# The Actuarial Profession

making financial sense of the future

# The 3<sup>rd</sup> Younger Members Convention

29-30 November 2004, The Chesford Grange Hotel, Kenilworth

# **B2**

# Critical Illness ...... Pricing the Unknown

- Working Party / Research Group Update
- Scott Reid Revios Reinsurance UK Ltd.

#### **Critical Illness Trends Research Group**

Our Aims :

- To examine underlying trends in the factors influencing UK Insured Critical Illness claim rates, and from these, to assess :
  - The historic trend in incidence and death rates for the major CI's
  - Any pointers for future trends in Standalone CI, Mortality and hence Accelerated CI.
- Formed in March 2001



#### Trends in Critical Illness Risk Costs An update from the Critical Illness Trends Research Group

- Historic trends in incidence for the major CIs
   Variations over time, by sex, by smoker status, by socioeconomic group
  - Focussing on the age group 40 60
- Exploring scenarios for future trends
   Learning from the past and looking to the future
- Mapping a range of possible future outcomes for CI risk costs

#### Trends in Critical Illness Risk Costs An update from the Critical Illness Trends Research Group

- Historic trends in incidence for the major CIs
   Variations over time, by age, sex, by smoker status, by socio-economic group
- Exploring scenarios for future trends
   Learning from the past and looking to the future
- Mapping a range of possible future outcomes for CI risk costs





















|                    | 0 00        |              |         |        |            |         |
|--------------------|-------------|--------------|---------|--------|------------|---------|
|                    | Inci        | dence R      | ates    | Мо     | rtality Ra | ites    |
|                    | 1980's      | 1990's       | Overall | 1980's | 1990's     | Overall |
| Heart Attack       | -3.3%       | -2.3%        | -2.8%   | -6.1%  | -8.1%      | -7.1%   |
| Stroke             | 2.3%        | 3.0%         | 2.6%    | -4.3%  | -3.0%      | -3.7%   |
| CABG               | 13.3%       | 7.5%         | 10.4%   | 0%     | 0%         | 0%      |
| Lung Cancer        | -4.1%       | -3.3%        | -3.7%   | -4.3%  | -3.0%      | -3.7%   |
| Other Cancer       | 1.3%        | 0.5%         | 0.9%    | -0.2%  | -1.5%      | -0.9%   |
| Non CI Mortality   | -1.5%       | 0.0%         | -0.8%   | -1.5%  | 0.0%       | -0.8%   |
| Overall            |             |              |         |        |            |         |
| Standalone         | -1.1%       | 0.2%         | -1.0%   |        |            |         |
| Accelerated        | -1.3%       | 0.1%         | -0.9%   | -2.9%  | -2.3%      | -2.6%   |
| After Stripping ou | t Impact of | f Fall in Sn | noking  |        |            |         |
| Standalone         | -0.1%       | 0.7%         | -0.2%   |        |            |         |
| Accelerated        | -0.3%       | 0.6%         | -0.1%   | -1.9%  | -2.0%      | -2.0%   |



|                    | Inci       | idence Ra    | ates    | Mortality Rates |        |         |
|--------------------|------------|--------------|---------|-----------------|--------|---------|
|                    | 1980's     | 1990's       | Overall | 1980's          | 1990's | Overall |
| Heart Attack       | -2.5%      | -1.3%        | -1.9%   | -4.8%           | -8.2%  | -6.5%   |
| Stroke             | 1.3%       | 2.5%         | 1.9%    | -4.9%           | -2.4%  | -3.6%   |
| CABG               | 13.3%      | 3.8%         | 8.5%    | 0%              | 0%     | 0%      |
| Breast Cancer      | 2.0%       | 2.5%         | 2.2%    | -0.6%           | -3.1%  | -1.9%   |
| Lung Cancer        | -1.9%      | 0.2%         | -0.9%   | -2.1%           | -0.3%  | -1.2%   |
| Other Cancer       | 0.5%       | -0.4%        | 0.0%    | -0.9%           | -2.3%  | -1.6%   |
| Non CI Mortality   | -3.0%      | 0.4%         | -1.3%   | -3.0%           | 0.4%   | -1.3%   |
| Overall            |            |              |         |                 |        |         |
| Standalone         | 0.5%       | 0.9%         | 0.6%    |                 |        |         |
| Accelerated        | -0.2%      | 0.8%         | 0.2%    | -2.3%           | -1.6%  | -2.0%   |
| After Stripping ou | t Impact o | f Fall in Sn | noking  |                 |        |         |
| Standalone         | 1.1%       | 1.2%         | 1.0%    |                 |        |         |
| Accelerated        | 0.4%       | 1.1%         | 0.6%    | -1.6%           | -1.4%  | -1.5%   |

Summary of Trends in CI Incidence and Mortality





#### Trends in Critical Illness Risk Costs An update from the Critical Illness Trends Research Group

- Historic trends in incidence for the major CIs
   Variations over time, by age, sex, by smoker status, by socio-economic group
- Exploring scenarios for future trends
   Learning from the past and looking to the future
   Part 1
   Part 2
- Mapping a range of possible future outcomes for CI risk costs

# Exploring scenarios for future trends Part 1

- Impact of statins on heart attack
- Troponin and incidence of heart attack, CABG and angioplasty
- Obesity scenario impact on critical illness claims
- International comparisons

# Statins and the Incidence of Heart Attack

- Statins reduce cholesterol
  - Iower levels of cholesterol are associated with a lower risk of cardiovascular disease
- Currently prescribed to people with a 30% chance heart attack in next 10 years
- To become available without prescription from a pharmacist to people at "moderate risk" of CHD
- Allow more people to protect themselves from CHD

#### Statins - Those at 'Moderate Risk' of Heart Attack

Men age 55 or more

- Men age 45-54 and women 55 or more if also have one of the following risk factors
  - Family history of CHD in 1<sup>st</sup> degree relative
  - Smoker or given up for less than a year
  - Overweight
  - South Asian ethnicity

|          | Ν        | /lales    | Fe                | emales |  |
|----------|----------|-----------|-------------------|--------|--|
| Age      | Non Smok | er Smoker | Non Smoker Smoker |        |  |
| Up to 44 | 0%       | 0%        | 0%                | 0%     |  |
| 45_49    | 48%      | 100%      | 0%                | 0%     |  |
| 50_54    | 48%      | 100%      | 0%                | 0%     |  |
| Over 55  | 100%     | 100%      | 38%               | 100%   |  |



# Statins - What is the potential impact

- For adults in Western societies it can be beneficial to reduce cholesterol levels whatever the starting point
- Need to take regularly on a long term basis
- Cholesterol can be reduced in the first month
- Risk of heart attack reduced by
  - 10% after one year
  - 33% after three years

## Statins - Will people take them?

- Can not predict the take up rate
  - price not yet confirmed
- Compliance will people continue to take their medicine in the longer term?
- Adverse reaction from some medical professionals







# Statins and Heart Attack Incidence for Insured Lives

- Higher take up amongst higher socio-economic groups?
   smaller 'moderate risk' group
- Compliance still an unknown
- Impact over the next 5 to 10 years









## Obesity - overview

- Obesity why?
- Modelling Obesity
- Underwriting and socio-economic effect
- Conclusion



## Obesity - why?

How is it measured?

■ Body Mass Index (BMI) = (Weight in Kg)/(height in metres)<sup>2</sup>

Is this a good measure?

# Obesity - why?

Fundamental cause:

- Consuming more calories than are expended
- Why has number of obese people trebled over the last 20 years:
   Less active lifestyle
  - Changes in eating patterns
- Genetic
- Women after menopause
- Social economic effect
- Ethnic and cultural background

# Obesity - overview

- Obesity why?
- Modelling Obesity
- Underwriting and socio-economic effect
- Conclusion

## Modelling Obesity

Project BMI by weight category Project BMI by weight cate Weight Categories: Underweight (<20) Healthy (20<BMI<25) Overweight (25<BMI<30) Obese (30<BMI<40) Morbidly obese (BMI>40) Optimistic 



Government initiatives Halt upward trend Improve back to 1993 levels



Pessimistic Upward trend continues Catches America by 2022



#### Modelling obesity

- Historical trends key facts (in UK)
  - 1980: 6% male and 8% female are obese
  - 1993: 13% males and 16% females are obese
  - 2002: 22% male and 23% female are obese
  - No sign upward trend moderating
  - Optimistic trend assumes 1993 levels in 20 years
- USA prevalence:
  - 28% males and 34% females are obese
  - Pessimistic: 52% males and 56% females





# Modelling obesity

- Project the BMI by weight categoryBreakdown historic aggregate incidence by weight category Project separate breakdown of incidence:
- i (healthy)
  .....
  i (morbidly obese)
- Aggregate the breakdown of incidence using:
   Future BMI trends by weight category
   Relative risk factors by weight category





| Morbidity from major coro | hary heart disease, | stroke, diabetes and co | mbined, UK stud |
|---------------------------|---------------------|-------------------------|-----------------|
|                           | 20.0-22.0           | BMI<br>24.0-26.0        | >=30            |
| Heart, stroke, diabetes   | 1.00                | 1.07                    | 1.97            |
| eart                      | 1.00                | 1.38                    | 2.13            |
| troke                     | 1.00                | 1.20                    | 1.70            |
|                           |                     |                         |                 |



# Modelling obesity

|            | 18.5-24.9 | BMI<br>25.0-29.9 | 30.0-34.9 | 35.0-39.9 | >= 40.0 |
|------------|-----------|------------------|-----------|-----------|---------|
| All Cancer | 1.00      | 0.97             | 1.09      | 1.20      | 1.52    |
| Stomach    | 1.00      | 1.01             | 1.20      | 1.94      |         |
| Colorectal | 1.00      | 1.20             | 1.47      | 1.84      |         |
| Lung       | 1.00      | 0.78             | 0.79      | 0.67      |         |
| Melanoma   | 1.00      | 0.95             | 0.85      |           |         |
| Prostate   | 1.00      | 1.08             | 1.20      | 1.34      |         |

| Mortality from Cano | er According to Body-Mas | s Index among U.S. W | omen in the Cancer Pre | evention Study II, 1982 | through 1998 |
|---------------------|--------------------------|----------------------|------------------------|-------------------------|--------------|
|                     | 18.5-24.9                | BMI<br>25.0-29.9     | 30.0-34.9              | 35.0-39.9               | >= 40.0      |
| All Cancer          | 1.00                     | 1.08                 | 1.23                   | 1.32                    | 1.0          |
| Stomach             | 1.00                     | 0.89                 | 1.30                   | 1.08                    |              |
| Colorectal          | 1.00                     | 1.10                 | 1.33                   | 1.36                    | 1.           |
| Lung                | 1.00                     | 0.88                 | 0.82                   | 0.66                    | 0.1          |
| Melanoma            | 1.00                     | 0.85                 | 1.10                   |                         |              |
| Breast              | 1.00                     | 1.34                 | 1.63                   | 1.70                    | 2.           |
| Quarian             | 1.00                     | 1 15                 | 1.16                   | 1.51                    |              |







| EM                | Heart Allack, Market, Ade // 61<br>Incidence X, conge J<br>accord | Cunert act<br>Flope tion de categore<br>e 2000 | Feestriisik essnerit<br>Poperier 27 Ottopoly | Guiniste servit<br>Poptiero, Goder, |
|-------------------|-------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|-------------------------------------|
|                   | 32000                                                             | 1 2002                                         | 411-101-11                                   | 44437                               |
| 9                 | . 19                                                              | 1.0                                            | 245                                          | o 45                                |
| C-2               | 2,78                                                              | 22.6%                                          | 13.3%                                        | 35.354                              |
| 25 K              | 4.58                                                              | 25,4%                                          | XX25                                         | 45.9%                               |
| 2242              | 5.92                                                              | 010%                                           | 41.1%                                        | 10.0%                               |
| 4 +               | <del>н</del>                                                      | н Б                                            | 17.18                                        | 075                                 |
| Casal             |                                                                   | <i>0</i> 0.0%                                  | <b>00</b> C2.                                | 00.2%                               |
| se esste leidence |                                                                   | 400                                            | : 10                                         | 41                                  |
|                   |                                                                   |                                                | 124.55                                       | -4014                               |
|                   | nistic and Demoistic at                                           |                                                |                                              | 22.42                               |





























# Obesity - overview

- Obesity why?
- Modelling Obesity
- Underwriting and socio-economic effect
- Conclusion



|                 | <ul> <li>Obese applica</li> <li>Other right factor</li> </ul> | ins sent for a me          | Jicai                    |                            |
|-----------------|---------------------------------------------------------------|----------------------------|--------------------------|----------------------------|
|                 | Other risk facto                                              | ors are rated sepa         | arately:                 |                            |
|                 | Diabetes                                                      | pressure                   |                          |                            |
| ■ Ir            | surers rate ob                                                | esity risk or d            | ecline                   |                            |
|                 |                                                               |                            |                          |                            |
| BMI             | Reinsurer A                                                   | Reinsurer B                | Reinsurer C              | Reinsurer D                |
| ВМІ<br>30       | Reinsurer A                                                   | Reinsurer B                | Reinsurer C              | Reinsurer D                |
| BMI<br>30<br>35 | Reinsurer A<br>0%<br>50%                                      | Reinsurer B<br>22%<br>100% | Reinsurer C<br>0%<br>50% | Reinsurer D<br>75%<br>125% |



# Obesity - overview

- Obesity why?
- Modelling Obesity
- Underwriting and socio-economic effect
- Conclusion

## **Obesity - conclusion**

- Biggest relative impact on heart attack
- Cancer less impact
- Insurance population needs to allow for:
  - UnderwritingSocial-economic effect
  - Lower proportion of women
- Obesity has become a focus point
  - Over 50 government initiatives
  - cost to NHS
- Minor impact on insured population for critical illness claims?

# New Remote Control Can Be Operated by

## Remote

No more leaning forward to get remote from coffee table means greater convenience for TV viewers.

Television watching became even more convenient this week with Sony's introduction of a new remote-controlled remote control.



| Male Female                        |
|------------------------------------|
|                                    |
| Heart Attack 115% 144%             |
| Angioplasty 570%                   |
| Coronary Artery By Pass Graft 108% |

| Internationa<br>US Incidend | al Comparisons Cancer –<br>ce as % Incidence England and Wales |                       |                   |  |  |
|-----------------------------|----------------------------------------------------------------|-----------------------|-------------------|--|--|
| Male                        |                                                                |                       |                   |  |  |
| Ages                        | Prostate                                                       | Malignant<br>Melanoma | All CI<br>Cancers |  |  |
| 20 - 39                     | 1011%                                                          | 192%                  | 137%              |  |  |
| 40 - 59                     | 555%                                                           | 248%                  | 163%              |  |  |
| 60+                         | 200%                                                           | 279%                  | 125%              |  |  |
| All                         | 223%                                                           | 256%                  | 132%              |  |  |

| Female  |        |                       |                   |
|---------|--------|-----------------------|-------------------|
| Ages    | Breast | Malignant<br>Melanoma | All Cl<br>Cancers |
| 20 - 39 | 96%    | 156%                  | 128%              |
| 40 - 59 | 106%   | 147%                  | 118%              |
| 60+     | 139%   | 127%                  | 117%              |
| All     | 123%   | 139%                  | 118%              |





Learning from the past and log
 Part 1

Part 2

Mapping a range of possible future outcomes for CI risk costs

# Exploring scenarios for future trends Part 2

- Cancer Screening
  - Breast Cancer
  - Prostate Cancer
  - Bowel Cancer

Smoking Prevalence / Lung Cancer











#### **Breast Cancer Screening**

Current programme for ages 50 to 65

- Initial catch-up surge phase saw 50% increase in reported breast cancer incidence rates for the 50 to 65 age group
- Settled phase reflects around 25% increase in reported breast cancer incidence rates for the 55 to 65 age group
- Overall consistent with advancing breast cancer diagnosis by up to 3 years
- Possible extension to start age 40
  - New surge for ages 40 to 50
  - Rates for age 40 remain high but those at ages 50 to 55 would fall back













## **Prostate Cancer Screening**

- Example taken from USA data
- No formal programme but PSA tests widely available
  - Initial catch-up surge phase saw 140% increase in reported prostate cancer incidence rates across a wide age group
  - Settled phase reflects around 40% increase in reported prostate cancer incidence rates across a wide age group
  - Overall consistent with advancing prostate cancer diagnosis by up to 5 years

















- Models based on pilot screening studies, covering age range 50 to 70
  - Initial catch-up surge phase gives 80% increase in reported bowel cancer incidence rates for the 50 to 65 age group
  - Overall consistent with advancing diagnosis by 2 to 3 years
- Settled phase critically depends on whether the screening also detects pre-cancerous polyps
  - No polyps detected settle at around 20% increase
  - 10% polyps detected settle perhaps 50% below current reported incidence rates, except for starting age group
- Recent government announcement signals national screening starting at age 60 from 2006







#### Lung Cancer Projection

- We can build a well-founded model of lung cancer rates
  - We have good time series data on lung cancer rates
  - We have reasonable time series data on smoking habits
  - Linkages are well established through medical research
     Sir Richard Doll : 50-year study of smoking / British males doctors
- Our models show a reasonable fit to past data
  - Modelled rates shown as solid lines ; actual rates as dotted lines
  - Note the strong cohort patterns by age for both males and females
- We can project forward with scenarios of future smoking habits
- Changes in smoking habits take many years to work through
- These models can also be calibrated to overall mortality or CI

#### **Trends in Critical Illness Risk Costs** An update from the Critical Illness Trends Research Group

- Historic trends in incidence for the major CIs ■ Variations over time, by age, sex, by smoker status, by socio-economic group
- Exploring scenarios for future trends Learning from the past and looking to the future
- Mapping a range of possible future outcomes for CI risk costs

#### Mapping a range of possible future outcomes for CI risk costs

Summarize and compare a selection of scenarios we have evaluated

- Cautions :
  - Illustrative, but very rough, estimates
  - Still "work in progress"
  - Focus on cancer, heart attack, CABG and stroke only
  - Far from exhaustive, even for the CIs partially covered
  - Mix of high and low likelihood Many overlaps and lots of gaps
  - Modelled individually how might the scenarios combine ?

# Mapping a range of possible future outcomes for CI risk costs Key - Part 1 $% \left( {\left( {r_{\rm s}} \right)_{\rm s}} \right)$

- Ο Extrapolation of trends from the 1990's
- O Obesity "optimistic" and "pessimistic" scenarios
- Ο Smoking - continuation of recent trends in smoking habits
- Convergence to USA CI incidence rates
- $\bigcirc$  Convergence to EU CI incidence rates "best" and "worst"
- 0 Cancer Screening - Breast (extended down to age 40)
- Cancer Screening Breast (extended down to age 40)
  Cancer Screening Bowel Cancer No polyps detected
  Cancer Screening Bowel Cancer 40%
- - Cancer Screening Bowel Cancer 10% polyps detected
- $\Diamond$ Cancer Screening - Prostate (similar to USA experience)



- O Cancer Screening "1 year" advancement in detection
- Cancer Screening "3 year" advancement in detection Cancer Screening "3 year" advancement in detection Cancer Screening "5 year" advancement in detection 0
- Ō
- O Impact of Troponin on heart attack diagnoses
- $\diamond 0 \diamond$ Definition drift on Strokes / TIAs
- Impact of Statins on heart attack rates
- Blue sky polypills and cancer vaccinations

| 0            |                       |                         | - ( M-l       |
|--------------|-----------------------|-------------------------|---------------|
| Scer<br>% Ch | ange in Overall CI ri | sk Rate                 | s for males   |
| <b>30%</b> T |                       | [ ]                     |               |
| 25% -        |                       | •                       |               |
| 20% -        |                       |                         |               |
| 15% -        |                       |                         |               |
| 10% -        |                       |                         | •             |
| 5% -         |                       | •                       |               |
| 0%           | •• <u>°</u> * •       | ●●          ●●          | • <u>%</u> •* |
| 59/          |                       | $\bullet \circ \bullet$ | • •           |
| -5%          |                       |                         | •             |
| -10% +       |                       |                         | •             |
| -15% ⊥       |                       |                         |               |
|              | Near Term             | Medium Term             | Long Term     |











#### Mapping a range of possible future outcomes for CI risk costs Shifting viewpoint from Population to Insured Lives

- Segregated non-smoker / smoker rates
   Remove past beneficial trend in smoking prevalence
   Affects extrapolation scenario and future impact of smoking habits
- Different socio-economic mix
   Cancer gains in importance at expense of heart attack and stroke
   Different access and attitudes to medical checks and treatment
- Different mix by sex
- Possible impacts from policyholder actions
   Non-disclosure ; anti-selective lapses





# Mapping a range of possible future outcomes for CI risk costs - Key Observations

- Caution : Work-in-progress and incomplete !
- $\blacksquare$  Many of the illustrated scenarios have relatively small impact +/- 5%  $\ldots$
- $\blacksquare$   $\ldots$  but we can readily can envisage most dramatic scenarios
- Balance or imbalance of competing forces is critical
- Of the work so far, convergence with international rates perhaps gives the best indication of possible future ranges
- Typically, shifting from a population to an insured portfolio view magnifies the impact, particularly on cancer

## **B2**

# Critical Illness ...... Pricing the Unknown

- Working Party / Research Group Update
- Scott Reid Revios Reinsurance UK Ltd
- We welcome your :
   Questions and Discussion Points
   Proposals for Further Research