

The use of Econometric Time Series Modelling Techniques in ERM

36th Annual GIRO Convention

Richard Shaw (Horgen Capital & Risk Ltd)

6-9 October 2009 EICC, Edinburgh, Scotland

Topics

- Introduction
- Spurious Relationship
- Stochastic Trends
- ARIMA Modelling
- Case Studies
- Conclusions
- Q&A

Introduction Motivation

- Empirical analyses of many financial and business time series data sets reveals autoregressive nature of dependency structures over time e.g.
 - Annual RPI, Annual NAE, Annual FTSE All Share Return etc (see later)
 - Underwriting cycle in non-life insurance
- Fitting distributions to many years, months or days worth of data effectively loses any potentially valuable information that might be in such patterns over time
- ICA Conditional Stress Tests
 - Equities After a large stock market fall ~ 30 50%. Is an ICA Equity Stress Test of a further 40% price fall realistic?
 - Credit Spreads 2008 saw a large widening in credit spreads. Should an existing ICA Credit Spread Stress Test credit spread movement be reduced?

Introduction Objectives

- Two different methodologies:
 - Multivariate Methods These methods seek relationships between the target and explanatory variable using linear or multiple regression techniques
 - Univariate Methods These methods use only the time series of the target variable and exploit the non-independence of successive observations
- This presentation investigates the use of Univariate Methods only
- The following topics are outside the scope of this presentation:
 - Multivariate modelling or partial Univariate / Multivariate models
 - ARCH / GARCH modelling
 - Back-testing

Spurious Relationship

Two independent random variables X and Y

Consider two independent random variables X_t and Y_t

$$X_{t} = X_{t-1} + \varepsilon_{t}$$

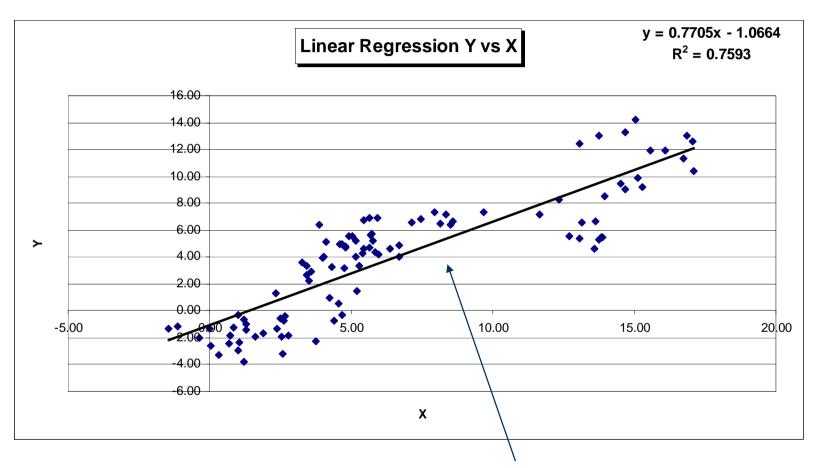
$$Y_{t} = Y_{t-1} + \delta_{t}$$

 ε_t and δ_t are N(0,1) distributed

$$X_0 = Y_0 = 5$$

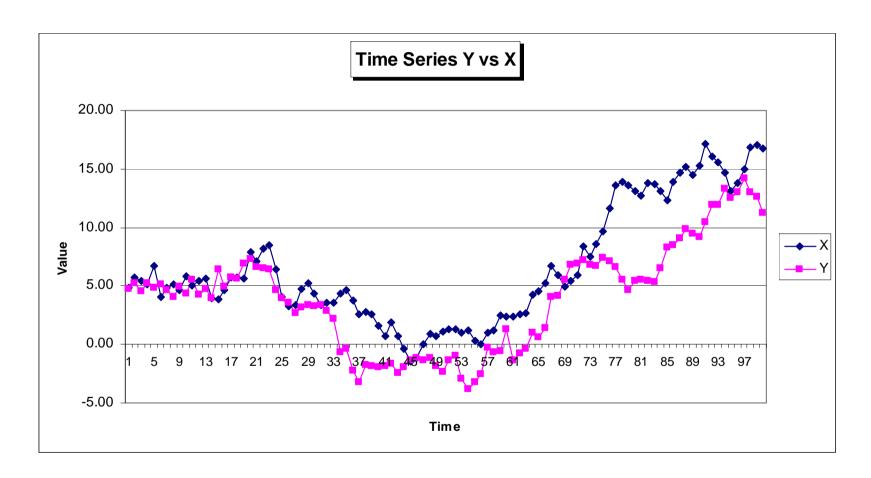
- Generate a random sample of 100 values for X_t and Y_t for t = 1 to 100
- Using this output the linear correlation and R² have been calculated
- X and Y are not related and yet it is common, in repeated runs, to observe very high correlations far in excess of those expected from sampling error in the N(0,1) values

Spurious Relationship Scatter Diagram – Linear Regression

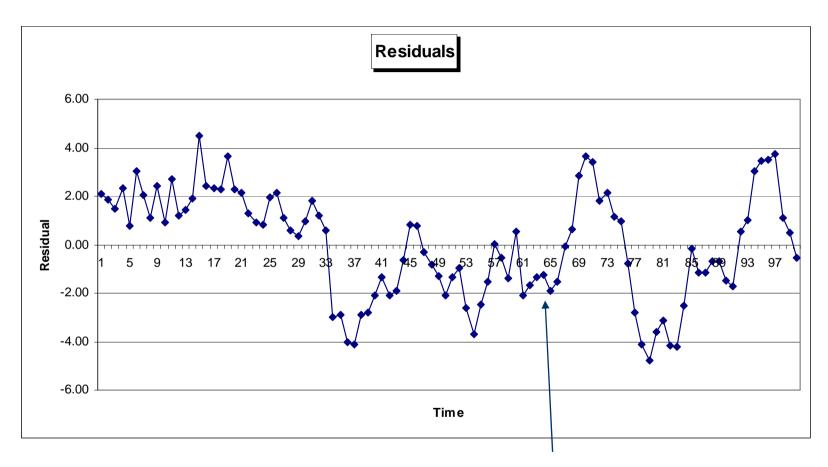


Linear Correlation = 87.1% ; DW = 0.283

Spurious Relationship Time Series Diagram



Spurious Relationship Residuals Diagram



Significant autocorrelation in residuals

Spurious Relationship Residual Assumptions

- Actual_t Fitted_t = Residual ε_t
- Quality of parameter estimates and validity of significance tests rely upon the residuals $\varepsilon_t \sim N(0,\sigma)$
- Residuals must be
 - Normally distributed
 - Independent (no autocorrelation)
 - Same variance (no heteroscedasticity)
- Intuitively residuals should be simple randomness that remain after the deterministic part of the variation in a target variable has been modelled
 - Any systematic component in the error terms should really be in the model
 - If each residual is related to it's predecessor they are described as autocorrelated

Spurious Relationship Trending Variables

- The stochastic trends in X_t and Y_t are unrelated so linear regression cannot explain the variation of one with the other.
 - The residuals contain both stochastic trends hence autocorrelation
- Establishing existence of trend is important for univariate modelling. Trend must first of all be removed. There are two types of trend:
 - Deterministic: e.g. $y_t = a + bt$
 - Stochastic: e.g. random walk y_t = y_{t-1}+ ε_t
- Most trending series in economics and business are not deterministic but are stochastic i.e. they exhibit random walk type behaviour
 - The identification of stochastic trend is a test for stationarity
 - A stochastic trend is removed by differencing e.g. cconverting an RPI value at month t to an annual RPI return at month t is in effect differencing the variable.

Stochastic Trends Autocorrelation

- Let the variable y at time t = y_t and lagged variable y at time t-k = y_{t-k}
 - 1st order autocorrelation r₁ = corr(y_t,y_{t-1})
 - 2nd order autocorrelation $r_2 = corr(y_t, y_{t-2})$
 - kth order autocorrelation r_k = corr(y_t,y_{t-k})
- The Autocorrelation Function ("ACF") measures the correlation between 2 variables y_t and y_{t-k}.
- The Partial Autocorrelation Function ("PACF") measures the additional effect of y_{t-k} on y_t , once effects of y_{t-1} , y_{t-2} , $y_{t-(k-1)}$ have been accounted for
- Autocorrelation Plot (Correlogram)
 - This s very useful for analysing time series data and determining the most appropriate time series model
 - The correlogram displays 95% bounds at each lag that enable quick tests of whether each value is significantly different from zero.

Stochastic Trends Uses for Autocorrelation

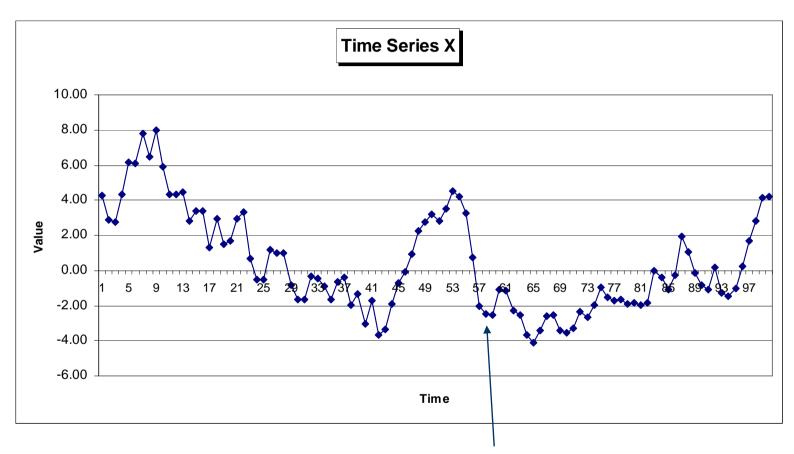
- y_t Random
 - All autocorrelations are small
- y_t Stationary
 - Autocorrelations rapidly decrease as lag increases
- y_t Trending
 - Many large autocorrelations
- Checking residuals are simple randomness.
 - It can be impossible to eliminate all autocorrelations from residuals
- ARIMA Modelling (see later)

Stochastic Trends Some Useful Time Series

- $y_t = \varepsilon_t$ Purely random process ('white noise')
 - ε_t has the same mean and variance and no auotcorrelation
- y_t follows an autoregressive process if it depends linearly on past observations of y_t
 - $y_t = a_0 + a_1 y_{t-1} + a_2 y_{t-2} + a_3 y_{t-3} ... + a_p y_{t-p} + \varepsilon_t$
 - ε_t is white noise as above
 - Simplest case is autoregression of order one $y_t = a_0 + a_1 y_{t-1} + \varepsilon_t$
- Let $y_t = \phi y_{t-1} + \varepsilon_t$
 - If $Mod(\phi) > 1$ then y_t is said to be non-stationary these are easy to spot
 - If $Mod(\phi)$ < 1 then y_t is said to be stationary (mean reverting) the forecast function converges to the mean
 - If Mod(φ) = 1 then y_t is non-stationary it meanders stochastically and is known as a random walk

Stochastic Trends

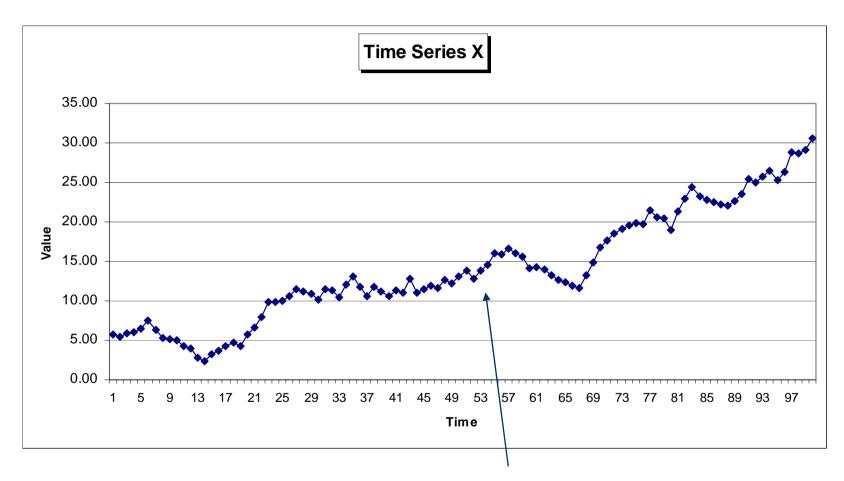
Some Useful Time Series – $y_t = 0.9y_{t-1} + \varepsilon_t$



Example of a mean reverting trend

Stochastic Trends

Some Useful Time Series – $y_t = 1.03y_{t-1} + \varepsilon_t$



Example of a non-stationary trend

ARIMA Modelling Stationarity

- Time Series Modelling requires knowledge of the mean, variance and autocorrelations
- A series y_t is said to be stationary if it has constant mean, constant variance and constant autocorrelations at each lag
- If a series is stationary, modelling can proceed by estimating the mean, variance and auotcorrelations from significantly long time averages of the series
- A stationary series is not necessarily completely random as it can have autocorrelation
- The most fundamental property is stationarity in the mean

ARIMA Modelling ARIMA (p,d,q)

- Box-Jenkins is a univariate forecasting approach
 - It involves the careful examination of time series in order to identify the underlying data-generating process
 - The choice of best model can be systematically made using this approach
- It is useful to restrict the search for models to the class of
 AutoRegressive Integrated Moving Average Models ARIMA(p,d,q)
- An ARMA(p,q) model for variable y_t is a combination of an autoregressive process of order p, AR(p) and a moving average process of order q, MA(q) where:

AR(p), ARMA(p,0) process
$$y_t = a_1y_{t-1} + a_2y_{t-2} + a_3y_{t-3} + a_py_{t-p} + \varepsilon_t$$

MA(q), ARMA(0,q) process
$$y_t = b_1 e_{t-1} + b_2 e_{t-2} + b_3 e_{t-3} + b_q e_{t-q} + \epsilon_t$$

ARIMA Modelling ARIMA (p,d,q)

An ARIMA(p,d,q) process:

$$y_t = a_1 y_{t-1} + a_2 y_{t-2} + a_3 y_{t-3} + a_p y_{t-p} + b_1 e_{t-1} + b_2 e_{t-2} + b_3 e_{t-3} + b_q e_{t-q} + \epsilon_t$$

- If a variable must be differenced d times in order to achieve stationarity it is said to be integrated or order d.
- d =1 would mean that the variable now being modelled = $\Delta y_t = y_t y_{t-1}$
- An AR model of sufficiently high order can usually be found to model any business series
 - If a large number of parameters are required for a good fit, forecasts can be poor. This motivates working with a broader class of models
 - Since the amount of data is limited it is preferable to fit a model involving as few a parameters as possible
 - This is known as the "Principle of Parsimony".
- Experience suggests that an ARMA(p,q) model may achieve as good a fit as an AR(p') model but with fewer parameters i.e. p+q < p'

ARIMA Modelling Box-Jenkins Methodology

- Differencing a time series to achieve Stationarity
- Identification of a model to be tentatively used
 - Inspection of the Autocorrelation function ("ACF") and
 - Partial autocorrelation function ("PACF") at different lags
- Estimating the parameters of the model
 - Maximum Likelihood, Least Squares etc.
 - This amounts to the minimisation of a complicated non-linear function of parameters that involves iterative numerical procedures
- Diagnostic Evaluation Is the model adequate
 - t-statistics (and p-values); Durbin-Watson ("DW")
 - Residuals; Ljung-Box Q-statistic; AIC, SIC, Adj. R² etc.

ARIMA Modelling Comparing the fit of different models

- Adjusted R² ("Adj. R²") Adj. R² = 1/(n-k-1) $\Sigma_{i=1}$ e_i² / 1/(n-1) $\Sigma_{i=1}$ (y_i – E(y))²
- Akaike Information Criterion ("AIC")
 AIC = 1 + In(2π) + In(SSR/n) + 2k / n
- Schwartz Bayesian Criterion ("SBC")
 SBC = 1 + In(2π) + In(SSR/n) + k In(n) / n

Sum of Squared Residuals ("SSR")

$$SSR = \Sigma_{i=1} e_i^2$$

n = number of observations; k = number of explanatory variables

ARIMA Modelling Durbin-Watson ("DW") Statistic

- The DW Statistic evaluates autocorrelation for residuals placed in the same order as the data observations
- DW = $\Sigma_{i=2}(e_i e_{i-1})^2 / \Sigma_{i=1}e_i^2$
- **DW** ~ **2(1-r)** where r = autocorrelation
 - DW = 2 no autocorrelation
 - DW > 2 negative autocorrelation
 - DW < 2 positive autocorrelation
- The DW statistic is used instead of r because strict tests exist to examine whether DW is significantly different from 2

ARIMA Modelling Autocorrelation diagnostic evaluation

- Residuals should be white noise
- The ACF of residuals should be investigated
- Can test for autocorrelation in residuals for several lags together
- Under null hypothesis of no autocorrelation in the first m lags, the Ljung-Box Q-statistic has a chi-squared distribution with d.f. = (m-p-q)

Q(m) = n(n+2)
$$\Sigma_{i=1} r_i^2 / (n-i) \sim \chi^2_{m-p-q}$$

where
$$r_i = corr(e_t, e_{t-i})$$

Case Studies RPI Case Study – Data

Data

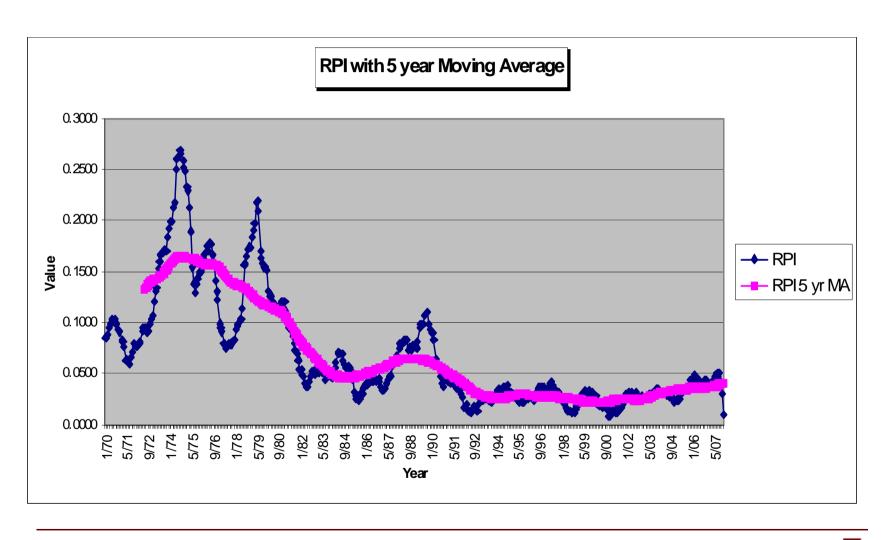
- Monthly data has been used
- RPI_Index(t) RPI at the end of each month for the period Jan 1970 to Dec 2008 as provided by the Office of National Statistics ("ONS").
- Constructed an historical time series of a month rolling value of RPI(t) at month t, where:

RPI(t) = Annual RPI Change = RPI_Index(t) / RPI_Index(t-12) - 1

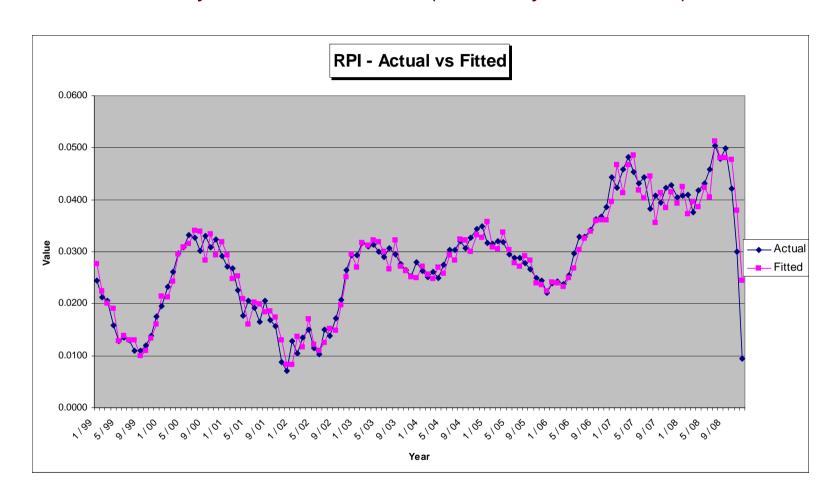
- ARIMA(2,[12]) Model Fit
 - Monthly data Jan 1987 to Dec 2008
 - Box-Jenkins Diagnostic Evaluation tests OK
 - Large residuals in 2008
 - Simulation of 5,000 path-dependent scenarios of length 120 months

```
RPI(t) = 0.02187 + Y(t)
Y(t) = 1.37756 Y(t-1) - 0.38514 Y(t-2) - 0.7521 e(t-12) + e(t)
e(t) ~ N(0.00000,0.00296)
```

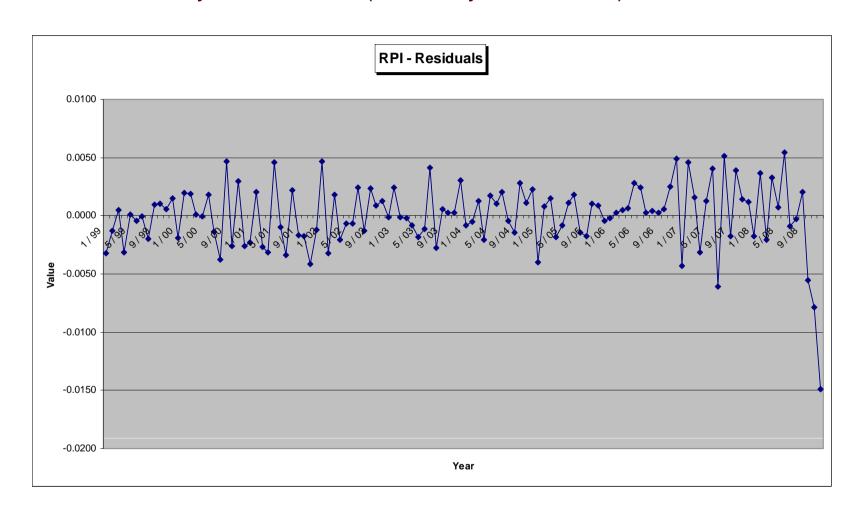
Case Studies RPI Case Study – Annual RPI Data (1/70 to 12/08)



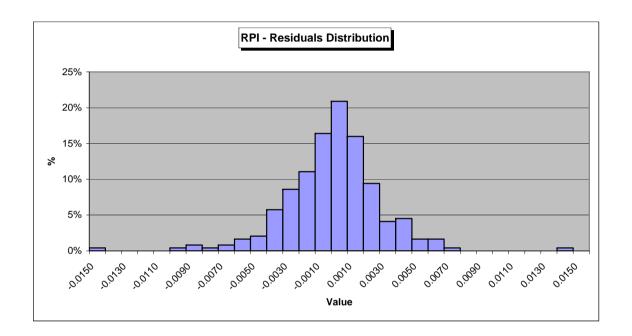
Case Studies RPI Case Study – Actual vs Fitted (Last 10 years shown)



Case Studies RPI Case Study – Residuals (Last 10 years shown)



Case Studies RPI Case Study – Residuals Distribution (All years)



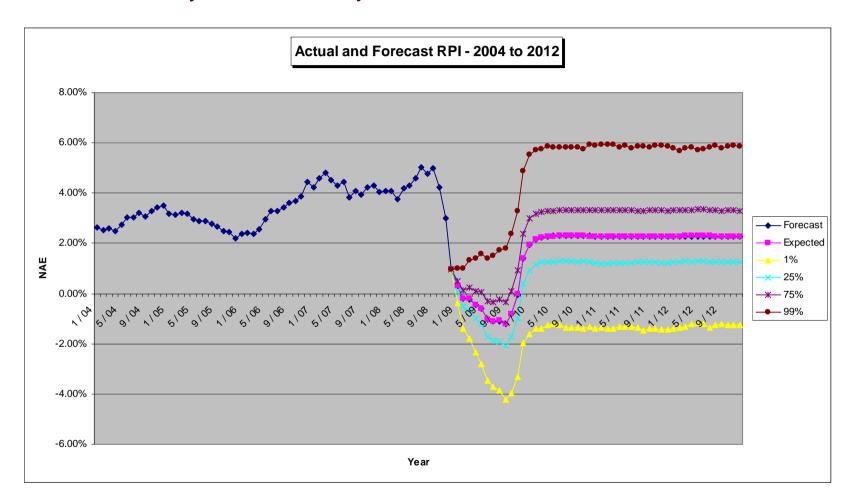
Residuals	
Sample No.	262
Mean	0.000094
Minimum	-0.014877
Maximum	0.014730
Std Dev	0.002958
Skewness	-0.285210
Kurtosis	7.529413

Case Studies RPI Case Study – Model Fit and Future Projections

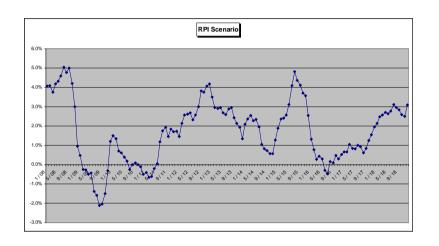
RPI			
Start	1987		
End	2008		
Variable	Coefficient	t-statistic	Probability
С	0.02187	2.112	3.56%
Y(t-1)	1.37756	22.084	0.00%
Y(t-2)	-0.38514	-6.204	0.00%
e (t-12)	-0.75210	0.041	0.00%
Adj R²	97.9%		
Durbin Watson	2.0022		
SSR	0.0023		
AIC	-8.7805		
SC	-8.7261		

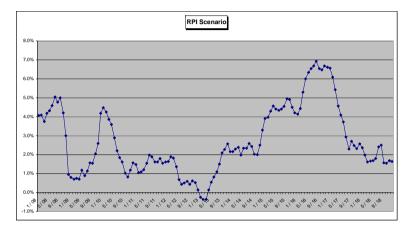
	12 / 09	12 / 10	12 / 11	12 / 12	12 / 13	12/14	12 / 15	12 / 16	12 / 17	12 / 18
Forecast	1.39%	2.29%	2.27%	2.26%	2.25%	2.24%	2.23%	2.23%	2.22%	2.22%
Expected	1.40%	2.28%	2.27%	2.28%	2.23%	2.27%	2.24%	2.25%	2.25%	2.22%
Standard Deviation	1.50%	1.57%	1.55%	1.53%	1.54%	1.56%	1.55%	1.55%	1.55%	1.54%
Minimum	-3.79%	-3.94%	-2.82%	-2.81%	-3.72%	-3.20%	-3.62%	-3.48%	-3.45%	-5.17%
Maximum	6.57%	7.62%	7.65%	7.70%	7.62%	7.38%	7.84%	8.08%	8.49%	7.99%
Percentile										
0.5%	-2.50%	-1.78%	-1.87%	-1.58%	-1.68%	-1.70%	-1.64%	-1.86%	-1.70%	-1.78%
1.0%	-1.99%	-1.41%	-1.42%	-1.26%	-1.28%	-1.30%	-1.36%	-1.32%	-1.35%	-1.42%
5.0%	-1.04%	-0.29%	-0.36%	-0.24%	-0.30%	-0.28%	-0.36%	-0.31%	-0.29%	-0.34%
25.0%	0.39%	1.23%	1.23%	1.26%	1.19%	1.17%	1.21%	1.22%	1.22%	1.20%
50.0%	1.36%	2.31%	2.31%	2.25%	2.23%	2.31%	2.24%	2.26%	2.24%	2.22%
75.0%	2.39%	3.32%	3.30%	3.29%	3.25%	3.34%	3.28%	3.30%	3.29%	3.23%
95.0%	3.87%	4.89%	4.76%	4.80%	4.79%	4.82%	4.82%	4.82%	4.84%	4.76%
99.0%	4.88%	5.91%	5.86%	5.85%	5.77%	5.94%	5.87%	5.80%	5.92%	5.72%
99.5%	5.25%	6.34%	6.22%	6.30%	6.06%	6.28%	6.22%	6.18%	6.37%	5.95%

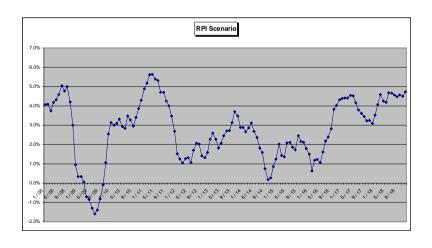
Case Studies RPI Case Study – Future Projections

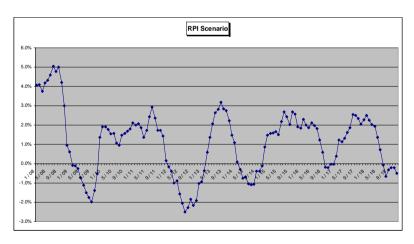


Case Studies RPI Case Study – Four Random Scenarios (Press F9)









Case Studies FTSE All Share Case Study – Data

Data

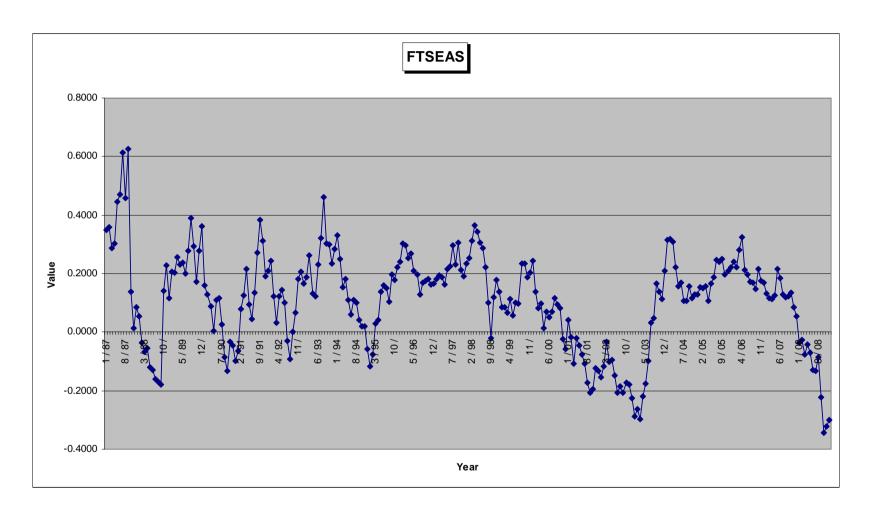
- Monthly data has been used
- FTSEASTR(t) FTSE All Share Total Return Index at the end of each month for the period Jan 1987 to Dec 2008 as provided by Bloomberg
- Constructed an historical time series of a month rolling value of FTSEAS(t) at month t, where:

FTSEAS(t) = FTSEAS Annual Return = FTSEASTR(t) / FTSEASTR(t-12) - 1

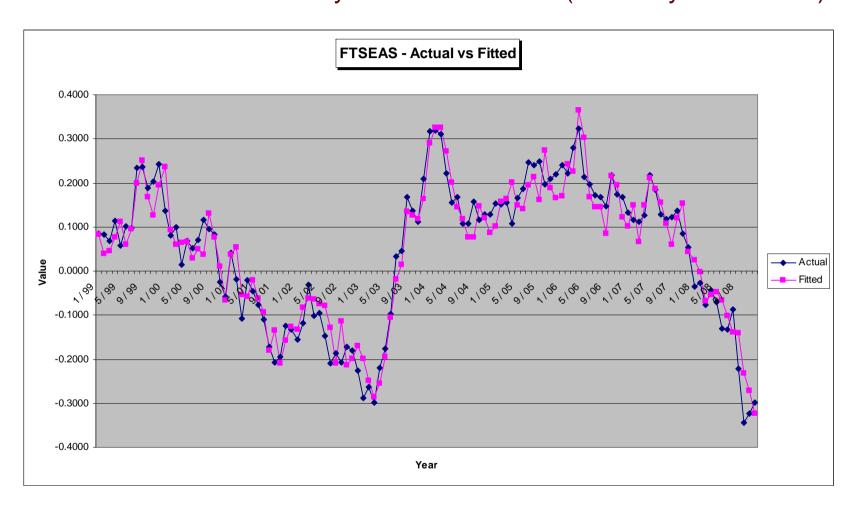
- ARIMA(1,[12]) Model Fit
 - Monthly data Jan 1987 to Dec 2008
 - Box-Jenkins Diagnostic Evaluation tests OK
 - Relatively largish residuals but still random
 - Simulation of 5,000 path-dependent scenarios of length 120 months

```
FTSEAS(t) = 0.07479 + Y(t)
Y(t) = 0.97975 Y(t-1) - 0.93485 e(t-12) + e(t)
e(t) ~ N(0.00000,0.05191)
```

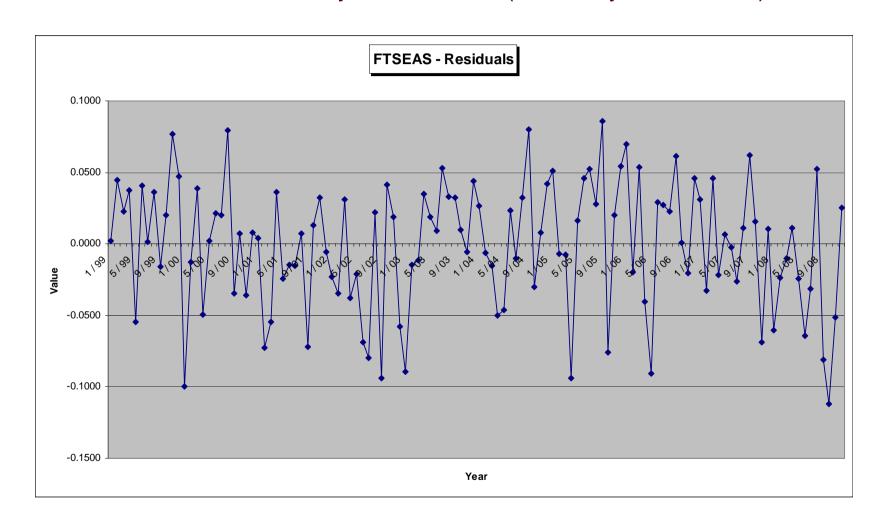
Case Studies FTSE All Share Case Study – Annual FTSEAS Data (1/87 to 12/08)



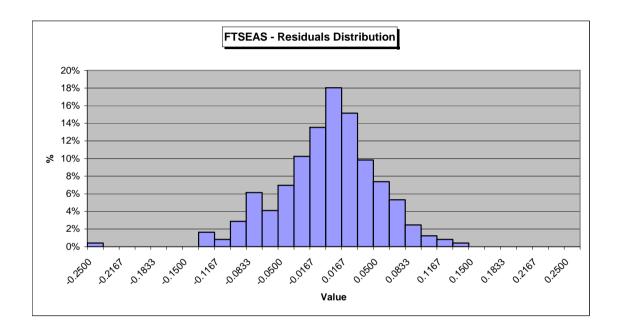
Case Studies FTSE All Share Case Study – Actual vs Fitted (Last 10 years shown)



Case Studies FTSE All Share Case Study – Residuals (Last 10 years shown)



Case Studies FTSE All Share Case Study – Residuals Distribution (All years)



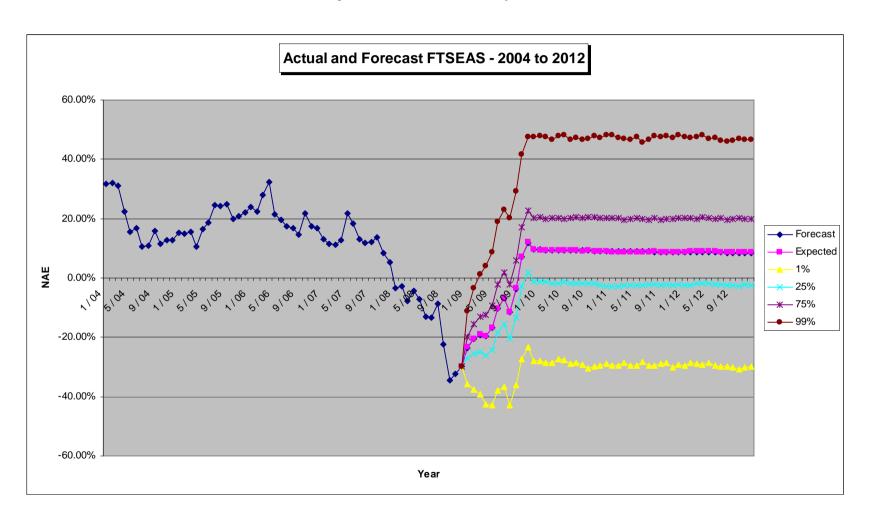
Residuals	
Sample No.	263
Mean	0.002808
Minimum	-0.246123
Maximum	0.137776
Std Dev	0.051908
Skewness	-0.562577
Kurtosis	4.535745

Case Studies FTSE All Share Case Study – Model Fit and Future Projections

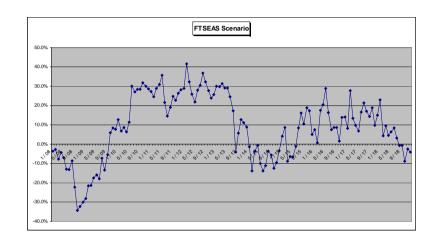
FTSEAS			
Start	1987		
End	2008		
Variable	Coefficient	t-statistic	Probability
С	0.07479	2.057	4.07%
Y(t-1)	0.97975	64.273	0.00%
e (t-12)	-0.93485	-78.133	0.00%
Adj R²	90.1%		
Durbin Watson	1.8982		
SSR	0.7080		
AIC	-3.0567		
SC	-3.0160		

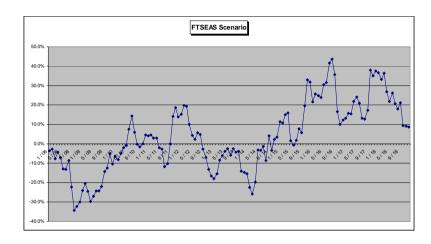
	12 / 09	12 / 10	12 / 11	12 / 12	12 / 13	12 / 14	12 / 15	12 / 16	12 / 17	12 / 18
Forecast	9.53%	9.08%	8.73%	8.46%	8.25%	8.08%	7.95%	7.85%	7.77%	7.70%
Expected	9.60%	8.97%	8.74%	8.69%	7.93%	8.47%	7.92%	8.11%	7.90%	7.47%
Standard Deviation	16.15%	16.95%	16.63%	16.65%	16.59%	16.78%	16.64%	16.71%	16.49%	16.71%
Minimum	-46.81%	-58.43%	-48.94%	-50.47%	-65.04%	-52.33%	-55.41%	-58.17%	-61.01%	-73.11%
Maximum	64.70%	71.63%	70.16%	64.54%	63.85%	74.63%	70.24%	79.36%	84.84%	68.42%
Percentile										
0.5%	-32.46%	-34.16%	-33.22%	-34.09%	-34.18%	-32.63%	-32.75%	-34.93%	-34.49%	-34.11%
1.0%	-27.88%	-28.91%	-29.30%	-29.93%	-30.46%	-29.02%	-29.77%	-30.07%	-30.88%	-31.18%
5.0%	-16.64%	-18.50%	-18.70%	-19.43%	-19.62%	-18.98%	-19.39%	-18.98%	-19.44%	-19.94%
25.0%	-1.24%	-2.82%	-2.29%	-2.36%	-3.15%	-3.38%	-3.46%	-3.00%	-3.18%	-3.88%
50.0%	9.28%	8.83%	9.09%	9.02%	7.93%	8.44%	7.86%	8.19%	7.89%	7.32%
75.0%	20.35%	20.27%	20.12%	19.87%	19.14%	19.97%	19.16%	18.97%	18.74%	18.97%
95.0%	36.12%	37.15%	35.83%	36.30%	35.22%	36.00%	35.28%	36.22%	35.42%	34.91%
99.0%	47.53%	48.27%	48.18%	46.62%	45.53%	48.05%	47.32%	47.12%	45.73%	45.82%
99.5%	51.84%	52.94%	52.45%	50.54%	49.29%	52.37%	51.51%	49.60%	50.70%	48.94%

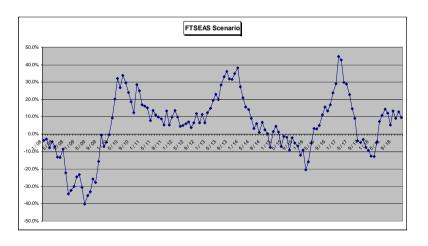
Case Studies FTSE All Share Case Study – Future Projections

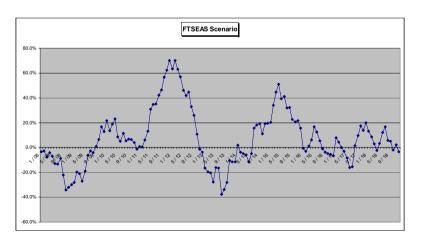


Case Studies FTSE All Share Case Study – Four Random Scenarios (Press F9)









Case Studies Underwriting ("UW") Cycle Case Study – Risk Drivers *

- Target variable y_t
 - The concern here is price. If a company cannot compete at the prevailing price then it will lose money or business, yet price is multidimensional
 - Most analyses focus on some form of profitability measure such as the loss ratio or combined ratio with possible adjustments for the time value of money
- There are many potential explanatory variables:
 - Prior period values of profitability and its components
 - Other internal financial variables such as reserves, investment income, catastrophe losses, total capital and reinsurance
 - Regulatory / ratings variables especially upgrades and downgrades
 - Reinsurance section financials
 - Economic variables such as inflation, unemployment and GNP
 - Financial market variables such as interest rates and stock market returns.

^{*} Enterprise Risk Analysis for Property & Liability Insurance Companies"; (2007); Guy Carpenter

Case Studies UW Cycle Case Study – Data

Data

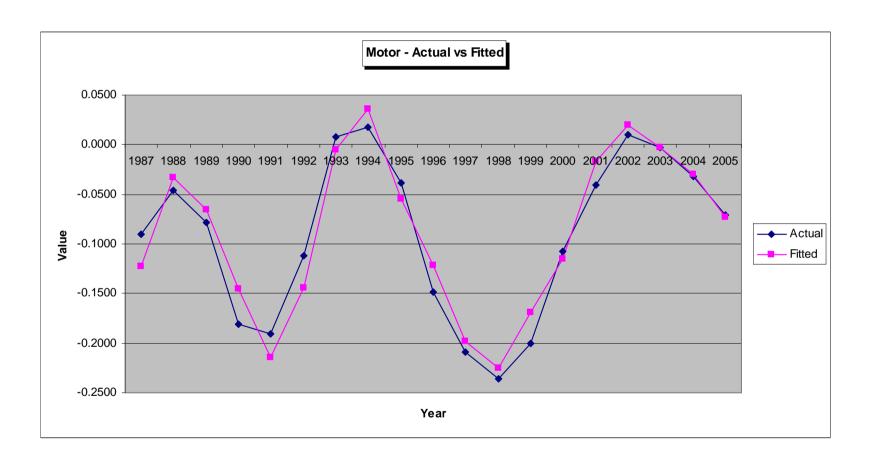
- Annual data has been used
- Annual Underwriting Profit as % of Net Written Premium for the FSA Motor insurance class grouping at an overall UK industry level.
- [Data by FSA insurance class grouping was provided to me. I have not been able to verify independently the data. The analysis therefore is more for illustration purposes only]

ARIMA(2,[3]) Model Fit

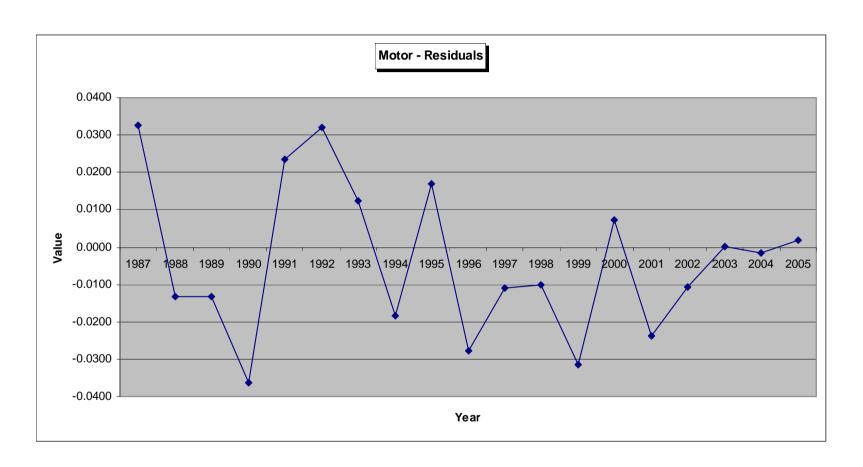
- Annual data 1987 to Dec 2005
- Box-Jenkins Diagnostic Evaluation tests OK
- Not a large volume of data
- Residuals OK but do not appear as random, more a data volume issue

```
Motor(t) = - 0.09598 + Y(t)
Y(t) = 1.37739 Y(t-1) - 0.81563 Y(t-2) - 0.98131 e(t-3) + e(t)
e(t) ~ N(-0.00370,0.02046)
```

Case Studies UW Cycle Case Study – Actual vs Fitted (All years)



Case Studies UW Cycle Case Study – Residuals (All years)



Case Studies UW Cycle Case Study – Model Fit

Motor			
Start	1987		
End	2005		
Variable	Coefficient	t-statistic	Probability
С	-0.09598	-20.794	0.00%
Y(t-1)	1.37739	9.340	0.00%
Y(t-2)	-0.81563	-5.325	0.01%
e(t-3)	-0.98131	-10.934	0.00%
Adj R²	92.2%		
Durbin Watson	1.8374		
SSR	0.0228		
AIC	-4.5397		
SC	-4.3409		

Conclusions Conclusions

- Time Series modelling techniques can provide an informative insight
 - It is helpful if target variables are functions of explanatory variables or prior values of itself that have economic or business rationale
 - Avoid over-parameterised models in-sample vs out-of-sample testing
- A visual inspection of the data is key to any analysis
- Models fits need to be supported by rigorous statistical diagnostics:
 - It is far too easy to determine optimal models and parameters that fail basic statistical tests such as those for t-statistics and autocorrelation in residuals
 - If the Model fails these tests one needs to try a different model
- Test sensitivity of the model parameters and forecasts to different start and end periods

Q&A Q&A

• Questions ?