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Abstract 
Motivation. Chain ladder forecasts are notoriously volatile for immature exposure periods.  The 
Bornhuetter-Ferguson method is one commonly-used alternative but needs a-priori estimates of 
ultimate losses.  Berquist & Sherman presented another alternative that used claim counts as an 
exposure base and used trended incremental severities to “square the triangle.”  A significant advantage 
of the Berquist & Sherman method is the simultaneous estimate of underlying inflation.  Though not 
the first to do so, this paper looks to extend the incremental severity method to a stochastic 
environment.  Rather than using logarithmic transforms or (generalized) linear models, used in many 
other approaches, we use maximum likelihood estimators, bringing to bear the strength of that 
approach avoiding limiting assumptions necessitated when taking logarithms.  
Method. Given that incremental severities can be looked at as averages over a number of claims, the 
law of large numbers would suggest those averages follow an approximately normal distribution.  We 
then assume the variance of the incremental payments in a cell are proportional to a power of the mean 
(with the constant of proportionality and power constant over the triangle).  We then use maximum 
likelihood estimators (MLEs) to estimate the incremental severities, along with the inherent claims 
inflation to “square the triangle.”  We also use properties of MLEs to estimate the variance-covariance 
matrix of the parameters, giving not only estimates of process but also of parameter uncertainty for this 
method.  Not only do we consider the model described by Berquist & Sherman, but we also set the 
presentation in a more general framework that can be applied to a wide range of potential underlying 
models. 
Results. A reasonably common, and powerful method now presented in a stochastic framework 
allowing for assessment of variability in the forecasts of the method. 
Availability. The R script for these estimates appear on the CAS web site. 
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1. INTRODUCTION 

The chain ladder method has long been recognized as leading to potentially volatile 

forecasts for immature exposure periods.  As a result, other methods that depended on 

information in addition to the amounts to date were soon used to augment the chain ladder 

method for less mature ages.  These methods include the Bornhuetter-Ferguson method [1], 

incremental severity methods shown in Berquist & Sherman [2], and the operational time 

models from Wright [3] among others.  In effect, these approaches replace the multiplicative 

model inherent in the chain ladder with additive increments.  The Bornhuetter-Ferguson 

method looks to historical development and an a-priori estimate of ultimate losses to derive 

these additive increments, while the incremental severity method considers incremental 
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average costs per ultimate claim (or other unit of exposure) and a measure of inflationary 

trend to derive these increments.  In the discussion by Berquist & Sherman, the trend itself 

is estimated from the data. 

Thus by adding a single parameter, trend, to be estimated from the data, Berquist & 

Sherman avoided assumptions about the relative adequacy of pricing or the need of deriving 

a-priori ultimate loss estimates by exposure year.  Of course, they do require a measure of 

relative exposure, usually claim counts. 

There has been much published about stochastic generalizations of the chain ladder 

method.  Verall & England [4] presents a very nice summary.  We will not touch on those 

here, but rather attempt to re-cast the incremental severity method in a stochastic light. 

In the present paper we first consider the incremental severity method in a stochastic 

framework.  We note that the incremental severities are themselves averages over a number 

of observations and, as a result of the law of large numbers, would likely have a distribution 

that is asymptotically normal.  This is a very significant observation and was made by Stelljes 

[5] and provides a bit of support to at least one answer to the question of what statistical 

model to use.  Stelljes assumes that the development pattern follows a mixed exponential 

over time and does not measure the trend inherent in the data.   

We however, start with the classic incremental severity model (allowing for different 

averages at each age) but measure the inflation inherent in the loss experience.  Not only 

does this allow for a broader range of runoff curves, it also allows for systematic negative 

incremental amounts, making it possible to model not only paid amounts (net of 

recoverable) but also incurred amounts.  In addition, rather than making somewhat 

restrictive assumptions about the underlying variance structure as present in Stelljes that 

allows the use of non-linear regression, we will take a somewhat more general approach of 

maximum likelihood estimators allowing more flexible assumptions regarding the underlying 

variance structure. 

 In this paper we not only derive parameter estimates for our model, including inherent 

trend, but also estimates of the standard deviation of those parameter estimates, often called 

the standard error of the parameters.  The standard error can be used to measure the 

significance of the parameter as well as the parameter uncertainty inherent in the forecasts of 

this model.  We also derive estimates of the distribution of outcomes for this model, not to 
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be confused with the distribution of potential outcomes for the liabilities under review. 

1.1 Research Context 

In the context of reserves for a book of liabilities at a point in time, there is a wide range 

of possible outcomes, some of which may be more likely than others.  We call this entire 

range of outcomes along with their likelihoods the “distribution of outcomes” for the 

liabilities under consideration.  This observation seems to have pervaded the analysis of 

reserves for decades.  Traditional reserving approaches, although relying on deterministic 

methods, usually had the actuary applying a variety of those methods with the unstated goal 

of providing at least a subjective view of the distribution of outcomes, or at least the portion 

of that distribution that contained “reasonable estimates.” 

More recently, though, questions of just how “good” the “reasonable estimates” were led 

to consideration of stochastic methods to rigorously quantify that uncertainty.  Statements 

such as “My selection for unpaid liabilities is $a million.  In my view it is just as likely that the 

ultimate unpaid liabilities will be between $x million and $y million as outside that range and 

in addition, it is very unlikely that the ultimate unpaid liabilities will be below $w million or 

above $z million” provide much more useful information to a principal than “My best 

estimate is $a million and I believe a range of reasonable estimates is between $b million and 

$c million.”  Because of this there has been increased focus on models that will assist the 

actuary in estimating the distribution of outcomes. 

Just as no traditional reserve method completely captures all the complexities possible for 

all lines of business, it is not likely that any current stochastic model can capture all those 

complexities.  Because of this, results presented here should not be interpreted as estimates 

of the distribution of outcomes, but rather the distribution of possibilities under the specific 

assumptions of the single model we present. 

1.2 Objective 

The incremental average cost method has long been a very powerful alternative to the 

chain ladder method that can be quite volatile for more immature exposure periods.  The 

Cape Cod and Bornhuetter-Ferguson methods are often used as alternatives that try to 

overcome this problem.  There has been research setting all of these methods in stochastic 

frameworks.  Our objective is to take another powerful alternative to the chain ladder 
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method, the incremental average loss method presented by Berquist and Sherman [2], and 

set it into a stochastic framework. 

One substantial contribution of the Berquist and Sherman approach is the estimation of 

trend in the averages from the averages themselves.  This is in contrast to the necessary 

external trend usually necessary in stochastic versions of both the Bornhuetter-Ferguson and 

Cape Cod methods. 

Another weakness of many stochastic generalizations of traditional methods is the 

necessity of assumptions about the form of the distributions used.  Because of the central 

limit theorem, averages of independent samples from a distribution are asymptotically 

normal, thus suggesting a form for the distributions in the stochastic model. 

Another inherent limitation of most stochastic generalizations is the necessity of 

assuming all incremental amounts are positive.  This limits the generalization of those 

methods in the case of incurred losses, or in the case of consistent downward paid 

development.  The use of the normal distribution allows more flexibility in handling 

consistent negative incremental averages. 

The goal of this paper is to set the traditional incremental average method in a stochastic 

framework taking advantage of the ease of computation afforded by the normal distribution 

and ability to handle negative values.  In addition to moving the average cost method into a 

stochastic framework, this paper also shows the relative ease of moving to a completely non-

linear environment, thereby avoiding the constraints inherent in linear or generalized linear 

methods, echoing the comments of Venter in several venues, including [7]. 

1.3 Outline 

In Section 2 we set out our stochastic generalization of the incremental average method 

presented in Berquist & Sherman [2].  Section 3 discusses the results of applying these 

methods to the adjusted paid automobile bodily injury liability data in that paper.  We 

present our conclusions in Section 4 with Appendix A showing the derivatives used in the 

estimation along with the R script that we used in the calculations. 

2. BACKGROUND AND METHODS 

Klugman, Panjer, & Willmot [6] present a very clear and concise discussion of maximum 
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likelihood estimates (MLEs).  We will make use of that approach in this paper. 

For this paper Cij denotes payments made or the change in incurred losses (defined as 

payments plus case reserve estimates) for exposure (policy, accident, underwriting, etc.) 

period (year, quarter, month, etc.) i during development period j.  For convenience here we 

will assume the same frequency for both i and j, and hence the resulting development 

triangle will have the same number of rows as columns, denoted as n here.  Without loss of 

generality, we will talk in terms of accident and development years. 

For each accident year we have some measure of loss exposure, either an exposure count 

or an estimate of ultimate claim counts.  Exposure count, such as earned car years for 

automobile coverages, generally does not require estimation.  The same cannot be said for 

claim counts which must be estimated and hence should be treated as random variables.  We 

will not make that generalization here but rather leave it as a future project.   

We do note that, just as there are a number of models that can be used to estimate 

ultimate loss amounts, there are a number of approaches that can be used to estimate the 

ultimate number of claims.  If the number of reported counts is deemed to be a reliable, and 

stable base, that is, if there has been no change in the definition or nature of reported claims 

during the experience period under consideration, they often provide a measure of exposure 

that matures more quickly than losses and hence those estimates will likely have less inherent 

uncertainty, i.e. lower standard error, than losses.  It might well be that consideration of both 

chain ladder estimates and those of an incremental average frequency method, such as 

presented here applied to claim counts, using earned exposures as an exposure base, could 

provide reasonable estimate of ultimate reported counts for use here. 

In any event, we will denote this measure of relative exposure as Ei for accident year i.  

We will thus focus on the incremental averages Aij defined by equation (2.1).  

  .
ij

ij

i

C
A

E
 (2.1) 

The traditional incremental severity method then “squares the triangle” with trended 

averages as in equation (2.2). 

       , 2, 3, , ; 2, , .i

ij jA i n j n i n  (2.2) 

We will effectively take this same approach to frame a stochastic model based on this 
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method.  It is not unusual, see for example Venter [6], to assume that the variance of the 

incremental amounts is a power of their expected value.  We will take this same approach.  

However, since we will allow the expected values to be negative we will, without loss of 

generality, we take the variance to be a power of the square of the mean.  Also we are taking 

the constant of proportionality among the variances as an exponential, thereby allowing the 

parameter to take on any value.  However we note that the variance of the average of n items 

is inversely proportional to the number of items so we further adjust our assumed variances 

to reflect the potential for a different number of exposures or claims in the various accident 

years.  For this we let e denote the number of exposures or claims for the year.  Following 

the notation in [6] we will assume the relationships in (2.3), suppressing subscripts for the 

moment. 

 
 

  







 2
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Var .e p
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A e
 (2.3) 

Now, since the Aij are averages, the law of large numbers implies that they are 

asymptotically normal with parameters given in (2.4), again suppressing subscripts for the 

moment. 

    2N , .e pA e  (2.4) 

Since we are concerned with maximum likelihood estimates, the negative log likelihood 

for this distribution will be key to our analysis.  Since we have a normal distribution the 

likelihood function is relatively simple and given by (2.5). 
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This gives a negative log likelihood for a single variable given in (2.6). 
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We note the incremental amounts Aij under consideration are averages of a number of 

observations.  If we assume the observations are themselves independent, then the central 

limit theorem would imply that they have asymptotically normal distributions.   For this 

reason we will assume that the Aij variables are all independent and have normal 

distributions.  We generalize the incremental severity model with the parametric model 

shown in (2.7). 

      
2

N , .i
p

ei i

ij j jA e  (2.7) 

With observations in a typical loss triangle we get the negative log likelihood function 

given in (2.8). 
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i j S
j

e A
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(2.8) 

The set S in (2.8) denotes the set of all index pairs for which data are available.  If the 

data were available in a full triangle, with n rows and n columns then S would follow the 

form given in (2.9).   

   , 1,2, , , 1,2, , 1 .S i j i n j n i       (2.9) 

However we will not restrict ourselves to this regular case.  We also note in formula (2.8) 

the ei values are known constants (the natural logs of the number of exposures for accident 

year i, not parameters to be estimated. 

 

Once parameters that minimize the negative log likelihood function are determined, then 

it is straight-forward to obtain estimates of the distribution of outcomes under the 

assumption that this model and the resulting parameters completely describe the loss 

emergence phenomenon.  Let us denote these estimates by ˆ
k , ̂ , ̂ , and p̂ .  Under our 

assumptions we can now conclude that the distribution of average future payments for each 

year is given by (2.10). 
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 This then gives the effect of process uncertainty on the total forecast incremental 
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severity by accident year.  This does not, however, address the issue of parameter 

uncertainty.  Just as the standard error provides insight into parameter uncertainty in usual 

regression applications, the information matrix can be helpful in estimating the variance-

covariance matrix of the parameters.  For this, we first define the Fisher Information Matrix 

as the matrix of expected values of the Hessian of the negative log likelihood function.  That 

is, the matrix whose element in ith row and jth column is the second derivative of the negative 

log likelihood function, once with respect to the ith variable and once with respect to the jth.  

We show these expectations, along with both the elements of the gradient and Hessian of 

the negative log likelihood function in the appendix to this paper.  The inverse of the 

information matrix is then an approximation for the variance-covariance matrix for the 

parameters. 

Since the mean and variance for individual incremental averages are functions of the 

parameters, we elected to estimate the distribution of future amounts both by exposure 

period and in total using simulation.  For this we first selected the parameters from a 

multivariate normal distribution with expected values equal to the MLE estimates and 

variance-covariance matrix equal to the inverse of the information matrix.  Given those 

parameters, we then randomly selected future incremental averages in each cell using the 

relationship in (2.7).  We added up the indications by exposure year and multiplied by the 

denominator (claim count or exposure count) to obtain a single observation for an exposure 

year and then added all those simulations together to get a single observation of the total 

future amount.   

At this juncture if we wished to assume that claim counts, instead of being deterministic, 

were themselves stochastic, but independent of the incremental severities, we could simulate 

the ultimate number of claims by exposure year at this juncture to add a provision for 

uncertainty in those estimates in the final forecast. 

3. RESULTS AND DISCUSSION 

As an example of this model, the top portion of Exhibit 1 shows the incremental 
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averages based on automobile bodily injury liability data from Berquist & Sherman [2].  The 

last column is the forecast ultimate claim counts from Exhibit J of that paper.  The 

incremental severities are based on adjusted paid losses in Exhibit N divided by these claim 

count estimates. 

The bottom portion of Exhibit 1 shows the parameter estimates derived by minimizing 

the negative log likelihood function shown in (2.8).  Shown in the “standard error” row is 

the square root of the diagonal of the approximate parameter variance-covariance matrix. 

Exhibit 2 shows scatter plots of the standardized residuals from the fitted model, 

calculated as the ratio of the difference between the historical average minus the expected 

average from the model, divided by the estimated standard deviation by cell.  The first three 

charts show the residuals first by calendar year, then by accident year, and finally by 

development lag.  The last histogram shows the simulated range of forecasts from 25,000 

simulations.  The line on that histogram presents the distribution assuming independence 

and the mean and variance by cell implied by the parameter estimates. 

Exhibit 3 shows the expected averages and related variances by cell indicated by the 

estimated parameters and the model shown in (2.7).  Exhibit 4 shows the indicated mean 

forecast and standard deviation by accident year and for all years combined.  Exhibit 4 also 

shows the forecasts for the next calendar year, both with and without parameter uncertainty.  

These estimates can be used to assess how well emerging experience fits with what is 

forecast by the model, a critical test for the on-going application of just about any model. 

Since the model in (2.7) assumes the incremental averages are independent, the future 

average forecast is simply the sum of the future indications by accident year, as is the 

variance for the future forecast, assuming process uncertainty only.  The resulting means and 

standard deviations, after multiplication by the number of claims are shown under the 

“Process Only” columns. 

The remaining columns summarize the results of the simulation.  We first randomly 

simulated a selection of parameters given the parameter estimates and the approximate 

variance-covariance matrix, using a multivariate normal distribution.  Given those 

parameters, we then randomly simulated individual incremental averages by cell using a 

normal distribution with the mean and standard deviation shown in (2.7).  We then totaled 

the results for one simulation to derive both the simulated future average estimates by 
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accident year and then, after multiplying by claim counts, the total indicated future amounts.  

The averages and standard deviations in the right portion of that exhibit represent the mean 

and standard deviation of the simulated amounts as are the 5%-tile and 95%-tile (the 90% 

probability interval) for the simulations.   These last columns thus present an estimate of the 

distribution of possible forecasts from this model, given the loss data in the top of Exhibit 1. 

As can be seen, parameter uncertainty clearly contributes substantially to the uncertainty 

in the forecasts for this model.  The standard deviation including parameter uncertainty is 

nearly three times that for process uncertainty only.  In addition, as one would expect there 

are correlations in the forecasts among accident years, particularly since the forecast for an 

accident year depends not only on the losses for that year but also on the losses and 

forecasts for previous years.  If the accident years were independent, then the standard 

deviation for the total would equal the square root of the sum of the squares of the standard 

deviations for the various years.  That calculation yields approximately 1.1 million, compared 

with the final 1.5 million shown in Exhibit 4.   

Although we do not show the results of the calculations, the model and estimation 

process reacts as one should expect with negative values.  A simple test would simply replace 

the incrementals in a column with their negatives.  When doing this all values of the 

parameters and variance-covariance matrix remain unchanged, except with a sign change in 

the parameter estimates and covariances related to the affected column. 

The R script used to derive these estimates are also shown in Appendix A.  Generally the 

approach is quite straight forward.  Key to deriving the estimates is the function R nlminb.  

As with many optimization routines, this function requires a starting value.  In this case, we 

first selected a starting value for   as the trend in the averages for the first development 

period (unless that trend generates an error, in which case we selected 1.03).  We then 

estimated the initial j  values as the averages of the averages, discounted at the initial   

estimate, and selected the initial values for   and p as the natural logarithm of the largest 

exposure number and 1.5, respectively (somewhat arbitrarily). 

This R function also allows for different iteration increments for the various variables to 

be optimized.  Users should consult the documentation that accompanies R for this 

function.  We selected relative scaling among variables inversely proportional to the initial 

averages for the j  variables and 5 for the remaining three. 
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4. CONCLUSIONS 

Although we focused on a very simple model of incremental averages, nothing in what 

we have done relies on the specific structure of the underlying model.  This is in contrast to 

many stochastic approaches that require non-negative incrementals, and the necessity of 

making additional assumptions about the distributions of the incremental amounts.  The 

framework we chose, along with the central limit theorem, suggests the normal distribution 

for the incremental averages.   

As shown in (2.8), this distribution leads to a rather convenient form for the negative log 

likelihood function.  Together with the ability to differentiate the assumed model for the 

average and resulting standard deviation makes this approach easily expandable to other 

models for the incremental averages.  Coupled with powerful, reasonably easy-to-use, and 

affordable statistical software such as the language R, actuaries now have quite flexible tools 

to use to expand the models used in estimating future losses, even beyond the simple model 

presented here. 

 

Supplementary Material 

The R script used for these calculations is stored electronically on the CAS Web Site. 

 
Appendix A 

In order to derive estimates of parameter uncertainty we need the matrix of second 
derivatives of the negative log likelihood function.  In this appendix we list those derivatives. 

 
Recall from (2.8) the negative log likelihood function is given by 
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Suppressing arguments and parameters we thus have the following first partial derivatives: 
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These then give the following second derivatives: 
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The calculations in this paper made use of the following R script: 
 
library(mvtnorm) 

library(MASS) 

 

A0=matrix(c(178.73,361.03,283.69,264.00,137.94,61.49,15.47,8.82, 

  196.56,393.24,314.62,266.89,132.46,49.57,33.66,NA, 

  194.77,425.13,342.91,269.45,131.66,66.73,NA,NA, 

  226.11,509.39,403.20,289.89,158.93,NA,NA,NA, 

  263.09,559.85,422.42,347.76,NA,NA,NA,NA, 

  286.81,633.67,586.68,NA,NA,NA,NA,NA, 

  329.96,804.75,NA,NA,NA,NA,NA,NA, 

  368.84,NA,NA,NA,NA,NA,NA,NA),8,8,byrow=TRUE) 

dnom=c(7822,8674,9950,9690,9590,7810,8092,7594) 

 

# Input (A0) is a development array of incremental averages with a the  

# exposures (claims) used in the denominator appended as the last column.   

# Assumption is for the same development increments as exposure  

# increments and that all development lags with no development have #  

# been removed.  Data elements that are not available are indicated as  

# such.  This should work (but not tested for) just about any subset of  

# an upper triangular data matrix.  Another requirement of this code is  

# that the matrix contain no columns that are all zero. 

 

# Matrix shape, m rows, n columns 

m=(nrow(A0))[1] 

n=(ncol(A0))[1] 

 

# Generate a matrix to reflect exposure count in the variance structure 

logd=log(matrix(dnom,m,n)) 

 

# Set up matrix of rows and columns, makes later calculations simpler 

r=row(A0) 

c=col(A0) 
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# msk is a mask matrix of allowable data, upper triangular assuming same 

# development increments as exposure increments, msn picks off the first 

# forecast diagonal 

msk=(m-r)>=c-1 

msn=(m-r)==c-2 

 

# Negative loglikelihood function, to be minimized 

l.obj=function(a,A) { 

    e=outer(a[n+2]^(1:m),a[1:n]) 

    v=exp(a[n+1]-logd)*(e^2)^a[n+3] 

    t1=log(2*pi*v)/2 

    t2=(A-e)^2/(2*v) 

  sum(t1+t2,na.rm=TRUE)} 

 

# Gradient of the objective function 

l.grad=function(a,A) { 

    e=outer(a[n+2]^(1:m),a[1:n]) 

    v=exp(a[n+1]-logd)*(e^2)^a[n+3] 

    da=colSums(a[n+3]-(e*(A-e)+a[n+3]*(A-e)^2)/ 

      v,na.rm=TRUE)/a[1:n] 

    yy=1-(A-e)^2/v 

    dk=sum(yy/2,na.rm=TRUE) 

    dp=sum(yy*log(e^2)/2,na.rm=TRUE) 

    du=sum((a[n+3]*r/a[n+2])- 

      (r*e*(A-e)+a[n+3]*r*(A-e)^2)/(a[n+2]*v),na.rm=TRUE) 

  c(da,dk,du,dp)} 

   

 # Hessian of the objective function 

l.hess=function(a,A) { 

    e=outer(a[n+2]^(1:m),a[1:n]) 

    v=exp(a[n+1]-logd)*(e^2)^a[n+3] 

    daa=diag( 

          colSums((e^2+4*a[n+3]*e*(A-e)+ 

            a[n+3]*(2*a[n+3]+1)*(A-e)^2)/v-a[n+3], 

          na.rm=TRUE)/a[1:n]^2) 

    dak=colSums((e*(A-e)+a[n+3]*(A-e)^2)/v,na.rm=TRUE)/a[1:n] 

    dat=colSums((r*e^2+(4*a[n+3]-1)*r*e*(A-e)+ 

          2*a[n+3]^2*r*(A-e)^2)/v, 

          na.rm=TRUE)/(a[1:n]*a[n+2]) 

    dap=colSums(msk+(log(e^2)*e*(A-e)+ 

          (a[n+3]*log(e^2)-1)*(A-e)^2)/v,na.rm=TRUE)/a[1:n] 

    dkk=sum((A-e)^2/v,na.rm=TRUE) 

    dkt=sum((r*e*(A-e)+a[n+3]*r*(A-e)^2)/(a[n+2]*v),na.rm=TRUE) 

    dkp=sum(log(e^2)*(A-e)^2/(2*v),na.rm=TRUE) 

    dtt=sum((r^2*e^2+(4*r*a[n+3]-r+1)*r*e*(A-e)+ 

            (2*r*a[n+3]+1)*a[n+3]*r*(A-e)^2)/v-a[n+3]*r, 

            na.rm=TRUE)/a[n+2]^2 

    dtp=sum(r+(r*e*log(e^2)*(A-e)+ 

            (a[n+3]*r*log(e^2)-1)*(A-e)^2)/v,na.rm=TRUE)/a[n+2] 

    dpp=sum(log(e^2)^2*(A-e)^2/(2*v),na.rm=TRUE) 

    dm1=matrix(c(dak,dat,dap),n,3) 

    dm2=matrix(c(dkk,dkt,dkp,dkt,dtt,dtp,dkp,dtp,dpp),3,3) 

  rbind(cbind(daa,dm1),cbind(t(dm1),dm2))} 

 

# Set up starting values, take trend from first column, unless it errors  
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# out (because of 0 or negatives) in which case take 3% as a default 

tmp=na.omit(data.frame(x=1:m,y=log(A0[,1]))) 

trd=1.03 

trd=exp(coef(lm(tmp$y~tmp$x))[2]) 

a0=c(colSums(A0/(trd^c),na.rm=TRUE)/colSums(msk+0*A0,na.rm=TRUE),log(max(

dnom)),trd,1.5) 

 

max=list(10000,10000) 

names(max)=c("iter.max","eval.max") 

 

# Actual minimization 

mle= nlminb(a0,l.obj,gradient=l.grad,hessian=l.hess, 

  scale=c(abs(1/a0[1:n]),rep(5,3)),A=A0,control=max) 

 

# mean and var are model fitted values, stres standardized residuals 

mean=outer(mle$par[n+2]^(1:m),mle$par[1:n]) 

var=exp(mle$par[n+1]-logd)*(mean^2)^mle$par[n+3] 

stres=(A0-mean)/sqrt(var) 

 

# Calculate the information matrix using second derivatives of the 

# log likelihood function 

 

# Second with respect to alpha parameters 

aa=diag( 

  (2*mle$par[n+3]^2* 

    colSums(msk+0*A0,na.rm=TRUE)/ 

      mle$par[1:n]^2)+ 

    colSums((msk+0*A0)/ 

      outer(exp(mle$par[n+1]-

log(dnom))*mle$par[n+2]^(2*(1:m)*(mle$par[n+3]-1)), 

        (mle$par[1:n]^2)^mle$par[n+3]) 

      ,na.rm=TRUE) 

    )                                                      

 

# Second with respect to alpha and kappa 

ak=(mle$par[n+3]/mle$par[1:n])* 

  colSums(msk+0*A0,na.rm=TRUE) 

 

# Second with respect to alpha and tau 

at=(2*mle$par[n+3]^2/(mle$par[n+2]*mle$par[1:n]))* 

  colSums((msk+0*A0)*r,na.rm=TRUE)+ 

    colSums((msk+0*A0)*outer((1:m)/(exp(mle$par[n+1]-log(dnom))* 

      mle$par[n+2]^(2*(1:m)*(mle$par[n+3]-1))), 

        1/(mle$par[1:n]^2)^(mle$par[n+3]-1)), 

    na.rm=TRUE)/(mle$par[n+2]*mle$par[1:n])   

 

# Second with respect to alpha and p 

ap=(mle$par[n+3]*log(mle$par[1:n]^2)/mle$par[1:n])* 

    colSums((msk+0*A0),na.rm=TRUE)+ 

  (mle$par[n+3]*log(mle$par[n+2]^2)/mle$par[1:n])* 

    colSums((msk+0*A0)*r,na.rm=TRUE) 

 

# Second with respect to kappa 

kk=sum((msk+0*A0),na.rm=TRUE)      

 

# Second with respect to kappa and tau 
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kt=mle$par[n+3]*sum((msk+0*A0)*r,na.rm=TRUE)/mle$par[n+2] 

 

# Second with respect to kappa and p 

kp=sum((msk+0*A0)*log(outer(mle$par[n+2]^(2*(1:m)), 

  mle$par[1:n]^2)),na.rm=TRUE)/2 

 

# Second with respect to tau 

tt=2*mle$par[n+3]^2*sum((msk+0*A0)*r^2,na.rm=TRUE)/mle$par[n+2]^2+ 

  sum((msk+0*A0)* 

    outer((1:m)^2/(exp(mle$par[n+1]-log(dnom))*mle$par[n+2]^ 

        (2+2*((1:m)*(mle$par[n+3]-1)))), 

      1/(mle$par[1:n]^2)^(mle$par[n+3]-1)), 

    na.rm=TRUE) 

     

# Second with respect to tau and p 

tp=sum((msk+0*A0)*(r-1),na.rm=TRUE)/mle$par[n+2]+mle$par[n+3]*( 

  sum((msk+0*A0)*outer(1:m, 

    log(mle$par[1:n]^2)), 

    na.rm=TRUE)+ 

  sum((msk+0*A0)*r*log(mle$par[n+2]^(2*r)),na.rm=TRUE))/ 

  mle$par[n+2] 

 

# Second with respect to p 

pp=sum((msk+0*A0)*log(outer(mle$par[n+2]^(2*(1:m)), 

  mle$par[1:n]^2))^2,na.rm=TRUE)/2 

 

# Create information matrix in blocks 

m1=matrix(c(ak,at,ap),n,3) 

m2=matrix(c(kk,kt,kp,kt,tt,tp,kp,tp,pp),3,3) 

inf=rbind(cbind(aa,m1),cbind(t(m1),m2)) 

 

# Variance-covariance matrix for parameters, inverse of information     

# matrix 

vcov=solve(inf) 

 

# Initialize simulation array to keep simulation results 

sim=matrix(0,0,m+1) 

smn=matrix(0,0,m+1) 

 

# Simulation for distribution of future amounts 

# Want 10,000 simulations, but exceeds R capacity, so do 

# in batches of 5,000 

nsim=5000 

smsk=aperm(array(c(msk),c(m,n,nsim)),c(3,1,2)) 

smsn=aperm(array(c(msn),c(m,n,nsim)),c(3,1,2)) 

 

for (i in 1:5) { 

 

# Randomly generate parameters from multivariate normal 

spar=rmvnorm(nsim,mle$par,vcov) 

 

# Arrays to calculate simulated means 

ttoi=array(c(outer(spar[,n+2],1:m,"^")),c(nsim,m,n)) 

alph=aperm(array(c(spar[,1:n]),c(nsim,n,m)),c(1,3,2)) 

esim=alph*ttoi 
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# Arrays to calculate simulated variances 

ksim=array(exp(outer(spar[,n+1],log(dnom),"-")),c(nsim,m,n)) 

psim=array(spar[,n+3],c(nsim,m,n)) 

vsim=ksim*(esim^2)^psim 

 

# Randomly simulate future averages 

temp=array(rnorm(nsim*m*n,c(esim),sqrt(c(vsim))),c(nsim,m,n)) 

 

# Combine to total by exposure period and in aggregate 

# notice separate array with name ending in "n" to capture 

# forecast for next accounting period 

sdnm=t(matrix(dnom,m,nsim)) 

fore=sdnm*rowSums(temp*!smsk,dims=2) 

forn=sdnm*rowSums(temp*smsn,dims=2) 

 

# Cumulate and return for another 5,000 

sim=rbind(sim,cbind(fore,rowSums(fore))) 

smn=rbind(smn,cbind(forn,rowSums(forn))) 

} 

 

summary(sim) 

summary(smn) 

 

# Scatter plots of residuals & Distribution of Forecasts 

windows() 

par(mfrow=c(2,2)) 

plot(na.omit(cbind(c(r+c-1),c(stres))), 

  main="Standardized Residuals by CY",xlab="CY", 

  ylab="Standardized Residual",pch=18) 

plot(na.omit(cbind(c(r),c(stres))), 

  main="Standardized Residuals by AY",xlab="AY", 

  ylab="Standardized Residual",pch=18) 

plot(na.omit(cbind(c(c),c(stres))), 

  main="Standardized Residuals by Lag",xlab="Lag", 

  ylab="Standardized Residual",pch=18) 

proc=list(x=(density(sim[,m+1]))$x, 

    y=dnorm((density(sim[,m+1]))$x, 

      sum(matrix(c(dnom),m,n)*mean*!msk), 

      sqrt(sum(matrix(c(dnom),m,n)^2*var*!msk)))) 

truehist(sim[,m+1],ymax=max(proc$y), 

  main="All Years Combined Future Amounts",xlab="Aggregate") 

lines(proc) 

 

# Summary of mean, standard deviation, and 90% confidence interval from  

# simulation, similar for one-period forecast 

sumr=matrix(0,0,4) 

sumn=matrix(0,0,4) 

 

for (i in 1:(m+1)) { 

sumr=rbind(sumr,c(mean(sim[,i]),sd(sim[,i]),quantile(sim[,i],c(.05,.95))))  

sumn=rbind(sumn,c(mean(smn[,i]),sd(smn[,i]),quantile(smn[,i],c(.05,.95)))) 

  } 
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Exhibit 1

Incremental Adjusted Average Paid Losses Per Ultimate Claim
Berquist & Sherman Automobile Liability Data

Accident Months of Development Forecast
Year 12 24 36 48 60 72 84 96 Counts
1969 178.73 361.03 283.69 264.00 137.94 61.49 15.47 8.82 7,822
1970 196.56 393.24 314.62 266.89 132.46 49.57 33.66 8,674
1971 194.77 425.13 342.91 269.45 131.66 66.73 9,950
1972 226.11 509.39 403.20 289.89 158.93 9,690
1973973 263.0963.09 559.85559.85 44 .22.42 347.764 347.76 9,5909,590
1974 286.81 633.67 586.68 7,810
1975 329.96 804.75 8,092
1976 368.84 7,594

Estimates

α1 α2 α3 α4 α5 α6 α7 α8
Parameter 143.78 316.77 251.78 197.68 102.53 46.23 21.36 7.36
Std. Error 6.20 11.54 9.16 7.62 5.25 3.75 3.07 2.41

κ τ p
Parameter 8.5871 1.1265 0.5782
Std. Error 0.2321 0.0077 0.0303
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Exhibit 3

Incremental Adjusted Average Paid Losses Per Ultimate Claim
Berquist & Sherman Automobile Liability Data

Forecast Expected

Accident Months of Development
Year 24 36 48 60 72 84 96 Total
1969
1970 9.34 9.34
1971 30.54 10.52 41.06
1972 74.43 34.40 11.85 120.68
1973 185.96 83.84 38.75 13.34 321.90
1974 403.89 209.48 94.45 43.65 15.03 766.50
1975 579.48 454.96 235.97 106.39 49.17 16.93 1,442.91
1976 821.26 652.77 512.50 265.81 119.84 55.39 19.07 2,446.64

Forecast Variance

Accident Months of Development
Year 24 36 48 60 72 84 96 Total
1969
1970 8.19 8.19
1971 28.10 8.19 36.29
1972 80.84 33.11 9.65 123.60
1973 235.51 93.74 38.40 11.19 378.84
1974 709.12 331.88 132.10 54.11 15.77 1,242.97
1975 1,039.02 785.45 367.61 146.32 59.93 17.47 2,415.80
1976 1,657.07 1,270.62 960.54 449.55 178.93 73.29 21.36 4,611.37
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Exhibit 4

Incremental Adjusted Average Paid Losses Per Ultimate Claim
Berquist & Sherman Automobile Liability Data

Estimates of Accident Year Future Loss Forecasts

Process Only Including Parameter Uncertainty
Accident Standard Standard Percentile

Year Mean Deviation Mean Deviation 5% 95%
1969 0 0 0 0 0 0
1970 80,981 26,503 80,551 36,442 24,148 144,035
1971 408,500 63,754 407,019 82,070 274,928 545,616
1972 1,169,365 106,448 1,169,765 137,850 945,662 1,399,015
1973 3,087,023 172,060 3,086,394 233,709 2,702,457 3,476,160
19741974 5 986,986,335 216 225335 216,225 5,984 922984,922 344 212344,212 5 425 005 6 551 203,425,005 ,551,203
1975 11,676,044 307,380 11,671,230 549,685 10,783,705 12,583,860
1976 18,579,788 375,626 18,581,701 808,465 17,258,898 19,916,569
Total 40,988,036 572,742 40,981,581 1,513,557 38,528,696 43,485,373

Forecasts for Next Calendar Year

Process Only Including Parameter Uncertainty
Accident Standard Standard Percentile

Year Mean Deviation Mean Deviation 5% 95%
1969 0 0 0 0 0 0
1970 80,981 24,817 80,551 36,442 24,148 144,035
1971 303,859 52,742 302,553 68,934 192,431 418,164
1972 721,230 87,122 721,793 105,826 551,032 898,662
1973 1,783,372 147,171 1,783,236 172,967 1,502,286 2,075,631
1974 3,154,365 207,974 3,154,597 240,834 2,764,684 3,559,245
1975 4,689,180 260,836 4,686,348 309,909 4,179,644 5,204,351
1976 6,236,615 309,130 6,236,267 372,667 5,629,261 6,854,599
Total 16,969,602 489,384 16,965,345 652,968 15,893,889 18,045,385
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