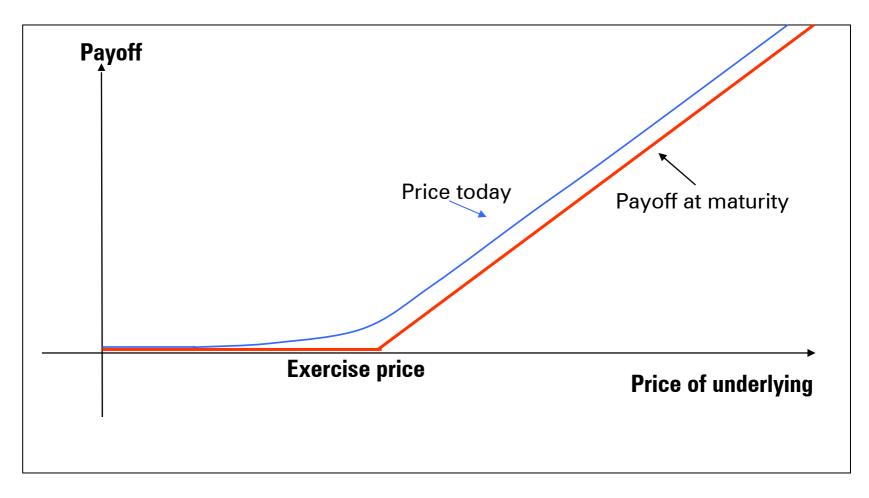
The Actuarial Profession

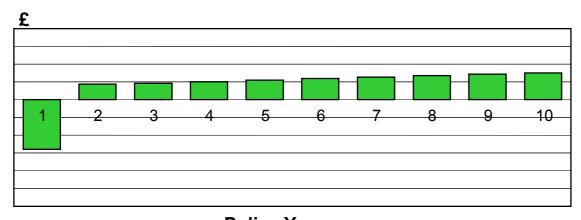

making financial sense of the future

From Traditional to Market-Consistent Embedded Values

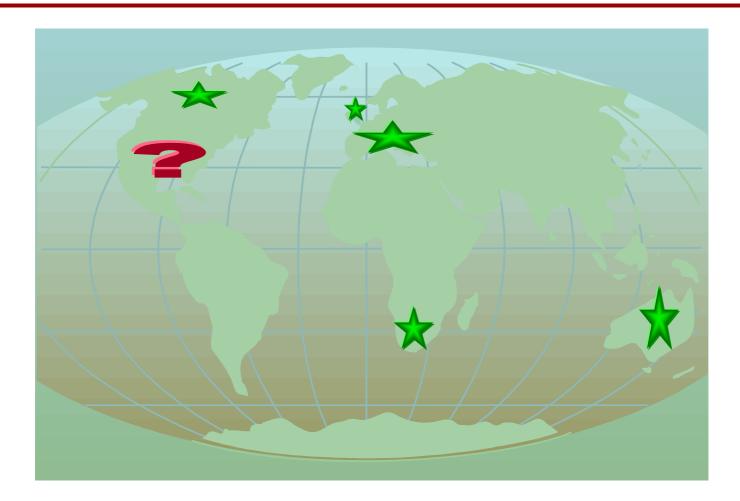
Kamran Foroughi

Faculty and Institute of Actuaries The 2nd Younger Members Convention 1-2 December 2003 The Glasgow Moat House

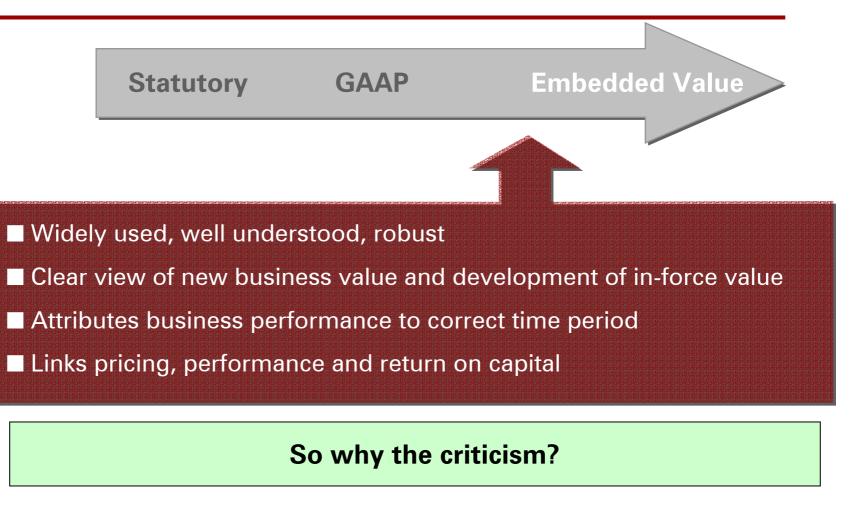
European call option



European put option


What is Traditional Embedded Value?

Shareholder net worthPLUS Value of in force



Policy Year LESS cost of capital adjustment

Use of published Embedded Values globally

Embedded Value - a success story!

As companies start to reconsider some aspects of their existing embedded value methodology, three key questions remain

- 1. How should we set the Risk Discount Rate?
- 2. How should we allow for financial options and guarantees?
- **3**. How should we allow for the "cost of capital"?

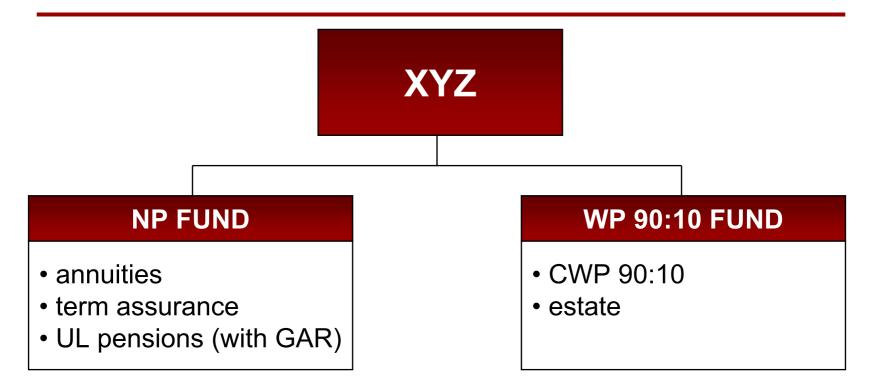
Market-Consistent Embedded Values ("MCEV") can address these problems in a robust manner

- An objective solution to the Risk Discount Rate dilemma
- Options and guarantees are valued consistently with the pricing of options in financial markets
- Allowance made for cost of corporate structure of company

What do we mean by Market-Consistent Embedded Values?

An "Economic Balance Sheet" (excluding some items):

Assets		Liabilities	
MV tangible assets	XXX	MCV liabilities Cost of capital Economic value	XXX XXX XXX
Total assets	XXX		XXX


A "Market-Consistent Embedded Value" Balance Sheet

Assets		Liabilities	
MV tangible assets	XXX	Statutory liabilities	XXX
Market-Consistent VIF	XXX	Cost of capital "MCEV"	XXX XXX
Total assets	XXX		XXX

Traditional vs Market-Consistent Embedded Value

	Traditional Embedded Value	Market-Consistent Embedded Value
Net worth	Market Value of assets	Market Value of assets
Value of in force	Deterministic	Market Value of replicating portfolio
Cost of capital	Generally applied to Solvency Margin only	Applied to all capital, different rationale
Embedded Value	Sum of above	Sum of above

Case study – life company XYZ

TRADITIONAL APPROACH

In-force business of XYZ at 31 December 2002

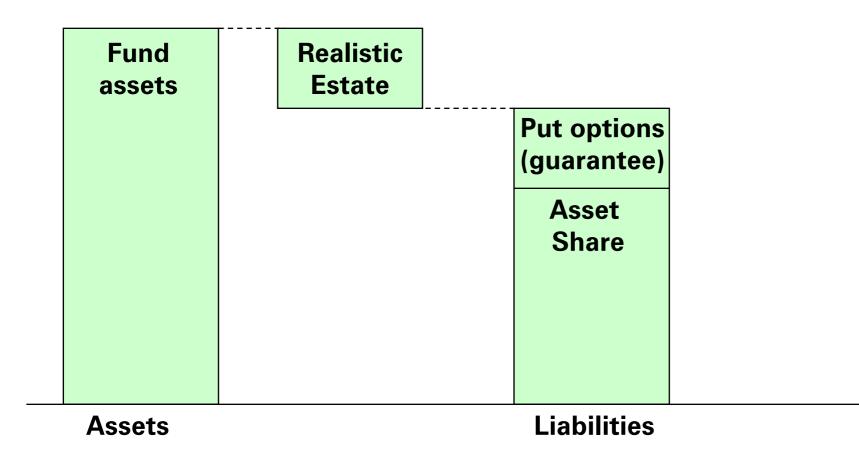
Product	Annualised Premium (£m)	Reserve (£m)	VIF (not MC) (£m)
Annuities	-	1,000	50
Term assurance	50	200	75
UL pensions (with GAR)	100	2,000	175
CWP 90:10	50	4,800	100
Total	200	8,000	400

In addition, the adjusted shareholder net worth is £250m

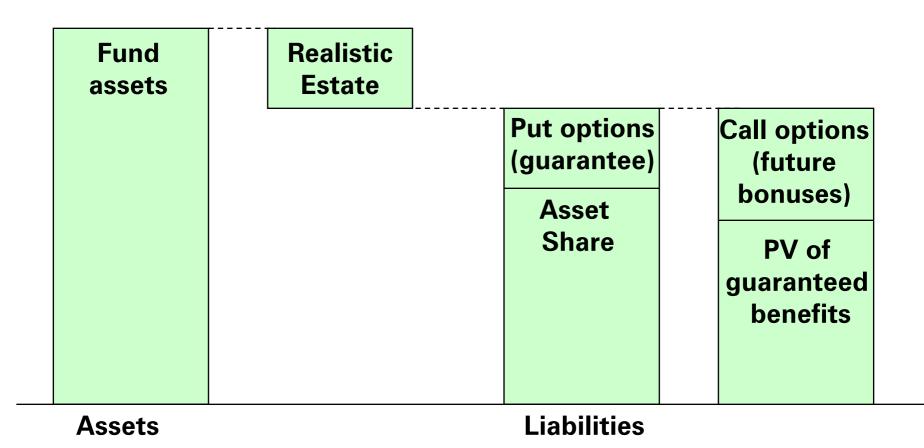
All values in this presentation are illustrative!

VALUING OPTIONS AND GUARANTEES Market-Consistent option pricing techniques

VALUING OPTIONS AND GUARANTEES Calibrating the stochastic option pricing model

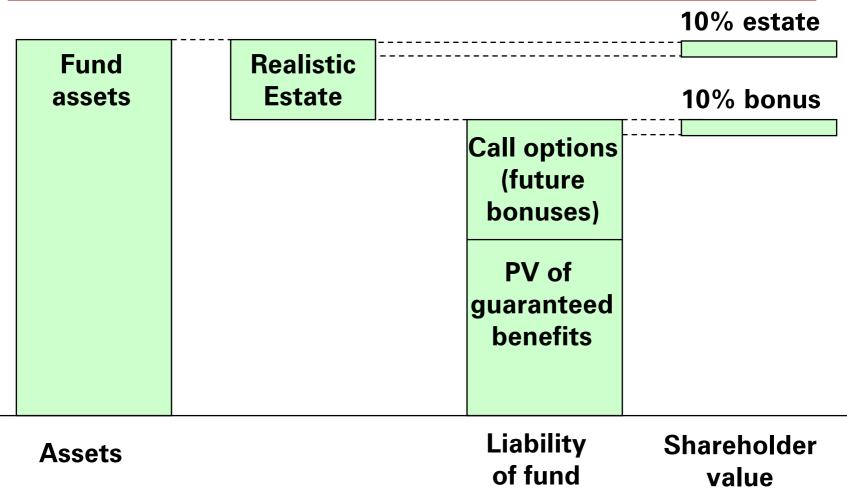

To be Market-Consistent, the option pricing model must:

- Be arbitrage free
- Reproduce the market prices of options

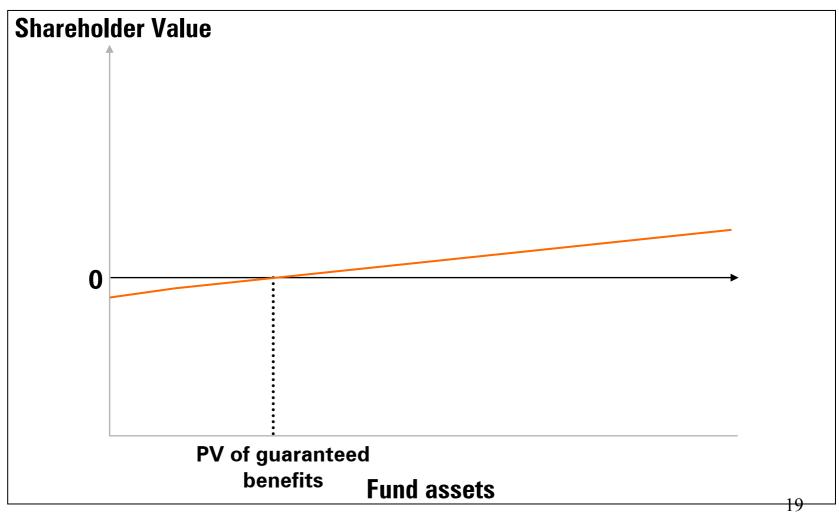

VALUING OPTIONS AND GUARANTEES Valuing cost of GAR in non-profit fund

- Decompose UL product with GAR into GAR and stand-alone UL
- GAR resembles series of interest rate swaptions
 - option to purchase bond at fixed price (defined at option purchase) at specified time in future rather than purchasing bond at then market price (which depends on yield curve at that time)
- Co. XYZ cost of GAR to shareholders is £35m

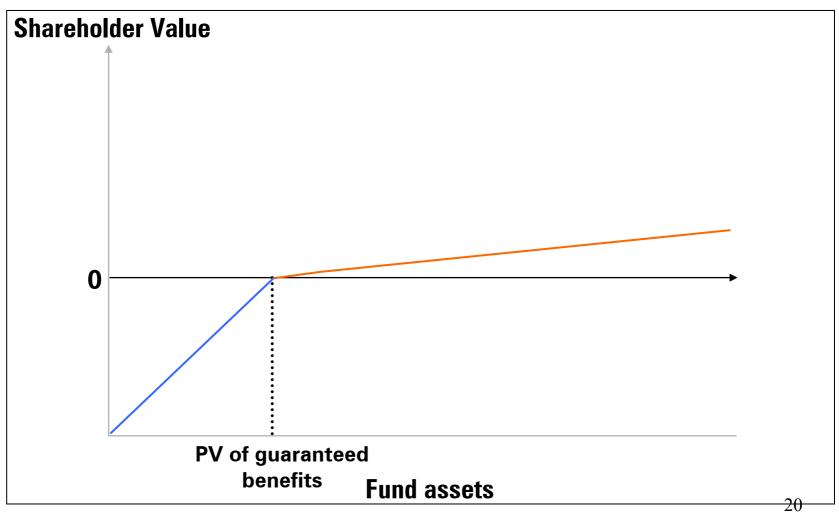
VALUING OPTIONS AND GUARANTEES 90:10 With Profits business - fund view



VALUING OPTIONS AND GUARANTEES 90:10 With Profits business - fund view


VALUING OPTIONS AND GUARANTEES

90:10 With Profits business - the shareholder view



VALUING OPTIONS AND GUARANTEES

Who pays when the realistic estate runs out?

VALUING OPTIONS AND GUARANTEES The shareholders!

VALUING OPTIONS AND GUARANTEES Market-Consistent Value of In Force ("MC VIF") of guarantee products of XYZ at end 2002 (£m)

WP Fund

MC VIF of SHT (exhausting estate) MC VIF of estate burn-through Total MC VIF of 90:10 business

NP Fund MC VIF of stand-alone GAR 95

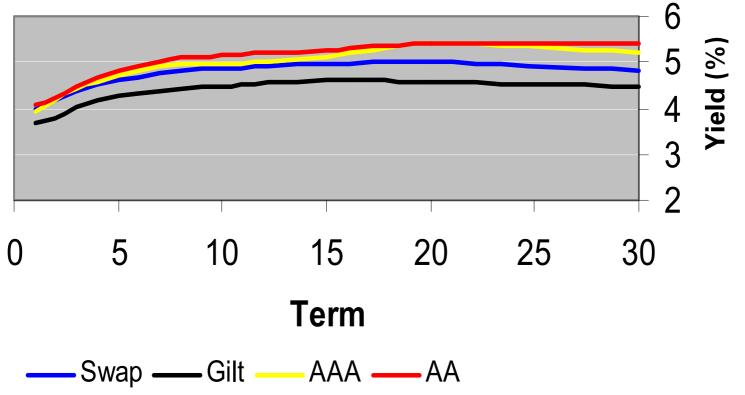
(25)

70

(35)

Practical approach to valuing cash flows with no optionality

- The "Certainty Equivalent" approach:
- 1. Project using risk free rate
- 2. Discount using risk free rate
- This ensures asset risk premia are not capitalised


This approach works with existing EV models

SETTING THE PROJECTION AND DISCOUNT RATES

What is an appropriate risk free rate?

Zero Yield curves as at 31 December 2002

Source: Bloombergs

Summary of Market-Consistent Value of In Force of XYZ at 31 December 2002 (£m)

Product	VIF (not MC)	Market-Consistent Cost of Options	MC VIF before option cost	Market-Consistent Value of In Force
Annuities	50	-	5	5
Term assurance	75	-	90	90
UL pensions (with GAR)	175	(35)	195	160
CWP 90:10	100	(25)	95	70
Total	400	(60)	385	325

Shareholder net worth unchanged at £250m

In an MCEV framework, why hold additional capital?

- Regulatory requirements
- Rating agency pressures
- Desire to write new business
- Buffer against risks:
 - Asset liability mismatch risk, given company does not hedge market risk
 - Insurance risk that actual experience differs from mean best estimate
 - Operational risks, including Compliance and Mis-selling risks
- Holding capital has associated cost

THE COST OF CAPITAL

What are the frictional costs to holding capital?

- Corporate finance theory tells us there are two main costs to holding capital
 - Cost of Double Taxation
 - Agency Costs
 - Note: Allowing for this replaces the need to allow for a "Cost of Solvency Margin"

THE COST OF CAPITAL

Deducting a cost of capital to allow for Double Taxation

Rationale?

- Assumption required: tax status of typical shareholder
- Allowance already in MC VIF (assuming surpluses are paid out as dividends as they arise)
- Haircut required on shareholder net worth

THE COST OF CAPITAL

Considerations around Agency Costs?

- Agency Costs relate to investors' perceptions
- Purpose of valuation
 - need to calculate Agency Costs?
 - accuracy required?

REPORTING MARKET-CONSISTENT EMBEDDED VALUES Balance Sheet of XYZ at end 2002 and end 2003

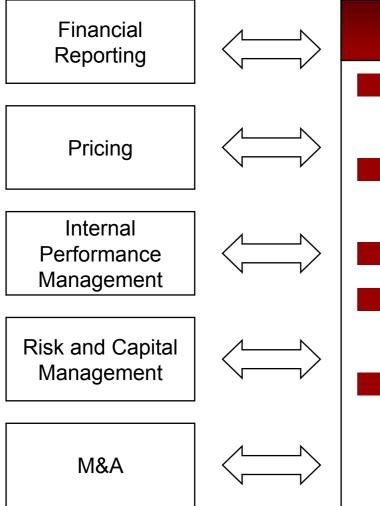
Asset	Value at end 2002 (£m)	Value at end 2003 (£m)	Change (£m)
Shareholder net worth	250	275	25
Market-Consistent VIF	325	360	35
Cost of Double Taxation	(30)	(35)	(5)
Market-Consistent Embedded Value	545	600	55
Agency Costs at 1% p.a. ⁽¹⁾	(50)	(55)	(5)

Note:

⁽¹⁾ The impact of agency costs on the value is shown at an illustrative figure of 1% p.a. of shareholder capital. This allows the user of the information to quantify their own assessment of the quality of management and the associated risks, without prejudicing this assessment by suggesting a level.

The Analysis of MCEV profit (£m)

Value created through insurance management


Experience Variances	XXX
Assumption changes	XXX
Value of new business written	XXX

Value created through investment management

Investment return on net worth	XXX
Investment return on value of in-force	
 Return on assets backing in-force 	XXX
 Mismatch profit (or loss) 	XXX

Total Value created

MCEV provides new insights for management

MCEV - a Framework for: Communicating with shareholders Pricing mismatching risk, guarantees and options Balancing risk and reward Evaluating de-risking strategies Assessing value in a restructuring or M&A situation

© Copyright Towers, Perrin, Forster & Crosby, Inc

There are four steps to calculating MCEV:

- 1. Value cost to shareholders of options using market-consistent option-pricing techniques
- 2. Discount non-option cash flows using discount rate reflecting market risk in that cash flow
- 3. Allow for Double Taxation
- 4. Consider allowance for Agency Costs

Still interested?

Further reading:

- "Market-Consistent Economic Valuations for the Wealth Management Industry" available on actuaries.asn.au
- "Market-Consistent Embedded Values: Allowing for risk within an Embedded Value framework" available on tillinghast.com

Questions and feedback? Contact details:

Email: kamran.foroughi@tillinghast.com