The Actuarial Professi making financial sense of the future

33rd ANNUAL GIRO CONVENTION Top down / Bottom up Correlation

Hilton Vienna Hotel, Am Stadtpark, 28 September 2006

Colin Kerley / Simon Margetts Benfield ReMetrics / Ernst & Young LLP

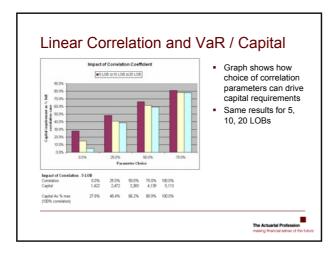
Summary / Introduction

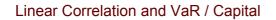
- Modelling many Lines of Business (LOBs); need results consolidated Could be for Capital adequacy, RI purchase (eg stoploss)
- · How best to model the fact that the LOB's aren't independent
 - Standalone LOBs and estimate combined
 - Marginals & Correlation / Copula
 - Shared events & Drivers
 - Operational issues
- Aim to get some discussion over practicality of driver approach Are the benefits worth the extra effort

The Actuarial Prof

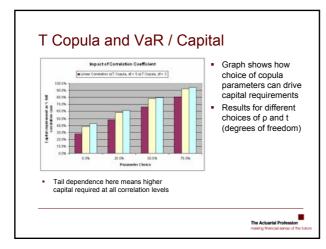
Why of Interest ?

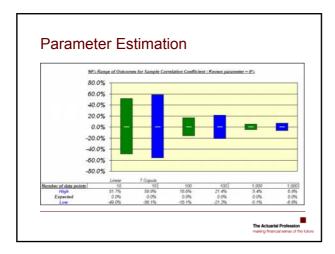
 Choice of method to implement correlations can have impact on an integrated liability model


- This could be relevant for regulatory capital (ICA)
- But more importantly whether or not you can use your model in the real world
 - If you don't know what drives your risk you can't explain your model output !
 - No large losses => cannot look at Risk XL / Surplus
 - No cat model =>
 - cannot look at cat r/i purchase
 cannot quantify aggregation risk
 - No inflation => cannot look at hedging with inflation linked assets
 - Model not integrated properly => harder to look at more interesting ri solutions such as agg stop loss, structured QS etc

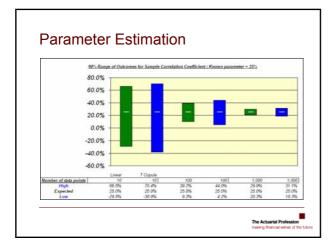

Approach	Pros	Cons
Combine Marginal Capital by hand	Easy to calculate	Hard to justify the answer
	No "hidden" statistical effects	Not much use for RI pricing
Correlation Matrix	Can be applied using many software packages	Assumes linear correlation
	Often used by actuaries; intuitive understanding	
	of various correlation levels (?)	So no tail dependency
		Can be hard to explain to non-statisticiar
Copula	Not restricted to linear correlation	Harder to calculate results
		Less industry comfort with parameters used
		Harder to explain
Drivers	Easily explained	Requires more work - need to understan
	Less reliance on statistical theory	what drives the risk
	Closer to reality of what is being modelled	Residual Risk / Softer issues

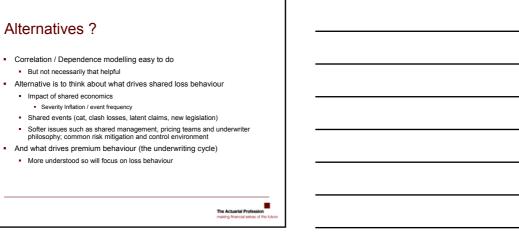
Example: change correlation Example for LOB correlation only Single LOB Assumptions GWP Losses UW Result 1,000 850 150 One LOB : look at Gross UW Result StDev Losses CoV 319 0.375 Losses reasonably volatile ntail - Gros Standalone capital calculated using VaR at 99.5% • Prob < 0 Result at 99% Result at 99.5% 26.59 -851 -1,021 How much for 5 LOB ? pital Required (andaione) 1,00 Somewhere between 1000 and 5000 ? . The Actuarial Profession





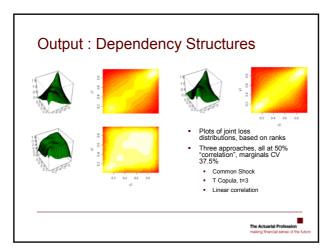
- · So what isn't this what you expect
 - Does show that results are sensitive to choice of correlation parameters
 - Especially as you aggregate many LOB
- Same result for different risk measures
- And for different distributions
- Try & compare with same 5 LOBs but use Student T copula


The Actuarial Profession making financial sense of the ful

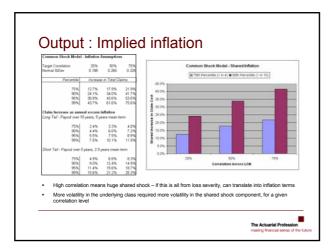


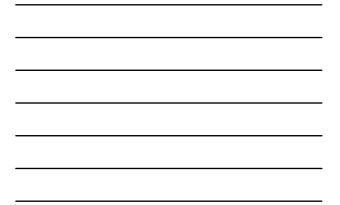
Parameter Estimation estimating correlation coefficients for linear correlation from data can be hard Harder for copulas with tail dependence - for example T copula in theory can estimate if from tail dependence Un endes to took at as 95% or 95% point of distributions Hard to do even if you have >100 data points Hodel sample correlation coefficients given sets of data generated from joint distribution with known correlation structure and parameters example using linear correlation & T copula (!=3) Look at possible ranges if we have 10, 100 and 1000 data points to estimate from

Example : Common Shock Model


- Can be thought of as an overall inflation adjustment for example applies to aggregate distribution
- For our example with all LOB identical $Y_i = (1 + b) X_i$
 - · X is base aggregate distribution for the LOB, based on some expected inflation
 - b is the shared inflation / common shock parameter In this case b has mean 0 and is normally distributed
- For a "real" model b might have mean 0 but would have different variance scalar for each LOB $% \left({{\rm LOB}} \right)$
- Y_i = (1 + b.σ_i) X_i
- Choice of distribution a matter of care (probably not Normal ! skew ? Fat tails ?) Probably easier to model actual assumptions about inflation and apply directly to loss payments – captures sensitivity to the length of the tail .

The Actuarial Profession making financial sense of the full


The Actuarial Professi making financial sense of


Common Shock : inflation

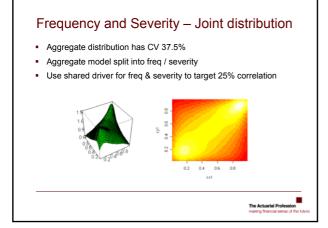
- Model 2 LOBs as per last example
 - use LogNormal for (uninflated) aggregate losses
 - Have common inflation across 2 LOB
 - Target overall CV 37.5% for inflated losses and sample correlation at 25%, 50% and 75%
- · What does the common shock do for the joint pdf
- · Look at what these correlation levels mean in terms of inflation

Common Shock Model : Pros / Cons

- Can get the right effects (implied correlation at various levels, tail dependency)
 - Reduces the need to estimate all cross-correlation parameters
 - With correlation matrix across 20 LOB need to estimate 190 parameters
- Looking at relationship each LOB has with a shared driver reduces this
 Shared inflation drives correlations across years (runoff & new business)
- Can use this to understand standard correlation assumptions
- are standard correlation parameters too high ?

Downside : must recalibrate marginals extract inflation from data first & fit

- New distribution Y = (1+b) X won't be from the same family as original distribution X
- Also need to choose a model for the shock / inflation
- And do the extra modelling


.

The Actuarial Profession making financial sense of the fu

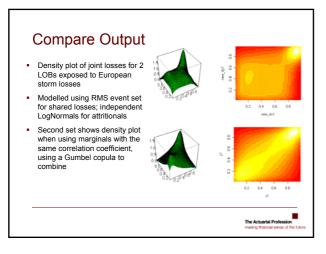
Frequency and Severity

- Common shock (inflation) for large losses
- Shared Frequency driver for large losses and / or attritional
- Could be thought of as
 - Economic climate adjustor (GDP linked)
 - Parameter uncertainty
- Not sure if want to link the shared severity with attritional losses also
- Pros :
 - this implied correlation can be explained
 - can be used for other purposes (eg to price shared RI)
- Cons :
 - now have to estimate the freq & sev distributions plus common shock parameters

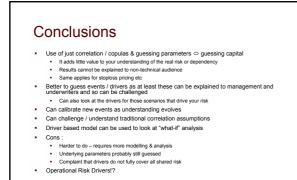
The Actuarial Profession making financial sense of the fu

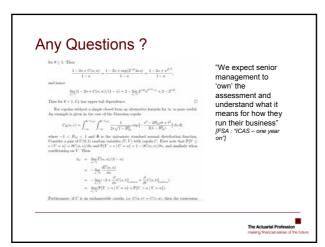
Case Study : Non-unique solutions

- Looking at efficiency of XoL programme across MTPL and GTPL
- Parameters provided from capital model
- Defines the attritional, large loss freq & severity distributions
- And the correlation coefficient for aggregate losses across 2 LOB [ρ = 0.3121 !]
- To model this we wanted to consider correlations across
 - Attritional loss model
 - Large loss frequency
 - Large loss severity
- and make sure we maintained the overall correlation for the aggregate distribution


Case Study : Non-unique solutions

- Sticking to linear correlations across the 3 components separately gives us 2 free parameters
 - => an infinite number of possible solutions
- Not just academic : the reinsurance pricing was dependent on choice of parameters used
 - Technical price for lowest layer changed 25% in value just from different correlation choices
- Moral of this story : important to drill into what's driving the (aggregate) correlation of 0.3121


The Actuarial Profession making financial sense of the ful


Softer Issues

- In reality the biggest "driver" behind correlated losses across LOBs might be shared management and/or underwriting skill
- Underwriting cycle
- Insolvencies not driven by mis-estimation of pricing frequency and severity assumptions
- But usually by eg:
 - rapid growth (ie knowingly and repeatedly undercharging)
 - or a massive lack of understanding of the exposures written (US liability losses)
 Ineffective controls
 - Do we include these factors while modelling UW risk as correlated drivers across LOBs, or as operational risk ?
 - If we have capital for operational risk and high correlations across LOBs are we double counting ?

The Actuarial Profession making financial sense of the fut

