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1. INTRODUCTION 

DATA have been generously supplied by the Faculty of Actuaries Withdrawals 
Research Group. These data cover the lapse or withdrawal experience for the 
calendar year 1976 of seven Scottish life offices. An extensive analysis has been 
published by the Research Group(‘) although, for reasons we shall discuss later, 
we believe that the approach outlined here is better able to describe the structure 
of the data than the detailed (and somewhat pedestrian) tabulations of this 
earlier paper. 

The data enable the experience of 1976 to be investigated with particular 
reference to the variation of lapse or withdrawal rates with various policy 
characteristics. The expression ‘lapse’ is used throughout to denote the removing 
of a policy from the live file, due to premature termination of the contract, with or 
without payment of a surrender value. It excludes the conversion of a policy to a 
paid-up amount, the reduction of premium and/or sum assured or the 
surrendering of bonus. 

The characteristics are summarized in Table 1 together with the categories into 
which each has been divided. Further information is provided in the Research 
Group’s report. The total exposed to risk is in excess of 750,000. As noted in 
Table 1 there are some missing data. 

The calendar year method of defining duration, rather than the more natural 
policy year method, was adopted because some of the offices could not have 
provided the data in the required form. With a calendar year rate interval, half a 
year’s exposure was counted for each case at duration 0. In interpreting the 
results against policy duration, a possible source of bias should be noted which 
arises from the offices’ widely varying practice regarding the retention of business 
on the live file after non-payment of premiums. Thus some offices included no- 
payment cases on the live file and counted them as withdrawals while other 
offices ignored such cases. Considerable variations in the rates for early durations 
(particularly durations 0 and 1) exist which would probably not have occurred if 
it had been possible to use complete years’ premiums paid. This practical 
problem attracted some comment in the Faculty discussion referred to above. 

The Report of the Faculty of Actuaries Withdrawals Research Group 
published in 1978 presented the data for 1976 in a factual way, without 
attempting to set up any theoretical models. 

Data of this particular type are described by statisticians as categorical. The 
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authors of the 1978 Report identified nine characteristics with which the 
withdrawal rate may be expected to vary. Each of these characteristics has been 
divided into a number of discrete categories. Merely to present the data in a 
complete way would require a nine-dimensional tabulation which, of course, is 
not practicable. To present the possible two-way marginal tables would require 
36 such tables—the authors have shown results for only eleven of these. More 
complex interactions were not investigated further. 

The use of theoretical models for such a data set has the advantage of 
providing a structure to the data so as to improve the estimation of underlying 
parameter values. Further, statistical theory enables different models to be 
compared and contrasted so that conclusions about the structure of the data may 
be reached. The fitting of the models described in a subsequent section can be 
regarded as analagous to parametric graduation in that estimates from the data 
are smoothed so as to satisfy an assumed relationship. 

Models such as those described in the subsequent sections have been used to 
describe claim rates in, for example, general insurance but not in life assurance. 
References from the United Kingdom actuarial literature include Johnson and 
Hey,(2) Grimes, (3) Bennett(4) and Coutts (5) 

We take advantage of the GLIM statistical package in carrying out the 
modelling required. Details are provided in §§ 3, 4 and 5. 

The analyses published in 1978 indicate that four characteristics contribute 
‘significantly’ to the variation in lapse rates viz. office, type of policy, age at entry, 
duration of policy. As described above, no formal statistical investigations were 
undertaken to qualify the term ‘significant’. We shall view these results as arising 
from a preliminary examination of the data and shall take the identification of 
these four factors as the starting point for our analyses. The categorization of 
these four factors is shown in Table 1. Regarding policy type, because the open- 
ended endowments and unit-linked policies in the investigation (1976) were 
mainly of short duration with little or no data beyond eight years’ duration, it 
was decided to exclude these two types and concentrate on the remaining five. 
The temporary assurance class includes family income benefits, reducing and 
level temporary assurances as well as those with conversion options—this is, 
therefore, a heterogeneous group of policies. Where a single policy combined a 
basic type of assurance and some type of temporary assurance, the Research 
Group considered the policy as one of the appropriate basic type and ignored the 
temporary assurance portion. Altered policies were grouped by their current 
policy class in the investigation. 

Two further points should be noted about these data. 
Firstly, if we were considering attempting to identify, at the inception of a 

group of policies, which types of policy were more or less likely to be withdrawn, 
we would be concerned with a wider set of factors many of which were not 
recorded in this particular investigation. Thus, from this viewpoint of ‘under- 
writing for withdrawal’ we might be interested in policyholder’s income, area of 
residence, occupation, tenure (including home ownership), number of years at 
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Table 1. Withdrawals Data: Policy Characteristics 
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Characteristic 
Office 

Age at entry 

Duration of policy 

Sex of policyholder 

Policy type 

Original premium- 
paying term 

Sum assured 

Premium frequency 

Agent type 

Categories 
Seven 

15–19, 20–24, 25–29, 30–34, 40–44 
45–54, 55–64 
0, 1, 2, 3, 4, 5, 6–8, 9–11, 12–14, 
15 and over (years) 

Male/Female 

With-profit endt, non-profit 
endt, with-profit whole- 
life. non-profit whole-life. 
temporary open ended endt. 
unit linked endt. 
Under 10 years. 10–14. 15–19. 
20–29 and over 29 years. 

£0–£999, £1,000–£1,999, £2,000–£4,999, 
£5,000–£9,999, £10,000–£19,999, 
over £20,000. 
Yearly, monthly, other and 
paid up 
Broker, Chartered Accountant, 
Solicitor, Estate Agent, 
Bank, Building Society, 
Own Staff, Other Agent, 
No Agent. 

Comments 

Definition is Calendar year of 
entry—office year of birth 
Definition is Calendar year of 
investigation—Calendar year of 
entry. 
Only 6 offices able to provide 
this split. 
Open ended and unit-linked endts 
are of short duration—little 
or no data beyond 8 years’ 
duration. 

Only 6 offices able to provide 
this split. Classification only 
appropriate if premium still 
being paid. 
Bonuses excluded. For decreasing 
temporary assurances, original 
sum assured used. 

Only 1 office able to provide 
this split. 

that address, reason for effecting the policy. In this sense the study is rather 
restricted. Further, it would also be of value to know the reason for withdrawal, 
although this is likely to be difficult to ascertain. 

Secondly, the investigation is a cross-sectional one in the classical, actuarial 
sense. Such investigations have been widely discussed in the actuarial literature 
(for example, Benjamin and Pollard). (6) The withdrawal of a policy is unlike a 
death claim in that it is voluntary. Hence groups of policies with given 
characteristics may vary both in their overall propensity to withdraw and in the 
timing of these withdrawals (i.e., the distribution over time, or by policy 
duration). This element of volition means that cross-sectional investigations are 
deficient in attempting to describe such phenomena. A cohort approach is more 
natural and more satisfactory. The situation is similar to that in demography 
where. although a cross-sectional approach may be adequate for mortality 
investigations. it is unsatisfactory in attempting to describe phenomena like 
fertility, first marriage. remarriage and divorce. Indeed in these cases such an 
approach can often lead to fallacious conclusions (Cox).(7) The same is true for 
withdrawals. This deficiency here should be borne in mind throughout this 

— 

— 
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report-strangely, no comments were made along these lines in the Faculty 
paper nor in the subsequent discussion. (1) We shall return to this point in §6. 

2. THE DATA 

The raw data were edited and the way in which policy lapses, the response, 
varied with the following covariates was investigated: 

i = 1: early (15 to 29 yrs) 
A-age at entry; 3 categories i = 2: medium (30 to 39 yrs) 

i = 3: late (40 to 64 yrs) 

D-duration of policy; 3 categories 
j = 1: short (1 to 3 yrs) 
j = 2: medium (4 to 8 yrs) 
j = 3: long (9 or more yrs) 

F—office, these are 7 denoted by k=1, 2, . . , 7* 

T-type of policy; 5 categories 
l = 1: with-profit 
l= 2: non-profit endowment 

I= 3: with-profit whole-life 
l = 4: non-profit 
l = 6: temporary 

The cross-classification of covariates gives rise to a set of cells or units {u: u (i, j, k, 
I)}. The numbers of lapses wu, out of nu exposures, for different u, are available for 
analysis. The data were not quite balanced in the sense that no temporary policies 
of long duration were recorded by office number 7*, giving rise to a total of 
N = 3 × 3 × 7 × 5 – 3 = 312 units or non-empty cells. The choice of categories for 
covariates A and D is, to some extent, arbitrary, and could have been adjusted by 
editing the raw data differently. 

3. LINEAR MODELS WITH NORMAL ERROR STRUCTURE 

A full theoretical discussion of linear models with normal error structure is 
included in Technical Appendix A which serves as an adjunct to this section. 

As a first step in the setting up of a linear model, attention is focused on the 
decomposition 

(response) = (systematic component) + (error component) 

which may be written either as 

for each unit u, or as the vector identity 

* Offices 6 and 7 were renumbered 7 and 6. 
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The response Yu and error component are treated as random variables and the 
systematic component mu is treated deterministically. 

Let so that mu = E(Yu) for all u. 

In order to employ the decomposition it is necessary to: 

(i) select a suitable response variable Yu, whose realization yu is a function of 
the lapse data (wu, nu); 

(ii) cater for the covariates by incorporating them into the nominated 
structure. M, of the systematic components mu; 

(iii) select an error structure. which (hopefully) has independent, homoscedas- 
tic, normally distributed components so that 
for all u. 

The viability of any such proposed overall model can be assessed by fitting and 
observing residual plots. If satisfactory, other (simpler) models, obtained by 
specifying different structures, H, for the mu’s can be investigated by traditional 
hypothesis-testing theory (using F-tests for example). 

Attempts were made to fit a variety of model structures using independent 
normal homoscedastic errors to the following response variables: 

(i) the annual lapse rate wu/nu; 
(ii) the lapse frequency nu/wu; and 

(iii) the log odds of lapsing* log (wu/(nu – wu)). 

The first two choices of response variable failed to produce satisfactory 
residual plots when fitted for a variety of model structures. By way of illustration, 
the plot of residuals against fitted values for the lapse frequency response (choice 
(ii)) and an additive, main effects model structure (which will be discussed in 
detail in a subsequent paragraph) is reproduced as Figure 1. This clearly cannot 
be described as ‘pattern free’, indicating that the residuals are not independent of 
the fitted values as required (see Technical Appendix A). The plot also casts 
serious doubts on the homoscedastic error assumption. Here, since for 
all u and the residuals ru more or less behave like (see Technical Appendix A), 
we would expect the ru’s to lie roughly in a horizontal band, on either side of the 
origin, when plotted against fitted values. 

Residual plots for the log odds response variable (choice (iii)) with an additive, 
main effects model structure, and normal homoscedastic error structure are also 
reproduced (see Figures 2a to 2e). While these are not completely satisfactory it 
can be argued that, subject to a few outliers, they do offer very reasonable 
supporting evidence for the model. Summary details of the initially adopted 
overall model therefore are: 

* We remark here that, since the lapse rates encountered are of the general order of 1 in 20, lapse 
odds are effectively the same as lapse rates i.e. 
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Data: (wu, nu) 
Covariates: A, D, F, T with u = (i, j, k, l) 
Decomposition: yu = mu + e u, 
Response: Yu = log (wu/(nu – wu)) 
Errors: with independence 
Structure: (parametric) 

or notation) 

For the parametric form of the additive (no-interaction) model structure, 
parameters naturally relate to the covariates A, D, F and T respectively. 

The model has the advantage of a particularly simple and readily interpreted 
structure. Firstly, however, we enquire whether certain (fine tuning) adjustments 
to the model structure A4 are in order before interpretation begins. Specifically, 
are all four covariates statistically significant or will an even simpler model 

Figure 1. Plot of Residuals vs. Fitted Values for A+D+F+T model of Lapse 
Frequency (Normal Errors). 
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Figure 2a. Plot of Residuals vs. Fitted Values for A+D+F+T model of Log Odds 
(Normal Errors). 
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Figure 2b. Plot of Residuals vs. Age at Entry for A+D+F+T model of Log Odds 
(Normal Errors). 
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Figure 2c. Plot of Residuals vs. Policy Duration for A+D+F+T model of Log Odds 
(Normal Errors). 
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Figure 2d. Plot of Residuals vs. Office for A+D+F+T model of Log Odds (Normal 
Errors). 
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Figure 2e. Plot of Residuals vs. Policy Type for A+D+F+T model of Log Odds 
(Normal Errors). 

suffice? And is there any significant interaction between the covariates which 
matters? 

To answer the first of these questions, each of the four factors was omitted in 
rotation, and their significance formally assessed using familiar F-tests. These are 
valid because of the assumed error structure which was not, in turn, unsupported 
by the residual plot. Test details are displayed on a so-called lattice of hypotheses 
(Figure 3) in which the nodes represent the different model structures (written in 
GLIM notation). Residual sums of squares or deviances and the associated 
degrees of freedom are displayed at each node. Departure sums of squares and 
the associated degrees of freedom, obtained by differencing, are displayed on the 
branches of the lattice. Details of the F-tests are then tabulated alongside the 
lattice. The tests clearly demonstrate that each of the four factors is highly 
significant and suggests what might be called a ‘pecking order of significance’. 
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Source of 

Main Effect M.S. F-Ratio D.F. 

A 7.71 84.0*** 2, 

D 23.38 255.0*** 2, 

F 1.51 16.5*** 6, 

T 8.81 96.0*** 4, 

Residuals .0917 

Figure 3. Tests of Significance of Main Effects in A+D+F+T model of Log Odds 
(Normal Errors). 

To answer the second of the above questions, we consider formal significance 
F-tests for the interaction between the various covariates. These are summarized 
in the same way (Figure 4). Here for example, the model A*D+F+T, which has 
the parametric representation 

is composed of the main effects terms plus an interaction term between covariates 
A and D. (Note: In GLIM notation A*D=A+D+A.D so that the interaction 
term is A · D.) The F-ratios for all three interaction terms involving the covariate 
F have been calculated and are shown in Figure 4—all three are clearly non- 
significant. Of the remaining three interaction terms, two have calculated F- 
ratios which border on the upper 5% level, while the interaction term D · T is 
clearly the most significant, overwhelmingly so. Thus we might reasonably 
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Source of 

Interaction F-Ratio D.F. 5% (1%) 
A.D 2·33 4, 2·37 
A.F 0·89 12, 1·75 
A.T 2·32* 8, 1·94 (2.51) 
D.F 1·42 12, 1·75 
D.T 6·44*** 8, 1·94 

F.T 1·27 24,m 1·52 

Figure 4. Tests of Significance of Interaction Terms in Linear models of Log Odds 
(Normal Errors). 

conclude that the essential features of the data set are encapsulated within the 
model structure 

A+D+F+T+D·T 

with ifs parametric representation 

Fitted values (using GLIM) 

are based on the maximum likelihood (or least squares) estimators shown in 
Table 2. 
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Table 2. Maximum likelihood estimators for the 
parameters in the normal linear response model 

of log odds: D*T+A+F 

= –2·77 

A: 0 –·28 –·54 
F: 0 ·02 –·20 –·34 –·17 ·05 –·42 

T: l 

D: 0 ·53 ·11 ·93 ·40 
–·27 ·61 –·01 ·49 ·33 

–1·04 –·13 –·93 –·27 –·12 

Examination of the differences (or contrasts) in estimated covariate levels 
leads us to draw the following conclusions: 

1. As already stated, the office effects, while statistically highly significant, are 
additive by nature. The evidence for these lies with the appropriate F-tests of 
Figure 4. Thus we conclude that essentially, all offices experience a similar 
pattern of lapses across the different combined levels of the other factors under 
investigation, but to varying degrees of intensity. Contrasting the (non-unique) 
estimators indicates that offices 1, 2 and 6 experience (near) identical 
intensities of lapses across the board, with the remaining four offices experiencing 
somewhat lower intensities of lapses, to varying degrees. A similar conclusion 
was reached by the Faculty Research Group. This finding raises the issue of 
whether these systematic differences are ‘real’ or are perhaps rather a function of 
the way in which the data were selected and recorded from office to office. ‘Real’ 
reasons for variations between offices might be, for example, the varying quality 
of after-sales service, the results of different marketing strategies or the varying 
generosity in the level of surrender values. 

2. The ‘pecking order of significance’ mentioned above and displayed, for 
example, in Figure 3 indicates that, of the four factors being considered in these 
models, Office is the least significant and Duration is the most significant. These 
comments contrast with the Faculty Research Group who concluded that Policy 
Type was the most significant factor (page 277 of reference (1)), albeit with no 
formal scientific validation of this statement. Our findings do, however, agree 
with the earlier paper on the role of Office. Indeed the Faculty Research Group 
amalgamated the data for all offices to produce lapse rates by policy type. It is 
true that the combined data are likely to give a better picture of the market place 
created by the various types of intermediary. But here the inter-office differences 
are emphasized in order to indicate the extent of variation that might be 
anticipated between offices. This is pursued further in §5 where a more detailed 
analysis is carried out for one office. 

3. The interaction between age at entry and both policy duration and type is 
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only marginally significant (Figure 4). Thus on contrasting the estimates , we 
might reasonably conclude that lapse rates decrease with increasing age at entry 
without undue interaction. Of course, if required, the nature of this marginally 
significant interaction can be ascertained by fitting the desired interaction terms. 
Details are not reproduced since they did not reveal any pronounced departures 
from this conclusion 

4. The main interaction lies with policy duration and type (Figure 4). 
Examination of the entries (Table 2) leads us to conclude that: 

(i) There is a marked reduction in lapses for all types of policies of long 
duration. 

(ii) Lapses are markedly higher for non-profit policies than for the corres- 
ponding with-profit policies at each individual level of duration. 

(iii) The two with-profit policy types show almost identical patterns of 
reducing lapses with increasing duration, that for endowment policies 
being pitched at a slightly lower level than for whole life policies. 

(iv) While the non-profit whole-life policies maintain the decreasing pattern 
of lapses with increasing duration, this trend is partially reversed for non- 
profit endowment policies. Here lapses show a small increase for policies 
of medium duration over those of short duration. This is clearly the main 
source of interaction between the two covariates. We understand that the 
probable explanation for this effect lies with the practice at this time of 
using non-profit endowment policies to secure mortgages. The average 
length of a mortgage (i.e., before the owners move to another home) is 
about seven years—a duration of seven years falls into the second 
category (j = 2) of the D variable. 

4. BINARY RESPONSE MODEL 

Here the lapse data (wu, nu) are treated as binary responses with the observed 
number of lapses in each category, or unit u, being modelled as a binomial 
response variable 

wu ~ Bin (nu, pu). 

A full theoretical discussion of this model is provided in Technical Appendix B. 
This time the possible effects of the covariates are entered into the model 

through the lapse probabilities pu by means of a link-function. The GLIM 
computer package was used first to fit, and then to conduct a graphical analysis 
of residuals, for a variety of model structures under the logit link function. As 
anticipated, the previously used structure D*T+A+F with logit link 

provided an adequate fit. The plot of standardized residuals 
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against fitted values 

only is reproduced here (Figure 5). This is satisfactory, subject to a few outliers. 
Estimates for the parameters are reproduced (Table 3) alongside those (in 
brackets) for the same structured normal model (Table 2) in order to facilitate 
comparison. It is reassuring to note that these estimates lead to the same 
conclusions as before. 

Tests of significance of the dependence of lapse rates (binary response) on all 
four covariates are summarized on lattice diagrams (Figure 6). In each instance, 
the value of the likelihood ratio test statistic (the deviance) is written on the lattice 
branches, together with the corresponding number of degrees of freedom. The 
asymptotic reference distribution is chi-square. The results offer overwhelming 
evidence that all four factors are significant. Theoretical details of these tests are 
contained in Technical Appendix B. 

Tests to ascertain the relative importance of the various possible interaction 
terms are also summarized on a lattice diagram (Figure 7). Here the deviance and 
degrees of freedom are recorded against each model structure (as before) and 
their differences displayed on the branches. Since the asymptotic distribution is 
known to be unreliable and is at the centre of current research, these entries may 
be used only as a ‘screening device’ indicating that the interaction between 
covariates D and T is the most dominant.(8) 

Table 3. Maximum likelihood estimators for the parameters in 
the Binary Response Model (Logit Link): D*T+A+F. 

A: 

F: 

0 –·26 

(0) (–·28) 

0 ·03 
(0) (·02) 

T: l 

D:j 0 ·56 
(0) (·53) 

–·21 ·68 
(–·27) (·61) 
–1·04 –·09 

(–1·04) (–·13) 

= –2·81 
(–2·77) 

–·45 
(–·54) 

–·22 –·33 
(–·20) (–·34) 

·27 ·82 

(·11) (·93) 

–·02 ·44 
(–·01) (·49) 

–·97 –·30 
(–·93) (–·27) 

–·18 ·00 –·35 
(–·17) (·05) (–·42) 

·40 

(·40) 

·35 

(·33) 

–·11 
(–·12) 



Statistical Analysis of Life Assurance Lapses 475 

Figure 5. Plot of Standardized Residuals vs. Fitted Values for Binary Response model 
(Logit Link): D*T+A+F. 
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Figure 6. Tests of Significance of Dependence of Lapse Rates on all four Covariates for 
Binary Response model (Logit Link). 
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Figure 7. Tests of Significance of Interaction Terms in Binary Response model (Logit 
Link). 

5. ANALYSIS OF DETAILED LAPSE DATA FOR A SPECIFIC OFFICE 

More detailed lapse rates than hitherto used were available for analysis. It was 
decided to concentrate on those for a specific office (office 4). Office 4 was chosen 
for this more detailed analysis because lapse rates for an additional policy type 
(unit-linked policies), albeit incomplete, were available for this chosen office. 
According to the Faculty Research Group’s analyses, office 4 represents the 
second lowest set of lapse rates (this is confirmed by the estimates of in Tables 2 
and 3). The covariates investigated, together with their crossed categories were as 
follows: 

A—age at entry, 6 levels i = 1 to 6 corresponding to the age groupings (years): 
20-24, 25-29, 30-34, 35-39, 40-44, 45-54 

D—policy duration, 9 levels j = 1 to 9 corresponding to durations (years): 
1, 2, 3, 4, 5, 6-8, 9-11, 12-14, 15 and over 
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T—policy type; 6 categories 

k = 1 with-profit 
k = 2 non-profit 

endowment 

k = 3 with-profit 
k = 4 non-profit 

whole-life 

k = 5 temporary 
k = 6 unit-linked 

Lapse data were not available for unit-linked policies of duration in excess of 12 
years, giving rise to a total of 62.9–6.2 = 312 units {u: u=(i, j, k)}. 

Again the additive, non-interactive model A+D+T with normal error 
structure and log (lapse odds) response was found to provide a reasonable initial 
working model on the basis of the residual plots (Figure 8). These plots, only one 
of which is reproduced here, exposed six clear outliers which were traced to the 
only six cross-classified cells where lapses had so far failed to register due to 

Figure 8. Plot of Residuals vs. Fitted Values for A + D + T model for Office 4 of Log 
Odds (Normal Errors) with Outliers. 
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insufficient exposure. Residual plots (Figures 9(a)-9(d)) with the outliers omitted 
from the fit may be deemed to be satisfactory leading to the adoption of the 
model in the first instance with some assurance. 

Attempts to simplify the model by omitting main effects, term by term, were all 
vigorously rejected. Details of the formal F-tests are summarized in Figure 10(a). 
Interaction terms were also investigated. Summary details of the formal tests 
applied are given in Figure 10(b); the result is that only one interaction term is 
statistically significant, overwhelmingly so, leading to the acceptance of the 
model 

written as 

A * T + D or A + D + T + A · T 

Figure 9a. Plot of Residuals vs. Fitted Values for A + D + T model for Office 4 of Log 
Odds (Normal Errors)—Outliers Removed. 
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Figure 9b. Plot of Residuals vs. Age at Entry for A + D + T model for Office 4 of Log 
Odds (Normal Errors)—Outliers Removed. 
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Figure 9c. Plot of Residuals vs. Policy Duration for A + D + T model for Office 4 of Log 
Odds (Normal Errors)—Outliers Removed. 
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Figure 9d. Plot of Residuals vs. Policy Type for A + D + T model for Office 4 of Log 
Odds (Normal Errors)—Outliers Removed. 
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Source of 

Main Effect M.S. F-Ratio D.F. 

T 6·56 41·7*** 5, 

D 7·10 45·1*** 8, 

A 4·46 28·3*** 5, 

Residuals ·1574 

Figure 10a. Tests of Significance of Main Effects in A + D + T model for Office 4 of Log 
Odds (Normal Errors). 
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Source of 

Interaction F-Ratio D.F. 5% (1%) 
A.D 1·28 40, 1·39 
A.T 3·04*** 25, 1·52 (1.79) 
D.T 1·20 38, 1·40 

Source of 

Interaction F-Ratio D.F. 5% (1%) 
A.D + A.T 2·07*** 65, 1·31 (1.47) 

D.A + D.T 1·26 78, 1·29 

T.A + T.D 2·17*** 63, 1·31 (1.47) 

Figure 10b. Tests of Significance of Interaction Terms in A + D + T model for Office 4 
of Log Odds (Normal Errors). 
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in GLIM notation. Parameter estimates (in the non-unique, GLIM version) are 
tabulated for interpretation in Table 4, from which we conclude that: 

1. Interaction between policy type and age at entry, which was only marginally 
significant for the condensed data set (§3) takes precedence. This may be partially 
an artefact of the different ways in which the data were edited. Further we remark 
that the two data sets, for the specific office, are not strictly comparable with 
respect to both age at entry (at the extremes) and policy type (because of the 
inclusion of unit-linked). 

2. Policies of short duration (2-3 years) are most prone to lapse, with a general 
reduction in the propensity to lapse with increasing duration thereafter. This 
feature is essentially non-interactive with respect to both policy type and age at 
entry. 

3. There is a tendency for the lapse rate to decrease slightly with increasing age 
for both non-profit whole-life and temporary policies but with a marked 
additional reduction, in excess of these trends, at age 40–44 years. This feature is 
confirmed (see Figure 3 on p. 270 of reference (1)) for all offices for non-profit 
-whole-life policies. This is a matter for further investigation for the specific office. 

4. There is a steady reduction in lapse rates with increasing age at entry for 
unit-linked policies. 

5. For the non-profit policies, lapse rates are greater for endowment policies 
with a younger age at entry but greater for whole-life policies with an older age at 
entry. 

6. For the non-profit policies, the lapse rates are higher than for the 
corresponding with-profit policies. The temporary policies are similar to the non- 
profit group. The unit-linked policies have higher lapse rates that the other policy 
types at the youngest ages; at ages 40–54 their experience is similar to that of 
with-profit policies. In attempting to understand these differences, the reasons 
why the policies were originally effected would be helpful, and similarly the 
nature of any guaranteed benefits on early surrender. For the older ages at entry 
the similarity between the experience of the unit-linked and with-profit policies 

Table 4. Maximum likelihood estimators for the 
parameters in the Linear Response Model of Log 

Odds: A*T + D for office 4 

-3.58 
D: 0 ·53 ·60 ·22 ·00 –·39 –·38 –·89 

T:k 

A:i 0 ·90 ·21 ·66 ·89 1·23 
–·03 ·78 –·02 ·54 ·71 ·71 
—·28 ·53 –·08 ·49 ·36 ·51 
–·41 ·45 –·09 ·44 ·31 ·09 
–·44 ·36 –·35 ·12 ·09 –·44 
–·82 ·15 –·28 ·44 ·45 –·64 
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may again reflect the purpose for which the policies were originally effected and 
the savings nature of these policy types. 

6. HETEROGENEITY AND POLICY DURATION 

As indicated in § 1, the data under discussion came from a cross-sectional 
investigation rather than a cohort investigation. This impairs interpretation of 
the results. However, even if the data were derived from a cohort study there 
would be problems in applying the results derived for a subgroup of policy- 
holders to an individual policyholder. This bias arises because the members of a 
well-defined subgroup are inevitably mixed with respect to their propensity to 
experience the decrement under study. The short discussion that follows relies 
heavily on the ideas of Vaupel and Yashin.(9) 

Consider a group of policies of a given type, issued by a certain office to 
policyholders in the same year with the same age at entry. We assume mortality is 
negligible and we are to consider the variation of withdrawal rates for this group 
of policies with policy duration. This situation corresponds to the cohort version 
of the data available from the Faculty of Actuaries’ investigation. We are 
controlling for three of the four significant factors that have been identified and 
considering the variation in withdrawal rates with the fourth factor-viz. policy 
duration. 

Without loss of generality, we assume that this group of policies is made up of 
two homogeneous subgroups (subcohorts). 

Let µ1(t) and µ2(t) be the forces of withdrawal at duration t for the two 
subcohorts, and let (t) be the observed force of withdrawal for the entire cohort. 
The important question is: how does the duration profile of (t) compare with 
those of µ1(t) and µ2(t)? 

Let pi(t) be the survival probabilities for the two subcohorts (i=1, 2): 

pi(t) = exp i = 1, 2. 

Let (f) be the proportion of the surviving cohort at duration t that is in 
subcohort no. 1, so 

Clearly 

The dependency of the force of withdrawal for the whole cohort on the forces of 
withdrawal for the individual subcohorts is affected by the variation in n(t) and 
1 – (t), i.e. the changing proportion of the population that is in each of the 
subcohorts. 

An example is given in Figure 11 (which is not unlike the appearance of Figure 
1 in reference (1)). In Figure 11, the cohort aggregate reveals a force of 
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µ1(t) = ·10 
µ2(t) = ·01 

(0) = ·8 

Figure 11. Apparent Decline in the Overall Force of Withdrawal in the Presence of 
Heterogeneity. 

withdrawal that declines from ·082 at duration ‘zero’ to ·030 at duration 30 
(years). Does this imply that the hazard of withdrawal for individual policy- 
holders decreases with increasing policy duration? Not necessarily. As in Figure 
11, there might be two homogeneous types of policyholder: 

µ1(t) = ·10 

µ2(t) = ·01 

one with the force of withdrawal ten times that of the other. For individuals in 
each group the force of withdrawal is a constant. The observed decline is an 
artefact caused by the original population being heterogeneous. 

A similar example is shown in Figure 12 where the cohort picture indicates a 
force of withdrawal that peaks at a duration of about 12 years. This does not 
necessarily imply that an individual policyholder will experience a force of 
withdrawal that peaks in this way. There might be two homogeneous types of 
policyholder: 

µ1(t) = ·02t 

µ2(t) = 0 
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µ1(t) = ·02t 

µ2(t) = 0 
(0) = ·9 

Figure 12. Apparent Maximum for the Overall Force of Withdrawal in the Presence of 
Heterogeneity. 

one with a linearly increasing hazard rate, the other immune to withdrawal! 
Again the observed peak is an artefact (like the ‘seven year itch’ in divorce rates). 

Further examples of the potential effects of heterogeneity are given by Vaupel 
and Yashin.(9) 

The following more general points may be made given the above examples: 
1. Regardless of how many different factors or attributes are considered, 

individuals (in this case policyholders) who are grouped together will differ 
according to other unobserved or neglected characteristics. Some of these 
differences will affect, in this case, the propensity to withdraw. This heterogeneity 
leads to selection, in that the surviving population will differ from the initial 
population. This means that (a) observations of the surviving population cannot 
be translated directly into conclusions about the behaviour or characteristics of 
the individuals making up the original population and (b) that the overall 
variation in, here, withdrawal rates with time cannot be used to make direct 
inferences about the variation of withdrawal rates with time for the individuals 
making up the population. 

2. The aggregate withdrawal patterns may, if accepted without question, lead 
to erroneous policy decisions if for example, in Figures 11 and 12 a change in 
marketing leads to an increase in (0). 

3. It is not clear how important these effects are for an understanding of 
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withdrawal rates. They are certainly important elsewhere, e.g. mortality, where 
pioneering work has been published by Beard(10) and Redington.(11) 

7. CONCLUSIONS 

Modelling large complex data sets may be viewed as a balancing act between 
model complexity and the need to encapsulate the salient underlying features 
present in the data. The simpler the model, the simpler the interpretation of the 
underlying data generating mechanism. Modelling does not necessarily have a 
unique solution, but a model may be deemed adequate only if it achieves this 
goal. 

One way of assessing this is through a thorough graphical analysis of model 
residuals which, ideally. should be ‘pattern free’. Additionally, what might be 
termed ‘fine tuning’ might then be attempted. and its effects formally assessed. 
The development of generalized linear modelling, together with its associated 
computer soft-ware package GLIM, facilitates such modelling objectives. 

These techniques have been applied to the ‘lapse’ data of the Faculty of 
Actuaries’ Withdrawal Research Group and conclusions have been drawn about 
the relative importance of the four factors identified by the Withdrawals 
Research Group (age at entry, duration of policy, office, type of policy) their 
independence and possible interactions. Possible sources of bias in interpreting 
the results have also been discussed. 
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TECHNICAL APPENDIX A 

Linear models with normal error structure 
Consider the response decomposition 

y=m+ 

with declared model structure M. Here y RN where N is the number of units; 
while the structure M is said to define a linear model if the systematic component 
m is chosen so that 

Further let dM ( N) denote the dimensionality of the linear vector space LM and 
vM = N – the associated degrees of freedom. 

The decomposition y = m + is succinctly represented geometrically in Figure 
Al in which the vector m is constrained to lie somewhere in the subspace or 
hyper-plane LM RN. 

Figure A1, Vector Space Representation of the Response Decomposition: y = m + 

Fitting and assessing linear models 
Fitting a linear model A4 to an observed response vector y is equivalent to 

selecting a suitable value , for m LM. Let r = y – denote the corresponding 
error vector. Call the fitted values and r = (ru) the residuals. How is 
(and hence r) to be selected? 

Extensive use is made of the method of least squares in which is chosen to lie 
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at the foot of the perpendicular from y on to the linear space LM (see Figure Al). 

Hence, by this method, fitted values are constructed to satisfy the two criteria: 

(C1) LM 

(C2) r = (y– ) is perpendicular to any m LM. 

These in turn imply that: 

(i) the fitted values have the imposed model structure M; 

(ii) the residuals (ru) estimate the underlying error structure ( u) but subject to 

dM constraints; and 

(iii) the residuals (ru) are statistically independent of the fitted values ( u). 

Consequently these properties are used to assess the adequacy of any proposed 

overall model M through a thorough examination of various residual plots. 

An example of model fitting 

We shall consider fitting the model M = A+D+F+T with parametric form 

First the model is expressed in the non-parametric form 

where dot denotes averaging over the relevant subscript. 

Then criteria C1 and C2 are used as follows: 

Criterion C1 implies that the fitted values u, satisfy 

Criterion C2 can be rewritten as 

for any m = (mu) LM 

where 

and 

Here plus denotes summation over the relevant subscript. Further since 
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is identically equal (for any m LM), coefficients of like parameters are equated to 

give 

Dividing both sides of each identity by the relevant number of terms delivers the 

identities 

while averaging each identity over the one remaining suffix gives 

Hence the fitted values are 

We have assumed no missing values, with each suffix ranging over a predeter- 

mined number of (crossed) levels. Any missing values are treated by setting them 

equal to what would be their fitted values and solving the resulting equations. 

The method develops a formula for the fitted values avoiding the use of 

matrices and the theory of generalized inverses. 

Hypothesis testing and analysis of variance 

Suppose that on the basis of an examination of residual plots the overall linear 

model A4 is no longer in doubt. The question then arises whether a simpler linear 

model H will suffice. How is this hypothesis H to be tested? 

Figure A2. Vector Space Representation of Testing of Significance in a Linear Model 
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Denoting the (least squares) fitted values and residuals under the two linear 

models M and H by ( , r) and ( . s) respectively it is proposed that we examine 

the succinct geometrical representation (Figure A2) of these vectors together 

with their associated linear spaces where dH<dM<N and 

vH>vMf>0. 

Here LH is represented as a hyper-line contained within the hyper-plane LM. 

The points PH and PM are the feet of the perpendiculars from the observed 

response point P in RN on to the linear spaces LH and LM respectively. Clearly if 

the point PH lies ‘close’ to the point PM then the simpler model H will suffice. But 

how close is ‘close’? A reference distribution based on the length of the vector 

d= is required. 

Call d the departure vector from H in M. The vector identities 

d=s–r 

a= 

are immediately obvious from the relevant hyper-triangles in the figure, either of 

which may be used to compute d. It follows from the rearranged form 

s=r+d 

of the first of these identities, where r is perpendicular to d, that the square lengths 

of each vector satisfy the identity 

This is written as 

RH=RM+DMH 

the mere expression of Pythagoras’ Theorem for a right angled triangle in higher 

dimensions. Here RH= and RM are the residual sums of squares or 

deviances under the respective models and DMH the departure sum of squares. The 

orthogonalit of vectors r and d (r is perpendicular to d) implies that the statistics 

RM and DMH are statistically independent. Further, under an independent 

identically distributed (IID) normal homoscedastic error structure ( 

and IID for all u) it follows that the ratio 

has the F-distribution on (vH–vM, vM) degrees of freedom under hypothesis H. 

This forms the basis of the conventional F-test for the hypothesis H generally 

presented as an analysis of variance table displayed below: 
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Lattice Sources sum of Degrees of Mean 

H due to M Squares Freedom Square 
in H 

M 
residuals RM vM 

DATA 
Total RH vH 

Such an ANOVA table and its associated lattice of hypotheses 

RH RM 
RH–RM RM 

H A4 
vH–vM vM 

vW vM 

F-ratio 

O 

DATA 

O 

can be adapted to cater for more than one hypothesis. The GLIM computer 

package outputs the residual sum of squares (deviance) and number of degrees of 

freedom each time a particular model structure is fitted, so that the relevant 

lattice of hypotheses and equivalent ANOVA table(s) are readily constructed. 

TECHNICAL APPENDIX B 

Binomial models 

The saturated model S 

Attention is focused in this Appendix on the dichotomy with wu lapses 

(withdrawals) observed in the nu independent replications (exposures) for each 

unit u (policy characterization). What follows is largely a question of notation. 

Let , with = 1 for a lapse and = 2 for a non-lapse, denote the possible states 

of the dichotomous response variable R and now write nu ( = 1, 2) with 

nu+ = nu1+nu2 for the observed number of lapses and non-lapses (respectively) in 

the nu, replications. Constant response probabilities pu are assumed for each 

fixed u, subject only to the necessary constraints pu+=pu1+pu2 = 1 for all u. Then 

the following family of binomial distributions are defined: 

Denoting expected values by 

and the model parameters collectively by p= (pu ), it follows that the likelihood 

function, under S 
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with 

can be reparameterized in terms of expected values and written as 

(B1) 

retaining only those parts of the expression involving the new parameters 
m = (mu ). 

Concentratiing for the time being on the untransformed version of the 
likelihood function which can be rewritten, for instance as 

it follows from the following trivial result: 

Lemma: The function f ( ) defined as 

has a maximum at x = a/(a + b), 

that the maximum likelihood estimators of the p ’s under S are 

Using these estimators for the expected values, the fitted values under S are 

the data themselves. For this reason, the model S is said to be saturated. Further, 
the model has dimension ds = N, the number of units u, since there are N 
independent unknown parameters pu1 say (with pu2 = 1 –pu1 and consequently 
N–ds = 0 degrees of freedom. The model S is denoted by A*D*F*T in GLIM 
notation for the application in question. 

Hypothesis testing 
The detailed composition of a unit, u, is determined by the explanatory factors. 

Thus for the condensed data set with factors A, D, F and T discussed previously, 
u = (i, j, k, l). 

Next, consideration is given to the class of hypotheses (submodels), Ls, defined 
by ignoring one or more of the explanatory factors. To denote this, partition u 
and write u (r, s) in which r identifies the units associated with the retained 
factors and s identifies the levels associated with the factors omitted. Thus, for 
example, if attention is focused just on factors A and F and the response R is 
assumed to be independent of factors D and T, r = (i, k) and s = (j, l). One 
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possible abbreviation for such a submodel or hypothesis H, within S, would be 

to be interpreted as—the hypotheses His such that the response R is independent 

( ) of factors D and T but is dependent (or conditional) on factors A and F. An 

alternative parametric representation of H, in terms of probabilities pu , which 

have now to be expanded to prs , is 

Here p(r) denotes the probability that the response is , conditional (hence the 

brackets) on the factors of immediate interest and whose levels are characterized 

by units r, but independent of s. The expanded notation applied to the data, 

means we can write nu nrs and 

with expected values (under H) 

The likelihood under H, conditional on a given r, is 

where n denotes summation over s; while the full likelihood becomes 

for instance. Applying the lemma from before, it follows that the maximum 

likelihood estimators under Hare 

so that the expected or fitted values under H are 

Clearly the submodel H is not saturated and has dimension dH equal to the 

number of (sub) units r with vH=N–dH degrees of freedom. 

The likelihood ratio test statistic for H within S, 

for which = 2 log asymptotically has the chi-square distribution with vN 
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degrees of freedom under H so the hypothesis test is readily constructed. 

Introducing the expanded suffix notation u = (r, s) into equation (B1), gives the 

following: 

The values derived for m* and are substituted into this expression in turn 

and it follows that 

from which the test statistic can be simply obtained 

Its value, the model deviance, together with the degrees of freedom vH are 

outputted by the GLIM package on fitting the model A*F for the case study. 

(The binomial error structure must be declared and the logit link selected either 

consciously or by default.) 

It should be noted that we have only expressed an interest in the class of 

hypotheses Ls, determined by the deletion of one or more of the explanatory 

factors of a saturated model S, thus enabling us to test for the possible 

independence of the response R of certain of the factors. It is as well to remember, 

in so doing, that the SHY² statistic is as much a reflection of the saturated model S, 

either preselected by design or imposed externally, as it is a reflection of the status 

of the submodel H of interest. To neutralize any possible arbitrary effect that the 

choice of S may be thought to have on an analysis of submodels, it is possible to 

compare two submodels H1, H2 E Ls, (same S) with v1 > v2 say, using the 

difference Asymptotically, this has the chi-square distribution with 

v1 – v2 degrees of freedom under H1. 

More specifically, it is possible to compare submodels H with the so-called 

minimal model H0, which, in the present context, conjectures that the response R 

is independent of all explanatory factors. Under H0, s = u and all reference to r is 

deleted in the formula above for , giving 

with vH0 – vH or dH – 1 degrees of freedom. The resulting test statistic is clearly 

invariant of the number of components in s, and hence the saturated model (S), 

since all the data frequency counts in the formula involve summation over s. 




