#### The Actuarial Profession making thance sense of the future

### Sources of Uncertainty and their Impact

32<sup>nd</sup> Annual GIRO Convention

R. A. Shaw

18-21 October 2005 The Imperial Hotel, Blackpool

#### Agenda

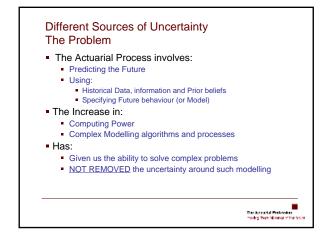
- Different Sources of Uncertainty
- Measurement of Uncertainty
- Examples Curve Fitting (Reinsurance Pricing)
- How to Manage Uncertainty

The Asian I.d Protocology modeg fractical areas of the for-

## Different Sources of Uncertainty Topics

- The Problem
- Parameter Uncertainty
- Model Uncertainty
- Stochastic Uncertainty

The Advantal Protocolor Tweing floors to areas of the forum



#### Different Sources of Uncertainty The Problem

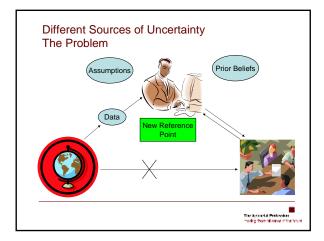
- Sources of Uncertainty are Often:
  - Not Recognised
  - If Recognised then frequently Under-modelled
  - Mis-communicated:
  - Not the same as "Reliances & Limitations" in Actuarial Reports
- Impact of Uncertainty can be Very Significant
- How to Communicate:
  - Sources of Uncertainty in a practical manner
  - One doesn't have Perfect Foresight
  - Avoid perception of the limitation of any analysis Ranges ?

The Action fol Profession modes there is the following

#### Different Sources of Uncertainty The Problem

- CAS RWP (2005) on Risk Transfer:
  - Ultimate Loss estimates
  - Rate Level History
  - Prospective rate change
  - Historical Claim Trend estimates
  - Prospective Claim Trend estimates
  - Experience period might be too short to include large losses
  - The 'Best Fit' distribution is not the actual
  - Cash-Flow timing assumptions
  - Prospective Exposure mix
  - Multi-year Deals Parameter Uncertainty increases with time

The Asian full Protocolus moding fluore id annue of the future





#### Different Sources of Uncertainty Parameter Uncertainty

What it is:

- Parameters are Incorrect given that the Model is Correct
- Parameters Change through Time

How it arises:

- Limitations in the amount of Data to estimate parameters
- Greater Impact in the Tail than the Expected Value

### The Asian Isl Protection moting fracticities of the for

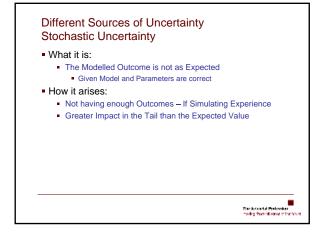
#### Different Sources of Uncertainty Model Uncertainty

What it is:

• Not having the "True Model" or having an "Incorrect Model" How it arises:

- The Model from the 'Best Fit' may not be the "True" Model
  - The 'Best Fit' is not the only criteria → Predictive Power ?
     Helps if there is some scientific / behavioural rationale as well
- The Model imposes structural properties that may not hold





## Measurement of Uncertainty Topics

- Parameter Uncertainty
- Model Uncertainty
- Stochastic Uncertainty

The Asian fail Protocolor Tweing floor id serve of the fail

#### Measurement of Uncertainty Parameter Uncertainty

- Confidence Intervals for the Parameters
- Bootstrapping:
  - Resample with replacement many times
     Easy to understand and implement / Sample Size ?
- Bayesian Techniques:
  - Can combine a Priori Belief with Actual Data
     Overcome limitations of only Experience Data
     Determination of Priori Distribution
- Can be recognised through the use of simulation:
  - Parameter uncertainty can be included within the simulation
  - Make use of information obtained in the claim fitting process
     Parameter CVs

The Asian fol Protocology Twelog There is across of the form

#### Measurement of Uncertainty Model Uncertainty

- Investigation of a Range of Models:
  - Consider scientific rationale:
    - Independent Loss Events → Poisson Process
       Prior Knowledge of typical models → Selected Severity
  - Test sensitivity of modelled outputs
  - Test sensitivity of modelled outputs
  - Helps in the selection of the most appropriate model

#### The Asian ful Projection mading fracticities of the full

#### Measurement of Uncertainty Stochastic Uncertainty

- Estimated through Simulation:
- Minimisation:
  - Large number of simulations / Convergence of results
  - Sampling Methods
  - Software choice (C++, VBA, @Risk)
  - Closed-Form Solution
  - Minimise uncertainty vs Accuracy of formulae

#### The Asian fail Protocolor Tweing floor id serve of the fail

## Examples – Reinsurance Pricing Topics

- Fitting Curves to Data
- Random Samples from Simple Pareto (Example 3)
- Example 1 Curve Fitting: Low Uncertainty
- Example 2 Curve Fitting: High Uncertainty
- Example 3 Pricing: Parameter Uncertainty

The Asian Isl Protocolor Twelog Thereid wave of the fact

#### Examples - Reinsurance Pricing Fitting Curves to Data

- Allows use of the client's own data instead of industry
- Allows Simulations Distributions of Excess Layer
- Gives information where data is missing
- Provides smoothing where data is present
- Provides distributions for parameters if MLE is used



#### Examples - Reinsurance Pricing Fitting Curves to Data - Adjusting Past Data

- Fitting adjusted historical data assumes:
  - Future Loss comes from stochastic process similar to past
  - Assumption common to all actuarial work
- Works best when:
  - Data can be adjusted correctly with confidence
    - Trend, individual loss development
    - Exposure change for claim counts
  - Have several years (e.g. 5 8) of stable claims per LOB w.r.t. Limits or Line Sizes
    - Mixes of classes / regions
- One can always fit whatever data is available but:
  - When should you believe the fit enough to use it
  - When are other methods preferable ?

The Action fol Protocolor Teeling There is because of the fact

#### Examples - Reinsurance Pricing Fitting Curves to Data - Two Major Obstacles

- Individual Claims Trended and Developed to Ultimate:
  - Trend is fairly routine (but need trends for 'Large' Claims)
  - Consistent methods for claim development; not well
  - established
- Capping by Policy Limits:
  - Spikes in Data makes fitting difficult
  - Really need uncensored losses (" damage curve")
  - Then need policy limits profile in simulation
  - Can fit to ranges as a possible solution: Will produce Damage Curve
  - Will increase Parameter CV



#### Examples - Reinsurance Pricing Fitting Curves to Data – Parameter Uncertainty Is always present

- Comes from:
  - Limited Data
  - Lack of knowledge on what model to use
  - Extrapolation of Data
  - Judgement as to what data to use
- Will Push probabilities from the Mean to the Tail:
  - Mean is not affected much 
    → Traditional pricing isn't either
  - High Excess of Loss can be substantially affected
  - Reserving example from US Homeowner Data shows:
    - 99% Loss \$11.5 bn (No PU) → \$14.6 bn (PU) + 25%
      Expected \$9.96 bn (No PU) → \$10.01 bn (PU) + 1%

The Asian I.d Protection modeg francial array of the fact

#### Examples - Reinsurance Pricing Fitting Curves to Data - RI Distributions

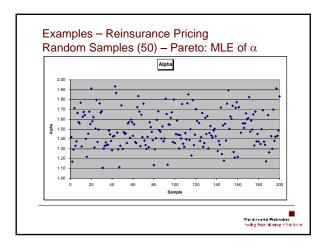
- What distributions do we generally see in insurance ?
- Fitting to Conditional Distributions Why Min & Max? Minimum:
  - Data Availability, Convenience and Comparability
  - Quality of Fit
  - Maximum:
    - No such thing as infinity
    - Should be largest conceivable event (3-4x largest observed) Should do Sensitivity testing
- Tail Dependence:
  - Extreme Value Theory Power Law
  - Usually expressed in terms of α

The Action for Profession Twelry fracticities are of the foc

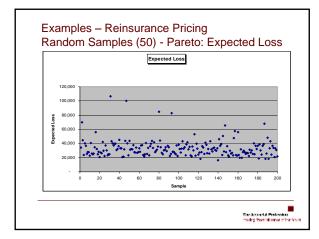
#### Examples - Reinsurance Pricing Fitting Curves to Data - 'Best' Distribution

- Model Specification:
- Look at many distributions
- How do we compare the distributions:
  - Model Specification Criteria Akaike, Schwarz, A-D, K-S etc
- Why parameter penalty is necessary
- Where in the Curve are we fitting
- Quality of Fit
- Empirical vs Fitted Distribution:
- Mean, Standard Deviation and Percentile Matching
- Actual Parameters:
  - Expected Values Parameter CVs

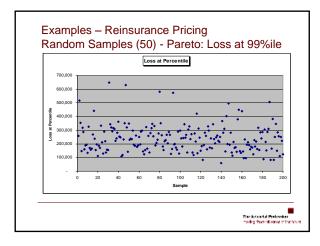
The Asian ful Protection model from ideases of the ful-



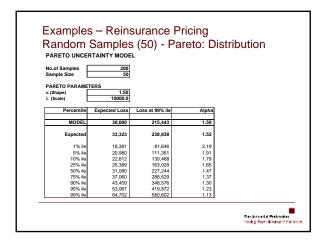




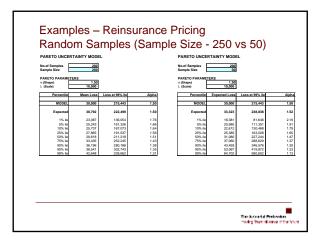


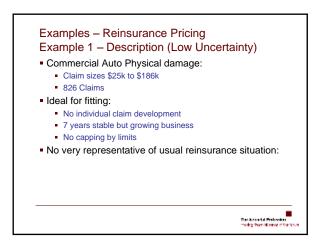


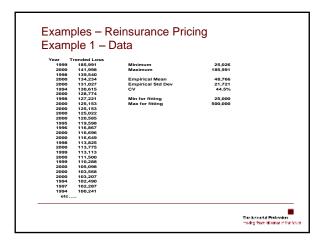




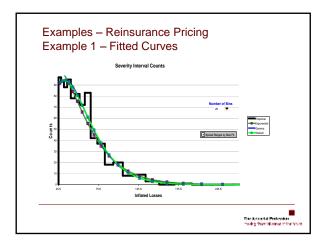




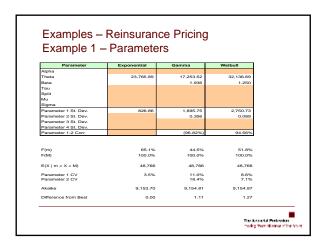












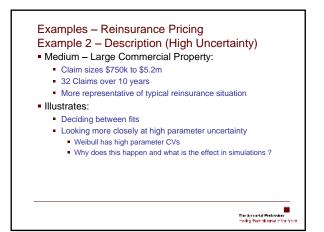


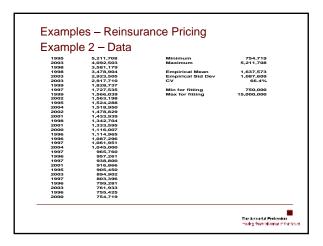
| Example 1 – Exponential vs Empirical |                    |                      |  |  |  |  |
|--------------------------------------|--------------------|----------------------|--|--|--|--|
| Loss                                 | Modeled Percentile | Empirical Percentile |  |  |  |  |
| \$25,000                             | 0.00%              | 0.00%                |  |  |  |  |
| \$27,489                             | 10.00%             | 10.00% 9.32%         |  |  |  |  |
| \$30,301                             | 20.00%             | 18.16%               |  |  |  |  |
| \$31,829                             | 25.00%             | 23.24%               |  |  |  |  |
| \$37,161                             | 40.00%             | 38.01%               |  |  |  |  |
| \$41,433                             | 50.00%             | 46.97%               |  |  |  |  |
| \$46,749                             | 60.00%             | 56.05%               |  |  |  |  |
| \$58,022                             | 75.00%             | 73.61%               |  |  |  |  |
| \$63,296                             | 80.00%             | 80.75%               |  |  |  |  |
| \$79,754                             | 90.00%             | 90.56%               |  |  |  |  |
| \$95,700                             | 95.00%             | 96.00%               |  |  |  |  |
| \$117,220                            | 98.00%             | 98.43%               |  |  |  |  |
| \$135,245                            | 99.00%             | 99.64%               |  |  |  |  |
| \$158,273                            | 99.60%             | 99.88%               |  |  |  |  |
| \$176,536                            | 99.80%             | 99.88%               |  |  |  |  |
| \$192,830                            | 99.90%             | 100.00%              |  |  |  |  |
| \$308,155                            | 99.99%             | 100.00%              |  |  |  |  |



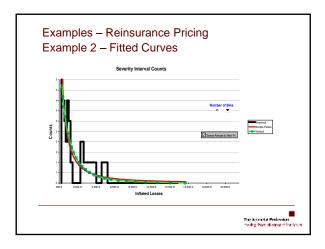
| Loss      | Modeled Percentile | Empirical Percentile |
|-----------|--------------------|----------------------|
| \$25.000  | 0.00%              | 0.00%                |
| \$27,866  | 10.00%             | 10.9%                |
| \$30,980  | 20.00%             | 20.6%                |
| \$32.627  | 25.00%             | 25.3%                |
| \$38,189  | 40.00%             | 40.1%                |
| \$42,596  | 50.00%             | 49.0%                |
| \$47,890  | 60.00%             | 58.5%                |
| \$58,649  | 75.00%             | 75.1%                |
| \$63.510  | 80.00%             | 80.9%                |
| \$78.260  | 90.00%             | 89.8%                |
| \$92,326  | 95.00%             | 94.9%                |
| \$109,702 | 98.00%             | 97.5%                |
| \$122,816 | 99.00%             | 98.7%                |
| \$140,410 | 99.60%             | 99.8%                |
| \$152,480 | 99.80%             | 99.9%                |
| \$163,770 | 99.90%             | 99.9%                |
| \$223.815 | 99,99%             | 100.0%               |



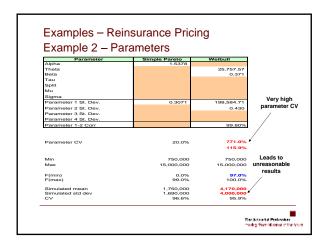








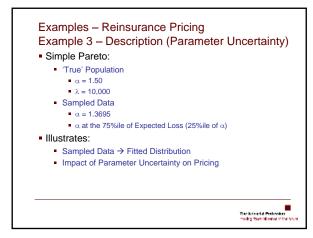






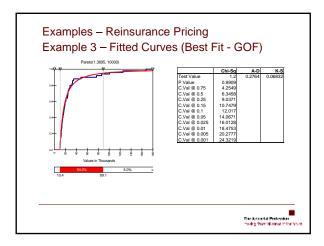
| Example 2 – Simple Pareto vs Empirical |                    |                      |  |  |  |
|----------------------------------------|--------------------|----------------------|--|--|--|
| Loss                                   | Modeled Percentile | Empirical Percentile |  |  |  |
| \$800,911                              | 10.00% 12.5%       |                      |  |  |  |
| \$863,889                              | 20.00%             | 15.6%<br>18.8%       |  |  |  |
| \$900,094                              | 25.00%             |                      |  |  |  |
| \$1,037,356                            | 40.00%             | 34.4%                |  |  |  |
| \$1,165,310                            | 50.00%             | 50.0%                |  |  |  |
| \$1,343,862                            | 60.00%             | 56.3%                |  |  |  |
| \$1,821,892                            | 75.00%             | 78.1%                |  |  |  |
| \$2,100,063                            | 80.00%             | 81.3%                |  |  |  |
| \$3,229,350                            | 90.00%             | 87.5%                |  |  |  |
| \$4,815,926                            | 95.00%             | 96.9%                |  |  |  |
| \$7,703,060                            | 98.00%             | 100.0%               |  |  |  |
| \$9,994,746                            | 99.00%             | 100.0%               |  |  |  |
| \$12,414,227                           | 99.60%             | 100.0%               |  |  |  |
| \$13,644,360                           | 99.80%             | 100.0%               |  |  |  |
| \$14,359,357                           | 99.90%             | 100.0%               |  |  |  |
| \$14,934,111                           | 99.99%             | 100.0%               |  |  |  |
| \$14,934,111                           | 33.33%             | 100.0%               |  |  |  |



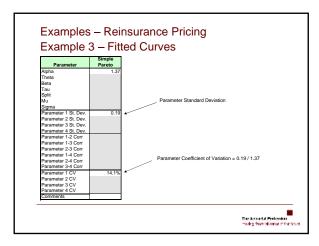


| Example 3 | – Data – | Sample | ed 50 Lo | osses |  |
|-----------|----------|--------|----------|-------|--|
| Loss      | Loss     |        |          |       |  |
| 10.187    | 17.856   |        |          |       |  |
| 10.219    | 17.901   |        |          |       |  |
| 10.409    | 18,940   |        |          |       |  |
| 10,413    | 19,130   |        |          |       |  |
| 10,546    | 19,577   |        |          |       |  |
| 10.580    | 20.698   |        |          |       |  |
| 10,846    | 21,053   |        |          |       |  |
| 11,070    | 23,669   |        |          |       |  |
| 12,083    | 24,144   |        |          |       |  |
| 12,109    | 24,518   |        |          |       |  |
| 12,269    | 24,828   |        |          |       |  |
| 12,279    | 24,915   |        |          |       |  |
| 12,822    | 26,583   |        |          |       |  |
| 13,212    | 28,086   |        |          |       |  |
| 13,418    | 28,141   |        |          |       |  |
| 13,452    | 31,979   |        |          |       |  |
| 13,693    | 32,824   |        |          |       |  |
| 14,188    | 33,319   |        |          |       |  |
| 14,366    | 34,952   |        |          |       |  |
| 14,820    | 48,306   |        |          |       |  |
| 15,156    | 76,847   |        |          |       |  |
| 15,896    | 86,288   |        |          |       |  |
| 16,582    | 100,828  |        |          |       |  |
| 16,683    | 125,451  |        |          |       |  |
| 17,096    | 167,589  |        |          |       |  |

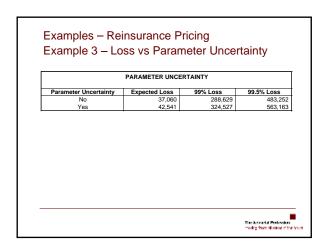
















Intuitive measure – Actual years for untrended distributions

The Advential Protocology modes from the second of the full

### Examples – Reinsurance Pricing Conclusions

- Misinterpretation of Tools can cause problems:
  - A "Best" Fit can still have unreasonable parameter uncertainty
  - A "Best" Fit may not be the best for the situation
- Judgement Essential Not purely a mechanical process
- Understanding Conditional Fitting:
  - Quality of Fit
- Role of Policy Limits
- Bayesian Inputs:
  - Effectively weights fitting with:
  - Exposure rating
  - Company-specific knowledge

The Action for Profession Twelry fracticities are of the foc

# How to Manage Uncertainty General

- Develop a thorough understanding of:
  - Problem to be Solved
  - Possible Models and Approaches
  - Risks and Uncertainties of the Selected approaches
- Understand:
  - What Risks are <u>Captured</u> by the Models
  - What Risks are <u>Not Captured</u> by the Models
  - The Exposures Units to be Modelled
    - Level of Granularity
    - Uncertainties in such Data
  - Mathematical Axioms underpinning the Model
- Recognise ALL Judgemental steps

The Action fol Protocology Tweing There is across of the fold