasonable or unacceptable results was because there was some 
knowledge which had not been taken into account. If so, that was not really a criticism 
of the Bayes-Laplace rule because that knowledge should have been taken into account 
when calculating the probabilities. As an example of what he meant, in the next 
paragraph it was stated that Pearson’s result of .5 for the probability that the next 
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(n+ 1) trials would be successes, after n successes in n trials, was ‘clearly too low and 
unacceptable as a representation of the scientific process of experimentation to test 
a proposed scientific law’. If the hypothesis under consideration was a proposed 
scientific law, should the prior probabilities be assumed to be equal? 

The author’s second criticism of the Bayes-Laplace rule was that it could lead to 
inconsistent results. He would put to the author the question whether the fact that the 
rule could lead to inconsistent results was because some information had been 
neglected. As an example of inconsistency reference was made at the foot of p. 304 to 
the different results obtained for probabilities when compound events were concerned, 
but surely to treat n trials as a single compound trial was to ignore the information that 
the single compound trial in fact consisted of n separate trials. It was not an example of 
inconsistency: all knowledge had not been used. While the theorem was helpful as a 
process of proceeding from one set of probabilities to another, if it were put into 
mathematical dress it proved not to be possible to get back far enough to a state of 
complete ignorance-surprising though that might be! 

The statements concerning probability on pp. 289 and 293 really depended upon 
knowledge of the pattern lying behind the facts. In dealing with problems of cards, the 
computed probability depended upon knowledge of the pattern of the cards. In dealing 
not with a universe which had a pattern but with a sequence of events, the statement 
concerning probability depended upon the pattern which that sequence took when it 
was continued for a long time or over a large number of events. The mathematical 
answer depended upon looking behind the curtain to see what lay there. In regard to 
rates of mortality, the difficulty was that that could not be done in the same sense. 
If it were possible to have complete knowledge in that sense, it would not, he thought, 
be possible to say: ‘These are going to survive and these are going to die.’ Logically, 
the question could not be considered in terms of frequencies, because in dealing with 
life and death the observations could not be related to experiments continued over 
a long period and therefore there was no pattern. The answer concerning the funda- 
mental nature of mortality rates depended, he thought, partly on the philosophic 
conception of time. He suggested that the author’s statement at the end of the 
section dealing with time rates-‘Thus, in effect, for time rates we return full circle 
to m/n as our estimate’-was really a confession that he had no solution in the 
matter of time rates and that in fact mortality rates could not be explained in that 
sort of way. 

Prof. H. Jeffreys (a visitor) said he was grateful to the author for emphasizing 
what he himself had been saying for a long time, namely that in practice the alleged 
differences that could arise through different assessments of the prior probability were 
negligible in comparison with those that arose through maltreatment of the likelihood. 
It was through the use of inefficient substitutes for the likelihood that statisticians 
differed greatly among themselves, and such substitutes would be inconceivable were 
it not for the long-maintained misunderstandings of the principle of inverse probability 
and of the meaning of prior probability. On the theoretical side, however, the lack of 
a general rule for the prior probability to be used to express ignorance was a nuisance. 
It was desirable to be able to give unique answers for the posterior probabilities in all 
problems. Though the effect of different rules for the prior probability was not in 
general more than that of one observation, more or less, it was desirable to have a general 
rule. The author had provided such a rule for estimation problems. The author’s 
method, so far as it went, was equivalent to one he himself had given in a paper that 
had appeared while the author’s paper was in the press. 

The speaker quoted his own method: 
‘If an event can happen in n ways with chances pr, which are functions of para- 
meters i( (i=1 to m), then if the i are changed to 'i and the pr correspondingly 
to p'r, the sum 
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may be considered. This remains the same for all transformations of the i, and if 

where i is small, it follows that 

This is of the form of a line element in Riemannian space, and, if G2 is the deter- 
minant of the gik, the element Gd i, . . . d m is also invariant, and will serve as the 
element of prior probability. For continuous distributions the sum with regard 
to r is of course replaced by an integral. For N observations the quadratic terms 
in the logarithm of the likelihood are –½NJ (showing the equivalence with the 
author’s method). 

This, however, is a little too simple. So long as m = 1 and the pr are differentiable, 
there seems to be no trouble. Under a normal law with standard error and true 
value , there are three cases according as either or both are taken unknown. 
For , given , the rule gives P (d H) da, and for , given , it gives 
P (d H) d / , which are well known. But if both and are varied, the rule 
gives P (dad H) , and the index in the resulting t-rule would be changed 
by ½. This can be got over by bringing in a condition that and ( are mutually 
irrelevant and are each to lie in a given finite interval; the awkward extra ( then 
cancels and the usual rule d d is obtained.’ 

The example showed that it was necessary to go carefully if it was desired to treat 
more than one unknown at once. The consideration was relevant to the author’s rule 
for the correlation coefficient. If , T, p were varied simultaneously, the result was 

If , T were kept constant and p varied, the result was 

The author had obtained dp/(1 - p2). That was based on the standard error of p, given 
a long series of observations, and T being taken as initially unknown. If they were 
taken as known the distribution was appreciably different. The result looked queer; 
it was desirable to be able to say that the prior probability of p was independent of 
those of , T, but according to the rules outlined it was not. 

He thought, therefore, that while the invariance theory had an obvious usefulness, 
success had not yet been attained in stating it in the best way when there were several 
unknowns. In significance tests it was, in any case, necessary to proceed one parameter 
at a time; and there would be no harm in many cases in doing the same in estimation 
problems. He thought that there must be a best way of doing it, but that it had not yet 
been found. 

He added that P. H. Diananda had found a way of extending the rule to some cases 
where the pr were not differentiable with respect to the i. 

The remark in his book that the uniform rule for the prior probability in simple sampling 
was in some cases grossly unsatisfactory referred to extreme cases and was related to 
significance tests. The distinction between estimation problems, where the form of the 
law was pre-assigned and only the parameters had to be estimated, and significance 
tests, where the form of the law itself was under consideration, was fundamental. The 
author’s paper dealt entirely with estimation problems. 

The object of his own theory was to tidy induction up, not to prove it. 

Dr J. Wishart (a visitor) mentioned that he had written nothing on the subject 
of the paper himself with the exception of one paper suggesting, inter alia, that the 
theorem which Bayes had produced was not the one with which he was customarily 
credited, and that was perhaps a reason why he had never been able very definitely 

say
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to come down on one side or other of the controversial fence. His reflexion, prompted 
by what was said in the paper and by Prof. Jeffreys’s remarks, was that he did not find it 
easy to accept Prof. Jeffreys’s claim that it was necessary to have a starting-point defined 
in terms of prior probability and indifference rules. He thought that the starting-point 
should be the first observation. To take the case mentioned by the opener, observation 
of a single life was not enough, and therefore he would consider a number of lives and 
find over a period m1 deaths out of n1 observations; he would hesitate to take anything 
other than that as his starting-point. To go on, there might be a further n2 lives ob- 
served, with m2 deaths. In that event, he would be satisfied that he had got observations 
on n1 + n2 lives, with two different estimates m1/n1, and m2/n2. 

He sometimes thought mathematicians attempted too much when they tried to 
formulate prior knowledge in mathematical terms at all. Possibly they got no further 
than the statistician who, after making calculations on an observed sample, let the 
matter sink into his mind and appealed to pure reason to see what he had learnt. It 
was for that reason that he was inclined to agree with the remarks of Prof. R. A. Fisher, 
quoted on p. 288 Dare he say that possibly Prof. Fisher, in a commendable attempt 
to relate his theory with that of the inverse probability school, might have even partially 
crossed the bridge at which so many statisticians had hesitated? The fiducial argument, 
as he personally understood and used it, was a system of direct deduction, not an 
inductive process. As he looked upon it, he thought he knew what he meant when he 
tried to assess the limits within which he seemed to have learned from experience, but 
he hesitated to use specifically as a probability formula one which, in effect, replaced 
a d by a dµ, and so became the same as that derived by using the prior probability 
type of argument, although the form of argument might be a different one. 

Mr M. G. Kendall (a visitor) said that he was surprised that none of the previous 
speakers had referred to what seemed to him the fundamental problem raised by the 
paper. On pp. 296-297, the author had discussed making his prior probability pro- 
portional to the sampling variation of a parameter. But a parameter had not a sampling 
variance; it was a fixed constant of a population. What the author apparently meant was 
the sampling standard error of an estimator of that parameter. For most estimators the 
sampling error of a statistic tended to zero, so that the expressions of the author seemed 
open to misconstruction unless he removed the factor 1/n. But for large samples it 
did not really matter what form of law was assumed for the prior probability because, 
as Prof. Jeffreys had pointed out on more than one occasion, the bigger the likelihood, 
the more the evidence came from the sample, and the form of the prior evidence became 
of diminishing importance. If a large sample effect were relied on, then it was un- 
necessary to bother about assuming any prior law at all. More or less the same answer 
was obtained, within reasonable limits, whichever law was assumed. 

Another objection was, as the author had pointed out, that that only related to 
sufficient statistics. The author himself had said that the meaning of 2 was rather vague 
in a case where there were not sufficient estimators. Not only was it somewhat vague, 
but it seemed that no meaning could be ascribed to it, because if there was more than 
one estimator there could be more than one standard error, and the rule was not 
uniquely defined. 

His major objection was that what the author had done was in effect to make his 
distribution of prior probability depend on a property of the posterior probability, 
i.e. on a property of the sampling distribution derived when sampling from a population. 
He could see no justification for that if in fact the author was arguing that his rule 
was more than a convenient way of producing a sensible answer and was recommended 
by its relation to the sampling variance. 

Mr H. Tetley, in closing the discussion, remarked that he considered the first part 
of the paper an extremely interesting and valuable summary of the various types of 
probability theory. The author would probably agree that he had been deliberately 
provocative in some of his remarks, but he would probably argue that his role in 
writing the paper had been not so much that of an impartial judge as that of an advocate 
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of a point of viewwhich he felt had not received sufficient attention. It was surprising, for 
instance, that no one had challenged the remark on p. 289: ‘it may not be unreasonable 
to suggest that it is precisely because the confidence interval results differ so little 
(and not at all in certain cases) from inverse probability results that they do in fact 
inspire confidence‘. 

He was interested in the very terse and neat summary of the position on p. 290, where 
the author showed how ‘equal number’ was an idea more elementary than number 
itself and thus how ‘equally likely’ was a notion prior to probability. 

The first part of the paper caused him to think seriously whether actuaries, with 
a few brilliant exceptions, had not laid themselves open to the charge of neglecting 
one of the most difficult, but one of the most important, subjects within their pro- 
fessional scope; whether in their teaching they had not very largely evaded the problem 
of building bridges between the abstractions of probability theory (packs of cards, 
coloured balls in urns, etc.) and observations of deaths, sickness, and so on, with which 
they were concerned in their everyday work. They had in fact used a probability 
theory based on equally likely events for the first and a theory based on limiting 
relative frequencies for the second. Although he was convinced that the actuaries’ 
practice had been very much better than their teaching in that respect, he was rather 
reminded of Russell’s well-known remark about mathematicians: ‘A mathematician 
is a man who does not know what he is talking about and does not very much care 
whether what he says about it is true.’ The mathematician dealt entirely with a world 
of abstractions-a world completely insulated from the world of events and facts— 
and he was not concerned with anything outside that strictly mathematical world. 
It was perhaps true to say that in much the same way actuaries had in the past devoted 
insufficient attention to the idea of setting the probability theory in its framework of 
observable events. 

With regard to the general question of inverse probability, he had no pretensions 
to being a philosopher or a logician but he was reminded of the philosopher’s almost 
invariable comment, particularly on hearing somebody speaking who was not a philo- 
sopher, namely: Define your terms‘. Many of the words which had been used in the 
discussion had several different meanings; unless it was perfectly clear what particular 
meaning the speaker attributed to such words his remarks might lack precision. His 
own feeling was that inverse probability theory lay nearest to the way in which people 
learnt; they learnt to forecast within narrow limits what was likely to happen in the 
future from their knowledge of the past. That was inductive inference which seemed 
to fit most satisfactorily into the inverse probability theory. The question was whether 
a sound method could be evolved, and in that connexion there were very definite 
philosophical difficulties with which he did not feel qualified to deal. One thing was 
certain, and that was that since, of the two systems of deductive and inductive logic, 
one could not be derived from the other, an unprovable assumption-a postulate-was 
essential in inverse probability theory. The test of a postulate was very largely whether 
or not it was productive, whether or not it opened up a fertile field of investigation. 
Inverse probability had been discredited by the Bayes-Laplace rule, more than any- 
thing else, owing to the contradictions to which it inevitably led. He felt rather unsure 
of his ground with regard to the author’s indifference rule in view of the modification 
to it proposed by the author in his remarks when introducing the paper. The author’s 
indifference rule had many virtues which were not possessed by any others previously 
put forward; it avoided most of the difficulties and led almost directly to another 
important development, namely, the undistributed ‘middle’. That gave some much- 
needed elbow-room; instead of a world of blacks and whites there was room for shades 
of grey. He had always felt that something of that sort was desirable to reconcile 
probability theory with reasonable persons’ ways of thinking. 

The President (Mr A. H. Rowell) said that questions of probability appeared 
to present one continuing characteristic in that their consideration could always be 
relied upon to produce a lively debate. In the discussion of Prof. Whittaker’s paper 
submitted to the Faculty of Actuaries, de Morgan was quoted as having stated that 
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there was no subject upon which opinions had been more freely hazarded by the 
ignorant or rational dissent more unambiguously expressed by the learned. On that 
occasion the President of the Faculty had remarked that his personal feelings resembled 
those of the skipper of a little tramp steamer, who, when crossing the North Sea upon 
his lawful occasions, suddenly found himself in the midst of the Battle of Jutland. 
He personally felt that the corresponding battle in his case was an aerial one, taking 
place miles above his head ! 

Of the value of the author’s results others were more competent to judge, but of the 
usefulness of research in the particular field covered by the paper he was convinced, 
not only by the fact that others were independently and concurrently engaged in it, 
but also by the fact that the subject had attracted and intrigued the minds of such 
leaders of the profession as G. F. Hardy, Lidstone and others. One of the rewards 
which the author had gained and which he would appreciate was the proof, provided 
by the size of the audience, of the keen interest in research which existed among 
members. 

He proposed that a hearty vote of thanks be accorded to the author for his paper. 

Mr Wilfred Perks, in reply, said that both Dr Solomon and Mr Kendall had 
misunderstood him. Dr Solomon had quoted his rule as being in terms of a sufficient 
statistic, but it was nothing of the sort. Mr Kendall had said the rule was in terms of 
the sampling distribution of the parameter. He admitted that he had used a loose 
phrase at the top of p. 297, but he had proceeded at once to explain what he meant by 
defining the symbols he had used. In fact the rule was in terms, not of a sampling 
distribution of a parameter or of a sufficient statistic, but of the large sample standard 
error of a sufficient statistic. He was aware-and he had said so in the paper-that 
where there was no sufficient statistic the rule became vague. Prof. Jeffreys had over- 
come that difficulty in his paper, and he himself in his opening remarks had given an 
alternative method of overcoming that vagueness. The phrase ‘ x is the large sample 
standard error of x’ was, he admitted, a loose one, ‘but having regard to the sentence 
immediately following it, which was an attempt to explain what those words were 
intended to convey, he denied that he had written anything so silly as had been attri- 
buted to him by Mr Kendall. 

Dr Solomon had said that in the expression on p. 296 the x in x was not the same as 
in the rest of the expression. He could only say that x was a function of x and that, 
as defined, the x was the same x as in the rest of the expression. 

The following communications have been received: 
Mr M. G. Kendall: I had no time at the meeting to deal with various other 

points, but there are a few additional comments I should like to make: 
(a) From conversations with Mr Perks it appears that I have been misled by some 

of his terminology and notation. For instance, he writes x for the sampling variance 
which is a function of some parameter x, whereas in statistical practice, so far as I know 
without exception, this symbol would mean the sampling variance of a statistic x and 
the parameter would be denoted by a Greek letter such as . My remarks in the dis- 
cussion still seem to me to retain their force. If this interpretation is correct, Mr Perks’s 
proof on p. 297 concerning the transformation of a statistic seems to require restating, 
for he there uses x and x to relate to statistics, not to parameters. 

(b) On p. 289 Mr Perks expresses some doubts about confidence intervals. I do not 
think the method is open to the objection he mentions that ‘the confidence statement 
has still to be made when we know the result of the sample, notwithstanding that. . . 
this additional knowledge may modify the probability of correctness of the statement‘. 
A confidence statement asserts that a parameter lies between two functions in a certain 
proportion of the cases which arise in random sampling. Until a particular sample is 
drawn we cannot calculate the numerical values of those functions. It does not appear 
to me that a knowledge of the sample must effect the probability that a statement in 
confidence is true. Suppose I assert that every time I hail a taxi it will be engaged, 
in the realization that in making this statement in confidence I shall be wrong 5% of 

AJ 21 



324 Some Observations on Inverse Probability 
the time. If I then see a taxi and hail it, the probability remains .95 that it will be 
engaged. The probabilities would only alter if there were some extra evidence, e.g. if 
I could see that its flag was up. 

(c) I cannot agree with the statement on p. 299 that certain trigonometrical trans- 
formations make Mr Perks’s rule more reasonable. There is nothing in trigonometry 
to justify such a claim and, after all, sine and cosine transformations are quite com- 
plicated things. And if there is something ‘natural’ about a uniform distribution of 
probability round a circle, why is there not something equally natural about a uniform 
distribution along a straight line as required by Bayes’s postulate? 

(d) On p. 311 Mr Perks refers to the problem of fiducial probability for the correlation 
coefficient. I do not think the fiducial distribution can be explicitly given-it has to be 
obtained graphically from the confidence diagrams. The point hinges on the fact that 
from the distribution of p one cannot obtain probabilities of the type 

or 
which can be inverted. It seems to me that Fisher’s general rule for obtaining fiducial 
distributions from probability distributions requires reconsideration in this case ; 
but the point is too involved to be adequately discussed in a few lines. 

Prof. E. S. Pearson: Mr Perks’s paper is interesting and welcome, as any well- 
considered contribution to the fundamental subject of how we make use of probability 
theory in the process of induction is bound to be. I do not suppose that we shall ever 
reach agreement in these matters, any more than I would expect that two skilled crafts- 
men need take the same tools to produce the same eminently useful article. But it is 
always very instructive to see how the other man works even though we may believe 
that another technique gives the better results in our own hands. 

In a broad way it seems to me that the situations in which probability theory is 
introduced, to help in reaching a practical decision as to further action, may be classed 
under two heads: (a) repetition problems, (b) isolated investigations. Under the former 
heading I have in mind such problems as arise in routine testing and sampling in- 
spection in mass-production industry. Here a rule must be laid down specifying, on 
the basis of the results obtained on examining a sample, whether (i) to accept the much 
larger batch or lot, (ii) to reject it, or (iii) to carry out further examination. What is 
of practical importance is the consequences of applying this rule in terms of long-run 
frequency for different qualities of output and, provided the sampling has been random, 
probability theory is introduced because it provides the measure of expected frequency. 
Probability as a measure of degree of belief can here hardly have a practical appeal. 
Mr Perks, no doubt recognizing that many of the actuaries’ problems which call for 
help from probability theory are of this repetition type, expresses doubt whether his 
indifference rule has any immediate application to applied actuarial science. 

In the case of (b), the interpretation of isolated investigations, the position is rather 
different. We may be concerned with the numerical results of an experiment which will 
never be repeated in the same form. Nevertheless, what may be termed chance factors 
have been present, whether in the selection of individuals or materials or in the deter- 
mination of experimental error. A probability statement is invaluable in summarizing 
this aspect of the situation although there will almost certainly be other factors, not all 
expressible in numerical terms, which must be weighed in the balance when the action 
to be taken on the basis of the available information is decided. Under these circum- 
stances I see no reason why there should be a single form of probability construct which 
is the ‘right’ one to use. Each person has to decide for himself what helps him most 
towards clear thinking, and I do not suppose for a moment that it matters whether the 
inverse or direct probability approach is used provided that it is accompanied by 
sufficient knowledge of the field of investigation and the sound use of human reason. 

All, therefore, that I can say is that the ‘construct’ which, taking an indifference rule 
as starting-point, sums up the state of knowledge in a posterior probability law does 
not seem as helpful to me personally as one under which the probability statement is 
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more directly linked with relative frequency. This link is clear in the repetition problems 
to which I have referred; but even in the case of the analysis of an isolated set of data 
the connexion is present, for the formulation of the position in terms of hypothetical 
repetition helps to the clarity of view needed for sound judgment. Further, the 
isolated investigations in each of which a random experimental procedure has been 
introduced and to which a statistical test or estimation procedure has been applied, 
all form part of the statistician’s aggregate of experiences; and so probability theory 
is again providing a measure of the long-run consequences of his decisions. 

Mr Perks refers in several places to what he believes are some of the main objections 
of the opponents of inverse probability, but I rather doubt if he has gone deep enough. 
Let me give some other reasons which can be advanced. 

(1) At the bottom of p. 303 he quotes a series of ratios 3/4, 35/48, 693/960, . . . , 
tending to 1/ 2, as giving the posterior probability that after n successes in n trials, 
the next n trials will all be successes. He describes this result, flowing from the 
new indifference rule, as ‘reasonable’ and providing ‘a very much better corre- 
spondence with the process of induction’ than that derived from other rules. But 
I find the series completely unreasonable or at any rate no more appealing to my 
reason than all manner of alternative series tending to numbers which are any 
man’s guess. It is only when I can relate such numbers to expected relative 
frequencies under specified conditions of repetition that they begin to register 
a meaning in my mind. 

(2) Both Mr Perks and Prof. Jeffreys appear to use the argument that because 
the posterior distribution derived from a certain indifference rule leads to the 
same results, e.g. in the case of ‘Student’s’ t, as those obtained by the direct method, 
this is evidence that there is something fundamental in the inverse approach. But 
while this correspondence is very interesting and I think satisfactory, I cannot see 
how it can be used to support one method of approach more than the other. 

(3) It seems to me that if we are to start with an expression in mathematical 
form representing our state of knowledge or ignorance, the starting-point chosen 
by Jeffreys and Perks is not far enough back. On p. 293 the latter writes: ‘It is 
assumed that a sample has been obtained at random from a population distributed 
according to a probability law. The form of this probability law is assumed to be 
known . . . . The assumption of the probability law rests on a question of significance, 
and, as Jeffreys puts it, every estimation problem assumes that a prior significance 
problem has been solved.’ But no significance problem of this kind can have been 
solved in the sense of giving an answer in terms of, certainty; nor shall we often 
know with certainty that the sample has been obtained at random. Ought we not, 
therefore, to start with some numerical measure of our degree of belief in these 
hypotheses? Undoubtedly our confidence will vary widely from problem to 
problem. I am quite ready to believe that it is impossible, practically, to go back 
that further step and I do not quarrel with Jeffreys and Perks for starting with 
‘assumptions‘. But I think that, having done this, they are not justified in saying 
all manner of unkind things about the consistency and logic of those who do not 
find their approach so very helpful ! 

May I refer in conclusion to one last point. In his eager advocacy of the methods of 
inverse probability, I think that Mr Perks has shown in places that he has not fully 
understood his opponents’ point of view. This is particularly true as regards pp. 287-289 
where it is hard to recognize some of the views which he ascribes to the exponents of 
‘direct systems‘. I can perhaps do no better than refer the reader to that admirable 
exposition of Cramér's on the object of a mathematical theory, given in section (13.4) 
of his recent book, Mathematical Methods of Statistics. 

Mr R. H. Daw: In statistical and scientific work the result of any experiment is 
always considered critically in relation to any previous experience and knowledge of 
similar or related experiments. I think it can be said that there is never a complete 
absence of knowledge relating in some way to the experiment, for, unless there were 
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some relevant knowledge, there would have been no question which might be answered 
by the experiment and no reason for performing the experiment. The knowledge will 
often be of a personal nature, ill-defined and difficult to express, but nevertheless it will 
be there. Mr Perks confirms this view by the manner in which he considers the reason- 
ableness of the results produced by the various indifference rules. 

Owing to the difficulty of expressing our indefinite knowledge in the form of exact 
numerical values for the prior probabilities of the hypotheses which are being tested, the 
method of inverse probability makes the assumption that we have no such knowledge. 
This assumed ignorance is then distributed in some arbitrary manner designed to avoid 
difficulties and to produce consistent results, and the hypothesis chosen is that which has 
the maximum posterior probability. The method would logically seem to preclude any 
consideration of the result in the light of our prior knowledge, for, having assumed 
ignorance, it does not seem reasonable then to bring in our other knowledge in assessing 
the result produced by an assumption of ignorance. 

It seems to me much more satisfactory to choose our hypothesis by the method of 
maximum likelihood and then to bring in our prior knowledge in assessing the result. 
In this way we avoid making our choice of hypothesis depend on an assumption which 
we know to be false. Also our procedure is much more in accord with that actually 
followed in practice. 

Mr H. L. Seal: This paper of Mr Perks is timely because it serves to remind 
actuaries that it is possible to base an entirely coherent and useful theory of prob- 
ability on the notion of ‘reasonable degrees of confidence’. However, before we are 
carried away by his proselytism it is worth inquiring if some of Mr Perks’s arguments 
in favour of such a theory and against the so-called ‘direct systems’ are valid. 

In the first place there is, in Mr Perks’s words, ‘an embarrassing array’ of internally 
consistent mathematical theories of probability founded on the intuitive feelings of 
probability and improbability possessed by all of us-such a theory being usually 
labelled ‘subjective’ in spite of Mr Perks. I instance the writers de Finetti, Jeffreys, 
Keynes, Koopman, and van Deuren who have all produced theories of intuitive prob- 
ability which differ very fundamentally from one another. It is, of course, possible 
that all these theories could be adapted to form the basis of the inductive theory of 
inverse probability that Jeffreys has made so particularly his own, though so far such 
an attempt has not been made. 

Secondly, it is important to notice that criticism of any theory of non-intuitive 
probability is pointless if the implicit assumption is made in making such a criticism 
that intuitive probability can be metricized—which, by the way, is what most statisti- 
cians of today deny. I emphasize this because Mr Perks is making precisely this 
inadmissible type of criticism when he asks protagonists of non-intuitive systems to 
prescribe ‘a test external to the model’, when he thinks that the ‘neo-classicist’s’ 
mathematics involves intuitive notions of probability, when he insists on the prob- 
ability of ‘a single event’, and when he argues that probability theory must not be 
regarded solely as a branch of pure mathematics. 

I would add that it is particularly dangerous for the non-specialist to criticize the 
mathematics underlying some of the modern theories of probability, since the technical 
literature of the subject is now enormous. Mr Perks is not entirely guiltless in this 
respect. For instance, his exclusion of irrational numbers from theories based on 
frequency definitions (I assume he is not referring to Steffensen’s or Bltime’s attempts 
to base such a theory on a finite number of events) is incorrect: the very notion of an 
irrational number involves the limit of a rational sequence of numbers. His argument 
against relative frequencies founded on the ‘remote but possible case’ is also based 
on a misapprehension. Furthermore, it is quite possible to erect a mathematically 
satisfactory theory of probability on the hypothesis that probability is an ‘ordinary 
mathematical’ limit: I refer to books such as Dörge and Kamke for confirmation of 
this, although in fact the Danish actuary Thiele was the first expressly to use this 
approach. 

Finally, a word about intuitive theories of probability in general. It seems to me that 
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the greatest difficulty of all such theories is to assure oneself that there is a one-to-one 
relation between the ‘logical sum’ and the addition of numerical probabilities. This 
equivalence is as much an ‘act of faith’ as is involved in the celebrated ‘bridge’ which 
must be hypothecated between theories and actualities by those who cannot admit 
to any rational intuitive appreciation of probability, 

Mr Perks has subsequently written as follows: 
I should like first to accept my fair share of the responsibility for the misunder- 

standing over the statement of the new indifference rule. I admit a lack of clarity of 
expression and the use of an unusual symbolism, but I am at a loss to understand how 
anybody reading the paper could have thought that by x. I meant to symbolize the 
standard deviation of the prior probability distribution, because (1) this would reduce 
the rule to a uniform distribution, (2) the section of the paper headed ‘Confidence 
Intervals’ clearly indicates my usage of the symbol x and discusses the comparison 
of intervals in the parameter dimension with intervals in the sample dimension, and 
(3) the final reference to Fisher’s ‘information’ relation involves exactly the same point 
of notation. It may be worth while to try to clarify the matter and incidentally to cover 
some of the points in the discussion. Let x be the parameter and u be the sufficient 
statistic corresponding to x for large samples of a fixed size. Then, corresponding to any 
particular value of x there is a standard deviation of the sampling distribution of u 
which, being a function of x, I designate a,. Now, if we transform x by y =f (x) we 
must also transform u by w =f (u). Then, corresponding to any particular value of y 
there is a standard deviation of the sampling distribution of w, which, being a function 
of y; I designate y. Since we are dealing with large samples of a fixed size and with 
consistent statistics, dy/dx and d /d are equivalent. This, I trust, also clarifies 
Mr Kendall’s point on the non-rigorous demonstration in the paper of the invariant 
property of the rule. 

Another way of looking at the matter, which is implied at various points in the paper, 
is to make such a transformation of the parameter as will yield a standard deviation 
of the sampling distribution of the transformed sufficient statistic for large samples 
which is independent of the parameter; if the central limit theorem applies, this is 
possible at any rate in principle. Then the rule states that we should use a uniform 
prior probability distribution for the transformed parameter. The emphasis on large 
samples of fixed size-the posterior distribution as well as the confidence belt assumes 
a sample of fixed size-explains away Mr Kendall’s point about r/n. I deny that the 
new rule is in any way dependent on posterior probability; the rule contains nothing 
more than a property of the basic distribution function. This is clearly seen if we put 
the rule in the form of the square root of the minimum variance integral, which, it is 
illuminating to note, expresses a relation between the effect of changes in the value of 
the parameter and the sampling variance. 

The minimum variance integral form also avoids reference to large samples and 
overcomes the vagueness in cases where there is no sufficient statistic, but in such 
cases the form of the likelihood will often be so complicated as to defy useful manipula- 
tion for the purpose of deriving a posterior distribution. If, instead, we use some 
consistent statistic we omit some of the information in the sample and the form of the 
problem is to that extent changed, and it does not seem unreasonable to allow for this 
change by relating the prior probability distribution to the standard error of the 
consistent statistic actually used. At any rate I deny the right of a supporter of the 
direct methods of estimation to challenge the principle of this change. The objection 
seems to flow from some improper frequency view of the prior probability; actually 
the prior probability postulate is a purely formal matter-it has no empirical content 
whatever. I should like to emphasize the point that the prior probability distribution 
has to be determined by reference to the conditions of the formal problem. When 
dealing with compound events or asymmetrical alternatives, it is the conditions of the 
formal problem which call for modifications of the prior probabilities and not, as 
Dr Solomon suggested, the existence of some prior knowledge. The remarks on p. 305 
refer solely to the binomial case. 
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In writing /nE on p. 310, my practical outlook as an actuary emerged despite 

my best endeavours to suppress it in this purely theoretical paper. The correct 
expression is, of course, /(nE + 1) as shown on p. 306 (incidentally I regret the notation 
nE instead of E). This, of course, does not alter the conclusion that Hardy’s difficulties 
disappear. 

I do not propose to be beguiled by Dr Solomon into an attempt to define the dis- 
tinction between what I have called symmetrical and asymmetrical alternatives; this 
is a matter for the logician. But the distinction is plain enough. Contrast the alterna- 
tives (a) male or female, and (b) male or not male; we know that hermaphrodites exist. 
Again, contrast (a) guilty or innocent, and (b) guilty or not guilty; there is the Scots 
verdict of not proven. Contrast (a) blue-eyed or brown-eyed, and (b) blue-eyed or 
not blue-eyed; I know a man with one blue eye and one brown eye. I need only add 
the point that mutations in biology seem to involve the distinction. This question of the 
‘middle” pervades our present-day life. One can hardly read an article on general 
affairs without meeting a false ‘either-or’ argument. 

Dr Solomon pleads that the several schools of estimation should be allowed to go 
their separate ways in peace. Surely that is exactly what cannot be done in a scientific 
subject. There is not room for long for two theories of the same subject to live side by 
side. Critical analysis of both must lead to the ousting of one by the other, or more 
likely to a compromise avoiding the weaknesses of both. It is worth noting that 
Dr Solomon repeatedly refers to practical problems and that Prof. Pearson’s comments 
are largely concerned with practical problems. What inverse probability is endeavouring 
to do is to provide a sound formal theory of induction which fits the accepted (or 
acceptable) processes of practical inductions. Actually, the only quarrel that I should 
have with the direct schools in the practical sphere is over their tendency to be too 
meticulous .in the application of mathematical technique to crude data. 

While fully appreciative of the value of system in practical work, I have a rooted 
dislike for spurious accuracy and it was for this reason that I disclaimed that the paper 
had any immediate relevance to practical actuarial work and not, as Prof. Pearson 
suggests, because actuarial problems are often of the repetition type. In fact repetition 
problems rarely arise in actuarial practice, so that the repetition idea is not so very 
helpful to me as a theoretical foundation. 

I do not think that Dr Solomon is right when he suggests that actuaries assume, or 
need assume, that Ex lives exposed to risk are all subject to a uniform rate of mortality. 
It is sufficient to regard Ex as a sample from a mixed population. The proportions of the 
sample mixture are, of course, subject to random variation-we are not usually con- 
cerned with stratified samples. 

I have to admit that the phrase ‘mildest possible bias‘, which Dr Solomon questions, 
is somewhat inapt. What I had in mind was that these forms represent the limiting 
effect of just one observation and that, if we reject fractions, this is as low as we can go. 
The real basis for the biased rules is the multinomial rule which fixes the bias according 
to i, the number of alternatives. It seems to me that Dr Solomon’s heavy irony is 
rather misplaced and inexpensive when directed at that part of the paper which is 
frankly the most speculative and which is admitted in the paper to be probably ‘mere 
nonsense’. But the only solid point he makes is incorrect. The uncertainty principle 
is concerned with the product of the standard deviations of two measured quantities 
and the criterion is not a constant. Dr Solomon has forgotten that the mass of the body 
measured is a divisor in the uncertainty expression so that the uncertainty vanishes at 
the macroscopic level. It is with difficulty that I refrain from pursuing the speculation 
further, but I must not be stung into this further indiscretion. 

In view of Prof. Pearson’s gentle rebuke, I hesitate to say anything more about 
confidence intervals, but I must explain that I had no intention of making unkind remarks. 
My object was solely to give just enough indication of the estimation aspects of the 
direct methods as would make my own philosophical difficulties intelligible and to show 
why I looked to inverse probability to overcome them. 

Let me emphasize that my paper is concerned solely with estimation. I suggest that 
every estimation problem is a unique problem; arguments based on a long succession 
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of such problems do not help me. To be specific, if the sampling distribution is markedly 
skew, I find no satisfaction, for example, in the fact that an unbiased statistic averages 
out a few large errors of one sign with a large number of small errors of the opposite 
sign in a long series of imagined or dissimilar experiments. I do not recognize in 
Mr Kendall’s taxi-cab analogy any question of estimation of a parameter. He changes 
my word ‘may’ to ‘must’ in discussing my point about the effect of knowledge of the 
sample on the probability of the confidence statement and overlooks that my concern 
was with the use of the statement in confidence to say something in probability terms 
about the parameter in a unique problem of estimation. The fact that the new rule 
produces results which in certain cases are identical with fiducial probability (and with 
confidence theory also) underlines the importance of my word ‘may’. Perhaps in due 
course I may have the pleasure of withdrawing even the word ‘may’ if somebody is 
able to prove the equivalence in general or even in those cases only which are of 
practical importance. 

Mr Kendall questions my distinction between a circle and a straight line. It is to be 
observed that he does not distinguish between straight lines which are unlimited at 
both ends, those which are limited at one end only and those which are limited at both 
ends. This is the crux of the distinction as indicated in the paper and I agree with him 
about a straight line unlimited at both ends. Apart from any frame of reference, the 
points on a circle are homogeneous. In the case of a limited straight line, however, 
the end-points are special and hence every point on the line is special according to its 
distance from the end-points. I have an idea that this lies at the root of the difficulty 
of the notion of place selection in von Mises’s theory. Von Mises at any rate realized 
that relative frequency alone was an insufficient basis for probability and tried to bring 
in randomness by the backdoor. This question of end-points is also at the root of 
Dr Solomon’s convergence difficulty in the use of the dX/X rule. Bearing in mind that 
nothing in experience is certain, it is appropriate in the binomial problem to exclude 
the end-points both from the prior probability and from the posterior probability. 
If we integrate from a to 1-a instead of from o to 1, where a is a fixed quantity 
as small as we please, say 10-1000, the convergence difficulty is rationally avoided. 
Another way is to use the binomial reduction of my multinomial prior distribution and 
let i become very large. 

Prof. Jeffreys’s contention that from a practical point of view any normal change in 
the prior probability distribution has quite insignificant effects on the posterior prob- 
abilities based on medium and large samples is, I hope, now plain to all. For a 
consistent theory, however, attention must be paid to such insignificant effects. More- 
over, in the binomial case the Bayes-Laplace rule creates difficulties at the fringes of 
the problem as explained in the paper, e.g. in the cases of n successes out of n trials. 
The prior probability distribution is concerned with relative values and even if x for 
large samples is a small quantity, its relative values for different values of x are signifi- 
cantly different, as Mr Kendall will recognize in any derivation of the normal curve 
from the binomial. I need only add that the differential calculus is in essence concerned 
with the relative values of small quantities. 

My reply to Prof. Pearson’s three objections to inverse probability is briefly (1) that 
the ratios he quotes arise at the very fringe of the application of a theory which is 
self-consistent, that they show that the theory does not break down in extreme cases 
and that rival methods either produce no result at these extremes or completely un- 
acceptable results-instead of claiming that these ratios are ‘reasonable’, it might be 
better to claim that they are ‘not unreasonable’; (2) that the t-distribution presents 
a case accepted by all schools so that this (as well as others universally accepted) must 
fit into any general inductive theory for the theory to be acceptable; and (3) that 
significance and estimation are formally two quite different problems, that a formal 
solution of the estimation problem in isolation is worth achieving and that it is important 
not to confuse theory and application. 

Mr Seal is probably right to the extent that an irrational number may be as justifiable 
a limit of relative frequency as a rational number. But for an infinite sequence to define 
a limit it must converge in the ordinary mathematical sense. The convergence of 
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relative frequencies, under a random process, is convergence in probability. Apart 
from the point mentioned in the paper that a random process is undefined (is it not 
intuitive?), the difficulty is that nobody has ever reached the supposed limit of relative 
frequency or defined a process by which it can certainly be reached. To accept it 
requires an act of faith and to use it for the purpose of defining probability% to base 
probability on an intuition. Induction is used at the core of the theory and entirely 
excluded thereafter. There has been no challenge of my suggestion that ‘equally 
likely’ is involved in the set theory of probability and I conclude that Mr Seal’s con- 
fident distinction between intuitive and non-intuitive theories is without substance. 
I assume that Mr Seal does not suppose that relative frequency without random process 
is in any way helpful. 

As for the word ‘subjective’, the objection is that it unjustifiably implies a personal 
theory, tainted by solipsism. On the contrary, Jeffreys’s theory is rational, coherent 
and communicable (see The meaning of scientific truth by Martin Johnson). But I have 
‘not said or implied in the paper that I accept Jeffreys’s theory of probability; my mind 
is open and I await a reasoned criticism. I do not think that inverse probability need 
be confined to Jeffreys’s theory. With a suitable postulate, I see no reason why it 
should not be injected into any of the other theories. Indeed, Mr Haycocks concludes 
his penetrating remarks by showing the way. 

I agree with Prof. Jeffreys on the importance of the problem of two or more para- 
meters at a time. My multinomial rule is a suggested solution of the problem for this 
particular case. It may be possible to use it to illuminate the general case. 

It is somewhat surprising that the discussion completely ignored the multinomial 
rule, particularly as it unifies the whole treatment of the binomial problem. It also 
provides an appropriate basis for time rates. We can regard the mortality table as a 
multinomial distribution for which the cell-probabilities are dx/lx dx+1/lx, dx+2/lx, etc 
If we assume that there are i cells, the multinomial rule applies directly. Given 
Ex, x, Ex+1 = Ex- x and x+1, as in Hardy’s problem, we then obtain as our estimates 
dx/lx, = ( x + 1/i)/(Ex + 1) and dx+1/lx = ( x+1 + 1/i)/(Ex + 1). If we combine the two ages 
and estimate the rate for the two years directly, we obtain ( x+ x+1+2/i)/(Ex+ 1) and 
the whole system is consistent. Since we do not know the limit of life, and since the 
time unit is arbitrary and i is large anyway (this seems to be the position with most, 
if not all, time rate problems), it seems reasonable to let i tend to infinity and thus 
reach the rule dx/x as suggested in the paper. 

My attention has been drawn to an interesting review by Lidstone of facsimiles of 
Bayes’s two original papers., This review was published in the Mathematical Gazette, 
Vol. xxv, pp. 177-80, and in the same volume (pp. 162-4) there is also a note by 
Lidstone on Laplace’s antecedent-probability function. Both of these are in Vol. IV of 
Lidstone’s Collected Papers in the Institute Library. To complete the references to 
inverse probability by actuaries in recent times there should also be included the paper 
by Davidson and Reid in T.F.A. Vol. XI, and the discussion thereon which includes 
a contribution by Lidstone. 

Mr A. W. Joseph has sent the following note: 
On pp. 309-310 of Mr Perks’s paper, the author suggests that the difficulty of Hardy’s 

problem disappears if we assume the biased prior probability rule dx/x, x being the 
probability of dying within the period. My own investigations led to the conclusion 
that Mr Perks had not succeeded in solving Hardy’s problem. In a long correspondence 
with Mr Perks I advanced the view that the mathematics behind his discussion of 
Hardy’s problem was faulty but I have to admit that Mr Perks, with considerable 
resource, countered all my arguments and corrected some real errors and misconceptions 
on my part. The following remarks, therefore, are very different from their original 
shape and I must leave it to the reader to decide who is right. 

To give concrete shape to the problem let us assume that out of n men aged 70, 
m survive to age 71 and l to age 72. Suppose x is the probability that a man aged 70 
will survive to age 71 (I am using the complement of Mr Perks’s x), y is the probability 
that a man aged 71 will survive to age 72, and z the probability that a man aged 70 will 
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survive to age 72, so that z=xy. Let p1 (x), p2 (y), p3 (z) be the prior probabilities of 
x, y, z, respectively. 

If we are given p1 (x) and p2 (y), then p3 (z) is determined by the relationship 

(1) 

the truth of which is probably seen most easily by drawing the family of curves, 
xy=constant, and considering the parallelogram formed where the lines, x=constant, 
x+dx=constant, cut the curves, z=constant, z+dz=constant. The area of the 
parallelogram is dx dy = dxdz/x. Summing the total probability over the strip between 
z=constant and z-+dz=constant, we get 

and this is equal to p3 (z) dz. 
Similarly the relationship between the posterior probabilities is 

i.e. (2) 

In the first place, it does not follow that (2) is necessarily true because (I) is true, 
as is easily verified by taking a particular case, e.g. p1 (x) = 1, p2 (y) = I, n—m = m - 1 = 1, 
so that p3 (z) = - log x from (1) and 

Secondly, there is no uniform rule satisfying (I), i.e. there is no solution to the 
equation 

(3) 

To prove this, let log x=s, log z=t, p (x)=p (e3)= (s); then, from (3), 

If dt (the Laplace transformation), 

then 

Therefore 

i.e. 

to which it is known that there is no solution. 
Thirdly, let us investigate possible uniform solutions of (2). Take the simple case 

n - m = m - l = 1,
i.e. (4) 

Let logx = s, logz = t, (1-x)p(x) = (1-es) p (es) = (s); 

fron (2).
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then from (4) 

L { (t)} is a function of V. Denote it by L (v). 

Now 

Hence L(v-1)L(v)=K(L(v-1)-L(v)), 

from which 

The inverse transform of this is ke-rt, so that (t)= ke-rt. 
Hence 

The algebra of the general case of uniform solutions of (2) is much more difficult, 
but Mr Perks pointed out to me that it is easy to verify that x-r (1 -x)-i is also a solution of 

(unless n = m or m = l) by the transformation w = (x - z)/(1 - z). 
We are driven to ask why x-r (1 - x)-i is not also a solution of (3). Let US substitute 

for p(x) and p and make Mr Perks’s transformation, so that 

dx = (1-z) dw, (1-z) dw, (1-z) (1-w), x-z = (1-z) w.

Then 

Had w-1 (1 - w)-1 dw not been equal to , then kx-r (1 - x)-1 would also have solved 
(3), and we see that at bottom the trouble is that kx-r (1 - x)-r is an impossible prob- 
ability distribution. It offends against the condition (x) dx = 1 mentioned by 
Mr Perks on p. 294. 

Is it possible to resolve the difficulty by a limiting process? There seem to be two 
lines of approach. In order to limit the inquiry we will take r=o. We may arrive at 
the distribution k (1 - x)-l by m eans of a limiting process such as kx6 (1 - x)-1+6, 
where k = 1 x6 (1-x) -l+6 dx and o. Or we may approach k (1-x)-l dx by 

in so that
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means of k (1 - x)-i dx, where o. I cannot see that either of these processes 
really leads us any further. In either case it does not matter how small is, so long as 

> o we have not got a self-consistent prior probability rule. When = o the prior 
probability reduces to the unhelpful distribution, p (x) =o for o x < 1, p (x) = 
for x=1. 

On the other hand Mr Perks is entitled to claim that there must be some significance 
in the fact that p (x) = 1/(1 - x) gives completely self-consistent posterior probability 
results (unless n = m or m = l). Is there not an analogy between the impossible ‘distribu- 
tion p(x)= 1/(1 - x) and complex numbers? Complex numbers used to be called 
imaginary numbers because they broke the rule that the square of a number was always 
positive. But, however much the conservative-minded mathematician might dislike 
them, the use of these numbers enabled perfectly correct theorems in real numbers to 
be established. It required the completely new conception that a complex number 
was an association of two real numbers obeying certain rules of addition, multiplica- 
tion, etc., to give mathematical respectability to imaginary numbers. I feel sure that 
attempts to show that dx/(1 - 3) obeys the rules will prove unsuccessful, but perhaps 
it is the rules that should be changed. 

There are other aspects of inverse probability theory which do not appeal to, me. 
Probability of a probability as a primary concept raises the question whether we should 
not go back further and base the theory on the probability of a probability of a prob- 
ability and so on, until we get an infinite regression something like J. W. Dunne’s 
ideas of time. 

Instead of postulating different prior probabilities according to the problem to be 
solved, would it not be simpler to postulate the results of these prior probability rules? 
Prior probability rules offer (amongst others) the succession rules (m+ 1)/(n+2), or 
m/(n+1), or (m+1)/(n+1), or (m+½)/(n+1). m n / seems as good as any of these and 
it has the merit of giving an almost perfect mathematical representation of absolute 
ignorance if m=n=o. If it is asked does not m/n give the unreasonable result of 
impossibility or certainty when m = o (n > o) or m = n respectively, I would answer 
that one should not colour the discussion by attaching the words impossibility, certainty, 
to the numbers o, 1. If n balls, all white, were drawn out of a bag it would not seem 
surprising on these facts alone to suppose that all the balls in the bag were white. In 
fact we would not conceive any other possibility. If now some awkward person in- 
formed us that some of the balls might be black we might want to modify our estimate 
of unity as the probability that the next ball drawn was white. Mr Perks would say 
that the probability was (n + ½)/(n +1) and if you added that there might also be red 
balls in the bag he would say the probability was (n+ )/(n + 1). My own inclination 
would be to say that there was no valid way of giving mathematical shape to the 
indefinite extra Information supplied about the constitution of the bag, and that unity 
was as good an estimate as (n + ½)/(n + 1) or (n + )/(n + 1). 

Mr Perks has written the following comment on Mr Joseph’s note: 
Mr Joseph, agrees that the posterior probabilities resulting from the rule dx/x 

(x=death-rate) are entirely self-consistent (except that he excludes the extreme cases 
where there are no deaths in one of the age intervals). This was the basis for the state- 
ment in the paper that ‘Hardy’s difficulties disappear’ and, since the posterior prob- 
abilities represent the entire content of the theory erected on the rule, I should have 
thought, that this consistency was sufficient. Mr Joseph’s difficulty is thus confined 
to the questions whether the prior probabilities resulting from the application of the 
rule dx/x to qx, qx+1 and (1 - 2px,) separately are themselves self-consistent and whether 
dx/x is a ‘proper’ probability distribution. 

As I have shown in my reply to the discussion the whole difficulty can be side- 
tracked by applying the multinomial rule to dx/lx, dx/lx, dx+1/lx, etc. For the purpose of 
meeting Hardy’s difficulty and of substantiating the brief treatment in the paper 
I should be content to let the matter rest there, but Mr Joseph’s point is, of itself; of 
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considerable interest. Following Mr Joseph’s notation and using the rule dx/(1-x), 
where x is the survival rate, it can be shown that, if we assume 
and for p1 (x) and p2 (y) respectively, p3 (z) lies between 

and 

where 
Thus by taking i large enough, p1 (x), p2 (y) and the two limits of p3 (z) can be made to 
differ from (1 - x)-1, (1 - y)-1 and (1 - z)-1 respectively by as little as we please, and 
also the integrations between o and 1 of the two limiting expressions for p3 (z) can be 
made to differ from unity by as little as we please (one limit approaches unity from 
above and the other from below). Thus inconsistency can be reduced to any assigned 
degree of smallness by working with i large enough and can be removed entirely by 
proceeding to the limit in the posterior probabilities of x, y and z separately. 

If we proceed to the limit for i at the prior probability stage, it would appear that the 
rules dx/( 1 - x), dy/( 1 - y) and dz/( 1 - z) are self-consistent but there remains Mr Joseph’s 
claim that these are ‘ impossible ’ probability distributions. The word ‘ impossible ’ seems 
to imply some absolute authority, but the rules about probability distributions, as 
Jeffreys shows, involve conventions some of which may not always be the most con- 
venient. Whether the distributions are ‘impossible ’ or not, the fact is that they ‘ work ‘. 
I suspect (but have not pursued the analysis) that, by working with the rule 

and avoiding the infinite integrals in the limit by confining the integrations to the 
range to 1– where is a fixed quantity as small as we please (taking care with the 
corresponding limits for a), it would be possible to show consistency without departing 
from ‘proper’ distributions. 

It is worth noting that in the same sense a uniform distribution of the prior prob- 
abilities over an infinite range, as in the case of the mean of a normal universe, is an 
‘impossible’ probability distribution, so that I have sinned in good company. Of course, 
in such a case any concern felt over the point can be avoided by using the range ± k, 
where k is a fixed arbitrarily large quantity; after all, if we are dealing with statistics 
of the heights of men we are never so ignorant as not to know that none of them are 
five miles high ! 

The concept ‘probability of a probability’ is implicit in Bayes’s theorem, which, 
as far as I know, is not in dispute. Any qualms about the concept can be overcome 
by talking instead about the probability that the value of a parameter lies in a particular 
interval. 

Mr Joseph does not seem to appreciate that, by postulating m/n as ‘the result of 
a prior probability rule’, he is implicitly using the rule dx/x(1 – x), which on his own 
basis is as ‘impossible’ as dx/(1 - x). Nor does this preference form part of a system for 
interval estimation or help in dealing with other parameters. It is no answer to the 
new system of prior probabilities to say that at the fringes of a particular problem some 
other slightly different estimates, which are not part of a complete self-consistent 
system, are ‘as good’ as those yielded by the new system. The essence of the new rules 
is (1) that they formalize a system which, over the whole range of parameters and of 
observations, aims at giving posterior probabilities that are self-consistent and not 
unreasonable, and (2) that the formal conditions of any given problem indicate the 
form of the prior probability distribution to be used. 

and 




