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Introduction
Motivation

Empirical analyses of many financial and business time series data sets 
reveals autoregressive nature of dependency structures over time e g

Motivation 

reveals autoregressive nature of dependency structures over time e.g.
Annual RPI, Annual NAE, Annual FTSE All Share Return etc (see later)
Underwriting cycle in non-life insurance  

Fitting distributions to many years, months or days worth of data 
effectively loses any potentially valuable information that might be in such 

tt tipatterns over time

ICA – Conditional Stress Tests
Equities – After a large stock market fall ~ 30 - 50%. Is an ICA Equity Stress 
Test of a further 40% price fall realistic ?
Credit Spreads – 2008 saw a large widening in credit spreads. Should an 
existing ICA Credit Spread Stress Test credit spread movement be reduced ?



Introduction
Objectives

Two different methodologies:
Multivariate Methods These methods seek relationships between the target

Objectives 

Multivariate Methods – These methods seek relationships between the target 
and explanatory variable using linear or multiple regression techniques
Univariate Methods – These methods use only the time series of the target 
variable and exploit the non-independence of successive observationsa ab e a d e p o e o depe de ce o success e obse a o s

This presentation investigates the use of Univariate Methods only

The following topics are outside the scope of this presentation:  
Multivariate modelling or partial Univariate / Multivariate models 
ARCH / GARCH modelling
Back-testing



Spurious Relationship 
Two independent random variables X and Y

Consider two independent random variables Xt and Yt

X = X +

Two independent random variables X and Y 

Xt = Xt-1 + εt

Yt = Yt-1 + δt

d N(0 1) di ib dεt and δt are N(0,1) distributed 
X0 = Y0 = 5

Generate a random sample of 100 values for Xt and Yt for t = 1 to 100 

Using this output the linear correlation and R2 have been calculatedUsing this output the linear correlation and R have been calculated

X and Y are not related and yet it is common, in repeated runs, to observe 
very high correlations far in excess of those expected from sampling errorvery high correlations far in excess of those expected from sampling error 
in the N(0,1) values



Spurious Relationship 
Scatter Diagram Linear RegressionScatter Diagram – Linear Regression

Linear Regression Y vs X
y = 0.7705x - 1.0664

R2 = 0 7593g R = 0.7593
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Spurious Relationship 
Time Series DiagramTime Series Diagram

Time Series Y vs X
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Spurious Relationship 
Residuals DiagramResiduals Diagram

Residuals 
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Spurious Relationship
Residual Assumptions

Actualt – Fittedt = Residual εt

Residual Assumptions 

Quality of parameter estimates and validity of significance tests rely upon 
the residuals εt ~ N(0,σ)    

Residuals must be
Normally distributed
Independent (no autocorrelation)
Same variance (no heteroscedasticity) 

Intuitively residuals should be simple randomness that remain after the 
deterministic part of the variation in a target variable has been modelled

Any systematic component in the error terms should really be in the modelAny systematic component in the error terms should really be in the model
If each residual is related to it’s predecessor they are described as 
autocorrelated  



Spurious Relationship 
Trending Variables

The stochastic trends in Xt and Yt are unrelated so linear regression 
cannot explain the variation of one with the other

Trending Variables 

cannot explain the variation of one with the other. 
The residuals contain both stochastic trends – hence autocorrelation

E t bli hi i t f t d i i t t f i i t d lli T dEstablishing existence of trend is important for univariate modelling. Trend 
must first of all be removed. There are two types of trend:

Deterministic: e.g. yt = a + bt
Stochastic:     e.g. random walk yt = yt-1+ εt

Most trending series in economics and business are not deterministic but 
t h ti i th hibit d lk t b h iare stochastic i.e. they exhibit random walk type behaviour

The identification of stochastic trend is a test for stationarity
A stochastic trend is removed by differencing e.g. cconverting an RPI value at 

th t t l RPI t t th t i i ff t diff i th i blmonth t to an annual RPI return at month t is in effect differencing the variable.



Stochastic Trends 
Autocorrelation

Let the variable y at time t = yt and lagged variable y at time t-k = yt-k
1st order autocorrelation r = corr(y y )

Autocorrelation

1st order autocorrelation r1 = corr(yt,yt-1)
2nd order autocorrelation r2 = corr(yt,yt-2)
kth order autocorrelation rk = corr(yt,yt-k)

The Autocorrelation Function (“ACF”) measures the correlation between 2 
variables yt and yt-k. 

The Partial Autocorrelation Function (“PACF”) measures the additional 
effect of yt-k on yt, once effects of yt-1,yt-2, yt-(k-1) have been accounted for( )

Autocorrelation Plot (Correlogram) 
This s very useful for analysing time series data and determining the most y y g g
appropriate time series model 
The correlogram displays 95% bounds at each lag that enable quick tests of 
whether each value is significantly different from zero. 



Stochastic Trends
Uses for Autocorrelation

yt Random 
All autocorrelations are small

Uses for Autocorrelation

All autocorrelations are small

yt Stationary
A t l ti idl d l iAutocorrelations rapidly decrease as lag increases

yt Trending
Many large autocorrelations

Checking residuals are simple randomness. 
It can be impossible to eliminate all autocorrelations from residuals

ARIMA Modelling (see later)ARIMA Modelling (see later) 



Stochastic Trends
Some Useful Time Series

yt = εt Purely random process (‘white noise’)
ε has the same mean and variance and no auotcorrelation

Some Useful Time Series

εt has the same mean and variance and no auotcorrelation

yt follows an autoregressive process if it depends linearly on past 
observations of yobservations of yt

yt = a0 + a1yt-1+ a2yt-2 + a3yt-3…+ apyt-p + εt

εt is white noise as above
Si l t i t i f dSimplest case is autoregression of order one  yt = a0 + a1yt-1 + εt

Let yt = φyt-1 + εt
If Mod(φ) > 1 then y is said to be non stationary these are easy to spotIf Mod(φ) > 1 then yt is said to be non-stationary – these are easy to spot
If Mod(φ) < 1 then yt is said to be stationary (mean reverting) – the forecast 
function converges to the mean
If Mod(φ) = 1 then y is non stationary it meanders stochastically and isIf Mod(φ) = 1 then yt is non-stationary – it meanders stochastically and is 
known as a random walk



Stochastic Trends 
Some Useful Time Series y = 0 9y + εSome Useful Time Series – yt = 0.9yt-1 + εt 
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Stochastic Trends 
Some Useful Time Series y = 1 03y + εSome Useful Time Series – yt = 1.03yt-1 + εt 
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ARIMA Modelling 
Stationarity

Time Series Modelling requires knowledge of the mean, variance and 
autocorrelations

Stationarity 

autocorrelations 

A series yt is said to be stationary if it has constant mean, constant 
i d t t t l ti t h lvariance and constant autocorrelations at each lag  

If a series is stationary, modelling can proceed by estimating the mean, 
variance and auotcorrelations from significantly long time averages of the 
series

A stationary series is not necessarily completely random as it can have 
autocorrelation

The most fundamental property is stationarity in the mean     



ARIMA Modelling
ARIMA (p d q)

Box-Jenkins is a univariate forecasting approach
It involves the careful examination of time series in order to identify the

ARIMA (p,d,q) 

It involves the careful examination of time series in order to identify the 
underlying data-generating process
The choice of best model can be systematically made using this approach 

It is useful to restrict the search for models to the class of 
AutoRegressive Integrated Moving Average Models – ARIMA(p,d,q) 

An ARMA(p,q) model for variable yt is a combination of an autoregressive 
process of order p, AR(p) and a moving average process of order q, 
MA(q) where:

AR(p), ARMA(p,0) process yt = a1yt 1+ a2yt 2 + a3yt 3…+ apyt p + εt(p), (p, ) p yt 1yt-1 2yt-2 3yt-3 pyt-p t

MA(q), ARMA(0,q) process yt = b1et-1+ b2et-2 + b3et-3…+ bqet-q + εt



ARIMA Modelling 
ARIMA (p d q)

An ARIMA(p,d,q) process:
y = a y + a y + a y + a y + b e + b e + b e + b e +

ARIMA (p,d,q) 

yt = a1yt-1+ a2yt-2 + a3yt-3…+ apyt-p + b1et-1+ b2et-2 + b3et-3…+ bqet-q + εt
If a variable must be differenced d times in order to achieve stationarity it is 
said to be integrated or order d. 
d =1 would mean that the variable now being modelled = Δy = y yd =1 would mean that the variable now being modelled = Δyt = yt – yt-l

An AR model of sufficiently high order can usually be found to model any 
business seriesbusiness series

If a large number of parameters are required for a good fit, forecasts can be 
poor. This motivates working with a broader class of models   
Since the amount of data is limited it is preferable to fit a model involving asSince the amount of data is limited it is preferable to fit a model involving as 
few a parameters as possible
This is known as the “Principle of Parsimony”.

Experience suggests that an ARMA(p,q) model may achieve as good a fit 
as an AR(p’) model but with fewer parameters i.e. p+q < p’ 



ARIMA Modelling 
Box-Jenkins Methodology

Differencing a time series to achieve Stationarity 

Box-Jenkins Methodology 

Identification of a model to be tentatively used
Inspection of the Autocorrelation function (“ACF”) andp ( )
Partial autocorrelation function (”PACF”) at different lags 

E ti ti th t f th d lEstimating the parameters of the model
Maximum Likelihood, Least Squares etc.
This amounts to the minimisation of a complicated non-linear function of 

t th t i l it ti i l dparameters that involves iterative numerical procedures  

Diagnostic Evaluation – Is the model adequate   
t-statistics (and p-values); Durbin-Watson (“DW”) 
Residuals; Ljung-Box Q-statistic; AIC, SIC, Adj. R2 etc.



ARIMA Modelling 
Comparing the fit of different models

Adjusted R2 (“Adj. R2”) 
Adj R2 = 1/(n k 1) Σ e 2 / 1/(n 1) Σ (y E(y))2

Comparing the fit of different models  

Adj. R2 = 1/(n-k-1) Σi=1 ei
2 / 1/(n-1) Σi=1 (yi – E(y))2

Akaike Information Criterion (“AIC”)
AIC = 1 + ln(2π) + ln(SSR/n) + 2k / n

Schwartz Bayesian Criterion (“SBC”)y ( )
SBC = 1 + ln(2π) + ln(SSR/n) + k ln(n) / n

Sum of Squared Residuals (“SSR”)Sum of Squared Residuals ( SSR ) 
SSR = Σi=1 ei

2

n = number of observations; k = number of explanatory variables



ARIMA Modelling 
Durbin-Watson (“DW”) Statistic

The DW Statistic evaluates autocorrelation for residuals placed in the 
same order as the data observations

Durbin-Watson ( DW ) Statistic 

same order as the data observations

DW = Σi=2(ei – ei-1)2 / Σi=1ei
2

DW ~ 2(1-r) where r = autocorrelation
DW = 2 – no autocorrelation
DW > 2 – negative autocorrelation
DW < 2 – positive autocorrelation

The DW statistic is used instead of r because strict tests exist to examine 
whether DW is significantly different from 2



ARIMA Modelling 
Autocorrelation diagnostic evaluation

Residuals should be white noise

Autocorrelation diagnostic evaluation

The ACF of residuals should be investigated

Can test for autocorrelation in residuals for several lags together

Under null hypothesis of no autocorrelation in the first m lags theUnder null hypothesis of no autocorrelation in the first m lags, the       
Ljung-Box Q-statistic has a chi-squared distribution with d.f. = (m-p-q)  

Q(m) = n(n+2) Σ r 2 / (n i) 2Q(m) = n(n+2) Σi=1 ri
2 / (n-i) ~ χ2

m-p-q

where ri = corr(et,et-i)



Case Studies
RPI Case Study Data

Data
Monthly data has been used

RPI Case Study – Data

Monthly data has been used
RPI_Index(t) – RPI at the end of each month for the period Jan 1970 to       
Dec 2008 as provided by the Office of National Statistics (“ONS”). 
Constructed an historical time series of a month rolling value of RPI(t) at monthConstructed an historical time series of a month rolling value of RPI(t) at month 
t, where:
RPI(t) = Annual RPI Change = RPI_Index(t) / RPI_Index(t-12) - 1

ARIMA(2,[12]) Model Fit
Monthly data Jan 1987 to Dec 2008
Box Jenkins Diagnostic Evaluation tests OKBox-Jenkins Diagnostic Evaluation tests OK
Large residuals in 2008 
Simulation of 5,000 path-dependent scenarios of length 120 months 

RPI(t) = 0.02187 + Y(t)
Y(t) = 1.37756 Y(t-1) - 0.38514 Y(t-2) - 0.7521 e(t-12) + e(t)
e(t) ~ N(0.00000,0.00296)



Case Studies
RPI Case Study Annual RPI Data (1/70 to 12/08)RPI Case Study – Annual RPI Data (1/70 to 12/08)

 
RPI ith5 M i ARPI with 5 year Moving Average 
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Case Studies
RPI Case Study Actual vs Fitted (Last 10 years shown)RPI Case Study – Actual vs Fitted (Last 10 years shown)

RPI - Actual vs Fitted
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Case Studies
RPI Case Study Residuals (Last 10 years shown)RPI Case Study – Residuals (Last 10 years shown)

RPI - Residuals
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Case Studies
RPI Case Study Residuals Distribution (All years)RPI Case Study – Residuals Distribution (All years)

Residuals 
Sample No 262RPI - Residuals Distribution Sample No. 262
Mean 0.000094
Minimum -0.014877
Maximum 0.014730
Std Dev 0.002958
Skewness -0.285210
Kurtosis 7 529413
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Case Studies
RPI Case Study Model Fit and Future ProjectionsRPI Case Study – Model Fit and Future Projections

RPI
Start 1987
E d 2008End 2008

Variable Coefficient t-statistic Probability
C 0.02187 2.112 3.56%
Y(t-1) 1.37756 22.084 0.00%
Y(t-2) -0.38514 -6.204 0.00%Y(t 2) 0.38514 6.204 0.00%
e (t-12) -0.75210 0.041 0.00%

Adj R2 97.9%
Durbin Watson 2.0022
SSR 0.0023
AIC 8 7805AIC -8.7805
SC -8.7261

12 / 09 12 / 10 12 / 11 12 / 12 12 / 13 12 / 14 12 / 15 12 / 16 12 / 17 12 / 18
Forecast 1.39% 2.29% 2.27% 2.26% 2.25% 2.24% 2.23% 2.23% 2.22% 2.22%
Expected 1.40% 2.28% 2.27% 2.28% 2.23% 2.27% 2.24% 2.25% 2.25% 2.22%
St d d D i ti 1 50% 1 57% 1 55% 1 53% 1 54% 1 56% 1 55% 1 55% 1 55% 1 54%Standard Deviation 1.50% 1.57% 1.55% 1.53% 1.54% 1.56% 1.55% 1.55% 1.55% 1.54%
Minimum -3.79% -3.94% -2.82% -2.81% -3.72% -3.20% -3.62% -3.48% -3.45% -5.17%
Maximum 6.57% 7.62% 7.65% 7.70% 7.62% 7.38% 7.84% 8.08% 8.49% 7.99%

Percentile
0.5% -2.50% -1.78% -1.87% -1.58% -1.68% -1.70% -1.64% -1.86% -1.70% -1.78%
1.0% -1.99% -1.41% -1.42% -1.26% -1.28% -1.30% -1.36% -1.32% -1.35% -1.42%
5.0% -1.04% -0.29% -0.36% -0.24% -0.30% -0.28% -0.36% -0.31% -0.29% -0.34%
25.0% 0.39% 1.23% 1.23% 1.26% 1.19% 1.17% 1.21% 1.22% 1.22% 1.20%
50.0% 1.36% 2.31% 2.31% 2.25% 2.23% 2.31% 2.24% 2.26% 2.24% 2.22%
75.0% 2.39% 3.32% 3.30% 3.29% 3.25% 3.34% 3.28% 3.30% 3.29% 3.23%
95.0% 3.87% 4.89% 4.76% 4.80% 4.79% 4.82% 4.82% 4.82% 4.84% 4.76%
99.0% 4.88% 5.91% 5.86% 5.85% 5.77% 5.94% 5.87% 5.80% 5.92% 5.72%
99.5% 5.25% 6.34% 6.22% 6.30% 6.06% 6.28% 6.22% 6.18% 6.37% 5.95%



Case Studies
RPI Case Study Future ProjectionsRPI Case Study – Future Projections

Actual and Forecast RPI - 2004 to 2012

6.00%

8.00%

2.00%

4.00%

E

Forecast

Expected

1%

-2.00%

0.00%

1 /
 04

5 /
 04

9 /
 04

1 /
 05

5 /
 05

9 /
 05

1 /
 06

5 /
 06

9 /
 06

1 /
 07

5 /
 07

9 /
 07

1 /
 08

5 /
 08

9 /
 08

1 /
 09

5 /
 09

9 /
 09

1 /
 10

5 /
 10

9 /
 10

1 /
 11

5 /
 11

9 /
 11

1 /
 12

5 /
 12

9 /
 12

N
A

E 1%

25%

75%

99%

-4.00%

-6.00%

Year



Case Studies
RPI Case Study Four Random Scenarios (Press F9)RPI Case Study – Four Random Scenarios (Press F9)
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Case Studies
FTSE All Share Case Study Data

Data
Monthly data has been used

FTSE All Share Case Study – Data

Monthly data has been used
FTSEASTR(t) – FTSE All Share Total Return Index at the end of each month 
for the period Jan 1987 to Dec 2008 as provided by Bloomberg
Constructed an historical time series of a month rolling value of FTSEAS(t) atConstructed an historical time series of a month rolling value of FTSEAS(t) at 
month t, where:
FTSEAS(t) = FTSEAS Annual Return  = FTSEASTR(t) / FTSEASTR(t-12) - 1

ARIMA(1,[12]) Model Fit
Monthly data Jan 1987 to Dec 2008
Box Jenkins Diagnostic Evaluation tests OKBox-Jenkins Diagnostic Evaluation tests OK 
Relatively largish residuals but still random
Simulation of 5,000 path-dependent scenarios of length 120 months

FTSEAS(t) = 0.07479 + Y(t)
Y(t) = 0.97975 Y(t-1) - 0.93485 e(t-12) + e(t)
e(t) ~ N(0.00000,0.05191)



Case Studies 
FTSE All Share Case Study Annual FTSEAS Data (1/87 to 12/08)FTSE All Share Case Study – Annual FTSEAS Data (1/87 to 12/08)

FTSEAS 
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Case Studies 
FTSE All Share Case Study Actual vs Fitted (Last 10 years shown)FTSE All Share Case Study – Actual vs Fitted (Last 10 years shown)

FTSEAS - Actual vs Fitted
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Case Studies 
FTSE All Share Case Study Residuals (Last 10 years shown)FTSE All Share Case Study – Residuals (Last 10 years shown)

FTSEAS - Residuals
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Case Studies 
FTSE All Share Case Study Residuals Distribution (All years)FTSE All Share Case Study – Residuals Distribution (All years)

Residuals 
FTSEAS R id l Di t ib ti Sample No. 263

Mean 0.002808
Minimum -0.246123
Maximum 0.137776
Std Dev 0.051908
Skewness -0.562577

FTSEAS - Residuals Distribution 
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Case Studies 
FTSE All Share Case Study Model Fit and Future ProjectionsFTSE All Share Case Study – Model Fit and Future Projections

FTSEAS
Start 1987
End 2008End 2008

Variable Coefficient t-statistic Probability
C 0.07479 2.057 4.07%
Y(t-1) 0.97975 64.273 0.00%
e (t-12) -0.93485 -78.133 0.00%( )

Adj R2 90.1%
Durbin Watson 1.8982
SSR 0.7080
AIC -3.0567

12 / 09 12 / 10 12 / 11 12 / 12 12 / 13 12 / 14 12 / 15 12 / 16 12 / 17 12 / 18
Forecast 9.53% 9.08% 8.73% 8.46% 8.25% 8.08% 7.95% 7.85% 7.77% 7.70%
Expected 9.60% 8.97% 8.74% 8.69% 7.93% 8.47% 7.92% 8.11% 7.90% 7.47%
St d d D i ti 16 15% 16 95% 16 63% 16 65% 16 59% 16 78% 16 64% 16 71% 16 49% 16 71%

SC -3.0160

Standard Deviation 16.15% 16.95% 16.63% 16.65% 16.59% 16.78% 16.64% 16.71% 16.49% 16.71%
Minimum -46.81% -58.43% -48.94% -50.47% -65.04% -52.33% -55.41% -58.17% -61.01% -73.11%
Maximum 64.70% 71.63% 70.16% 64.54% 63.85% 74.63% 70.24% 79.36% 84.84% 68.42%

Percentile
0.5% -32.46% -34.16% -33.22% -34.09% -34.18% -32.63% -32.75% -34.93% -34.49% -34.11%
1.0% -27.88% -28.91% -29.30% -29.93% -30.46% -29.02% -29.77% -30.07% -30.88% -31.18%
5.0% -16.64% -18.50% -18.70% -19.43% -19.62% -18.98% -19.39% -18.98% -19.44% -19.94%
25.0% -1.24% -2.82% -2.29% -2.36% -3.15% -3.38% -3.46% -3.00% -3.18% -3.88%
50.0% 9.28% 8.83% 9.09% 9.02% 7.93% 8.44% 7.86% 8.19% 7.89% 7.32%
75.0% 20.35% 20.27% 20.12% 19.87% 19.14% 19.97% 19.16% 18.97% 18.74% 18.97%
95.0% 36.12% 37.15% 35.83% 36.30% 35.22% 36.00% 35.28% 36.22% 35.42% 34.91%
99.0% 47.53% 48.27% 48.18% 46.62% 45.53% 48.05% 47.32% 47.12% 45.73% 45.82%
99.5% 51.84% 52.94% 52.45% 50.54% 49.29% 52.37% 51.51% 49.60% 50.70% 48.94%



Case Studies 
FTSE All Share Case Study Future ProjectionsFTSE All Share Case Study – Future Projections

Actual and Forecast FTSEAS - 2004 to 2012
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Case Studies 
FTSE All Share Case Study Four Random Scenarios (Press F9)FTSE All Share Case Study – Four Random Scenarios (Press F9)
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Case Studies 
Underwriting (“UW”) Cycle Case Study Risk Drivers *

Target variable yt
The concern here is price If a company cannot compete at the prevailing price

Underwriting ( UW ) Cycle Case Study – Risk Drivers 

The concern here is price. If a company cannot compete at the prevailing price 
then it will lose money or business, yet price is multidimensional
Most analyses focus on some form of profitability measure such as the loss 
ratio or combined ratio with possible adjustments for the time value of money a o o co b ed a o poss b e adjus e s o e e a ue o o ey

There are many potential explanatory variables:
Prior period values of profitability and its componentsPrior period values of profitability and its components  
Other internal financial variables such as reserves, investment income, 
catastrophe losses, total capital and reinsurance
Regulatory / ratings variables – especially upgrades and downgradesRegulatory / ratings variables especially upgrades and downgrades
Reinsurance section financials
Economic variables such as inflation, unemployment and GNP
Financial market variables such as interest rates and stock market returnsFinancial market variables such as interest rates and stock market returns

* Enterprise Risk Analysis for Property & Liability Insurance Companies”; (2007); Guy Carpenter



Case Studies 
UW Cycle Case Study Data

Data
Annual data has been used

UW Cycle Case Study – Data

Annual data has been used
Annual Underwriting Profit as % of Net Written Premium for the FSA Motor 
insurance class grouping at an overall UK industry level. 
[ Data by FSA insurance class grouping was provided to me I have not been[ Data by FSA insurance class grouping was provided to me. I have not been 
able to verify independently the data. The analysis therefore is more for 
illustration purposes only ]   

ARIMA(2,[3]) Model Fit
Annual data 1987 to Dec 2005
Box-Jenkins Diagnostic Evaluation tests OKBox Jenkins Diagnostic Evaluation tests OK
Not a large volume of data   
Residuals OK but do not appear as random, more a data volume issue

Motor(t) = - 0.09598 + Y(t)
Y(t) = 1.37739 Y(t-1) - 0.81563 Y(t-2) - 0.98131 e(t-3) + e(t)
e(t) ~ N(-0.00370,0.02046)



Case Studies 
UW Cycle Case Study Actual vs Fitted (All years)UW Cycle Case Study – Actual vs Fitted (All years)

Motor - Actual vs Fitted
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Case Studies 
UW Cycle Case Study Residuals (All years)UW Cycle Case Study – Residuals (All years)

Motor - Residuals
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Case Studies 
UW Cycle Case Study Model FitUW Cycle Case Study – Model Fit

Motor
Start 1987
End 2005End 2005

Variable Coefficient t-statistic Probability
C -0.09598 -20.794 0.00%
Y(t-1) 1.37739 9.340 0.00%
Y(t-2) -0.81563 -5.325 0.01%
(t 3) 0 98131 10 934 0 00%e(t-3) -0.98131 -10.934 0.00%

Adj R2 92.2%
Durbin Watson 1.8374
SSR 0.0228
AIC -4 5397AIC 4.5397
SC -4.3409



Conclusions
Conclusions

Time Series modelling techniques can provide an informative insight 
It is helpful if target variables are functions of explanatory variables or prior

Conclusions

It is helpful if target variables are functions of explanatory variables or prior 
values of itself that have economic or business rationale
Avoid over-parameterised models – in-sample vs out-of-sample testing

A visual inspection of the data is key to any analysis

Models fits need to be supported by rigorous statistical diagnostics:
It is far too easy to determine optimal models and parameters that fail basic 
statistical tests such as those for t-statistics and autocorrelation in residuals
If the Model fails these tests one needs to try a different model

Test sensitivity of the model parameters and forecasts to different start 
and end periods
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