

The latest issues surrounding catastrophe modelling lan Cook

Using Multiple Catastrophe Models

29 March 2011

What is the problem ?

- Chief Actuary to CEO "The cat model says that our gross 1-in-200 year occurrence loss is £ 512,983,134"
- BAS Technical Standard "TAS R: Reporting Actuarial Information" says

C.5 COMPLETENESS

C.5.1 An **aggregate report** shall include all **material** matters relating to the work being reported on.

Uncertainty

- C.5.2 An **aggregate report** shall indicate the nature and extent of any **material** uncertainty in the information it contains.
- C.5.3 Uncertainty may concern the results of calculations, assumptions on which information is based or other aspects. It may arise from random variations, lack of information or other sources. The extent of any **material** uncertainty may itself be subject to uncertainty.

How to address uncertainty ?

TAS R C.5.4 gives four examples

- Give range for the result i.e. "between X and Y"
 - Cat model doesn't provide these where do we get X & Y from ?
- Present outcomes of scenarios
 - Realistic Disaster Scenarios valid approach but hard to tie to return period.
- Describe and explain why cannot be quantified
 - "Lots, Too hard / Black box" not very helpful !
- Show numerical consequences of changes in assumptions
 - Sensitivity testing changes in model assumptions key. Hard to do with single model.

Use multiple models ?

Multiple Models ?

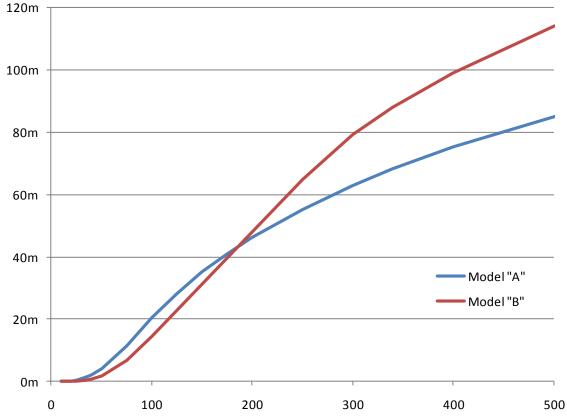
Advantages

- Better communication (harder to hide uncertainty)
- Better understanding of models
- Possibly reduced model change risk

Disadvantages

- Trickier communication ("why can't you just give me one number?")
- More work running/reviewing/understanding
- Can still be misused
- More expensive ?

Using Multiple Models - Blending Introduction

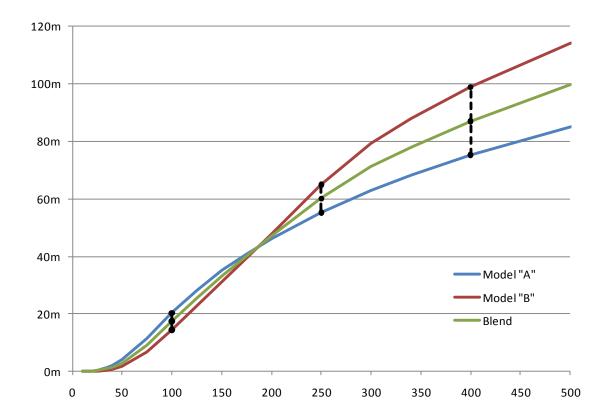

- Simple Blending (with fixed weights)
 - Common approach
 - Alternative approach
- Selecting Model Weights
- More complex blending

Simple Blending

Model Blending Example Raw Model Output

• For illustration we take 2 sets of modelled output

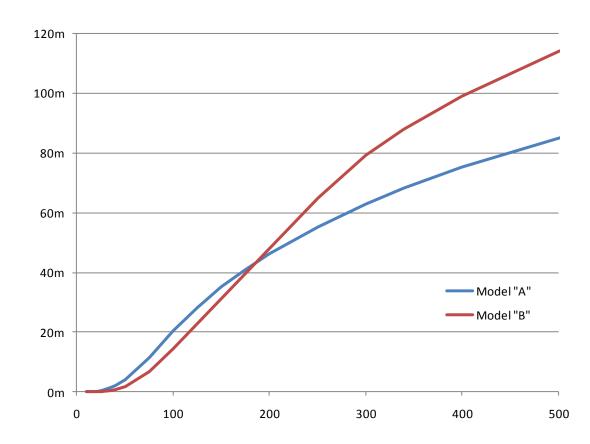
OEP Comparison				
Return Period (years)	Model "A" Loss	Model "B" Loss		
10	499	493		
20	196,627	32,459		
50	3,961,688	1,831,162		
100	20,319,900	14,454,993		
200	46,267,924	47,845,001		
250	55,270,003	64,916,982		
500	85,120,119	114,062,741		
1,000	117,727,549	157,063,091		


Model Blending Common Weighting Approach (1)

• For each return period, take a weighted average of the model losses.

OEP Comparison						
Return Period (years)	Model "A" Loss	Model "B" Loss	Weight "A"	Weight "B"	Blended Loss	
10	499	493	50.0%	50.0%	496	
20	196,627	32,459	50.0%	50.0%	114,543	
50	3,961,688	1,831,162	50.0%	50.0%	2,896,425	
100	20,319,900	14,454,993	50.0%	50.0%	17,387,447	
200	46,267,924	47,845,001	50.0%	50.0%	47,056,463	
250	55,270,003	64,916,982	50.0%	50.0%	60,093,492	
500	85,120,119	114,062,741	50.0%	50.0%	99,591,430	
1,000	117,727,549	157,063,091	50.0%	50.0%	137,395,320	

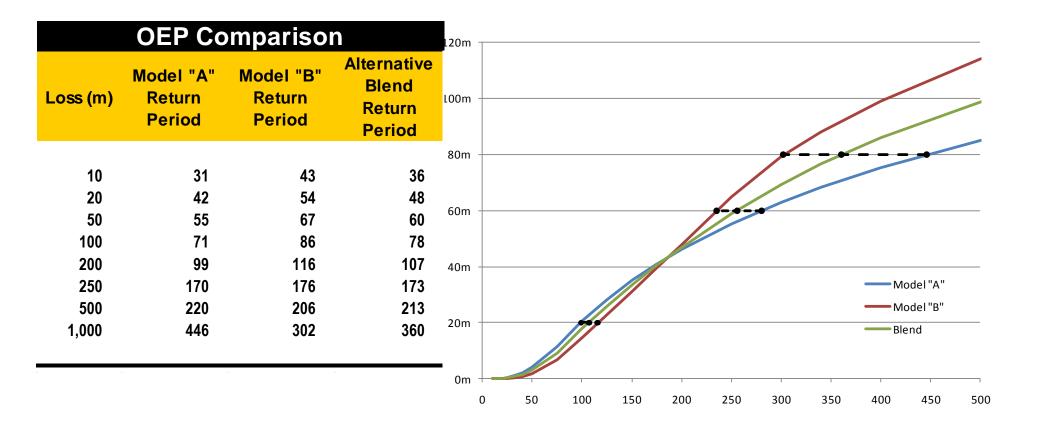
Model Blending Common Weighting Approach (2)


OEP Comparison					
Return Period (years)	Model "A"	Model "B"	Blended		
10	499	493	496		
20	196,627	32,459	114,543		
50	3,961,688	1,831,162	2,896,425		
100	20,319,900	14,454,993	17,387,447		
200	46,267,924	47,845,001	47,056,463		
250	55,270,003	64,916,982	60,093,492		
500	85,120,119	114,062,741	99,591,430		
1,000	117,727,549	157,063,091	137,395,320		

Model Blending Example Raw Model Output (again)

Let's present the curves original curves a different way

OEP Comparison				
	Model "A"	Model "B"		
Loss (m)	Return	Return		
	Period	Period		
1	31	43		
2.5	42	54		
5	55	67		
10	71	86		
20	99	116		
40	170	176		
50	220	206		
80	446	302		
100	691	407		


Model Blending

Alternative Weighting Approach (1)

• For each size of loss, take weighted average of the modelled frequencies.

OEP Comparison						
Loss (m)	Model "A" Return Period	Model "B" Return Period	Weight "A"	Weight "B"	Alternative Blend Return Period	
1	31	43	50.0%	50.0%	36	
2.5	42	54	50.0%	50.0%	48	
5	55	67	50.0%	50.0%	60	
10	71	86	50.0%	50.0%	78	
20	99	116	50.0%	50.0%	107	
40	170	176	50.0%	50.0%	173	
50	220	206	50.0%	50.0%	213	
80	446	302	50.0%	50.0%	360	
100	691	407	50.0%	50.0%	512	

Model Blending Alternative Weighting Approach (2)

Model Blending Common vs Alternative Approach

Comparison

- Are they the same ? No
- How different are they ?
 - It depends. In this case -

up to 40% between 10-15 year return periods up to 3% between 250 and 300 year return periods.

- Why are they different ?
 - Common approach weights severity distributions
 - Alternative approach weights model frequencies
- Why bother using the alternative approach ?

Model Blending Alternative Approach – Event Set Version

Combine ELTs into one larger ELT by weighting event rates

	eventid	rate	loss mean	sd			
	3000001	0.00175380	18,257,179		0.0054733 * 0.5 = 0.00027366		
A	3000002	0.00054733	33,196,280				
Model	3000003	0.00139981	53,617,849		<u> </u>		
MC	3000004	0.00027257	106,984,417		eventid rate	loss mean	Ş
	3000005	0.00019050	133,267,576		3000001 0.000876	90 18,257,179	
	etc				<u>ج</u> 3000002 0.000273	<mark>66</mark> 33,196,280	
					B 3000002 0.000273 S000003 0.000699 S000004 0.000136 S000005 0.000095	91 53,617,849	
						29 106,984,417	
						25 133,267,576	
					<u>→ 2</u> 654321 0.00083	62 70,644	
	eventid	rate	loss mean	sd	a 654321 0.000083 654322 0.000053 654323 0.000026 654324 0.000013	64 3,542,148	
ם	654321	0.00016724	70,644		654323 0.000026	91 10,689,570	
е	654322	0.00010728	3,542,148		E 654324 0.000013	50 46,101,864	
Model	654323	0.00005382	10,689,570		654325 0.000006	77 102,821,364	
N	654324	0.00002700	46,101,864		etc		
	654325	0.00001354	102,821,364				
	etc						

Model Blending Alternative Approach – Simulation Version

For each simulation

- Sample 'u' from a random Uniform(0,1) distribution
- If u < 0.5
 - sample 1 year's events from Model "A" otherwise
 - sample 1 year's events from Model "B"

Trivially generalisable to cat models with YLTs as well as ELTs

Model Blending Common vs Alternative Approach

Why Bother using Alternative Approach ?

- Advantages
 - you have a 'proper' cat model
 - a probability weighted model
 - you have event sets
 - you have physical events & footprints
 - you have a model for correlation between portfolios
- Disadvantages
 - a little bit more work ..

Selecting Model Weights

Model Blending selecting model weights

- Just taking straight arithmetic average is not good enough
- Using multiple models doesn't remove the need to understand what they do or how.
- No theoretically 'correct' weights
- You still need to choose weights
 - Technical considerations
 - Other considerations

Model Blending selecting model weights

Technical considerations

• Peril specific. e.g. EU WS

		Model "A"	Model "B"	Model "C"
	NWP	$\checkmark\checkmark$		
	Historical Data	\checkmark		
Event Set	Statistical Methods	$\checkmark \checkmark$		
EvenicSei	Small-scale events	\checkmark		
	Spatial Coverage	$\checkmark \checkmark$		
	Physical Mechanisms	$\checkmark \checkmark \checkmark$		x
	Orography	$\checkmark \checkmark$		
	Directionality	$\checkmark \checkmark$		
Hazard	Gust Wind Speeds	\checkmark		
	Data Resolution	$\checkmark \checkmark$		
	Hazard Model Resolution	$\checkmark \checkmark$		
	Engineering Knowledge	$\checkmark \checkmark$		
Vulnerability	Claims Data	\checkmark		
vunerability	Flexibility	$\checkmark \checkmark$		
	Validation	$\checkmark \checkmark$		

Model Blending selecting model weights

Wider model considerations

- age & provenance
- frequency, magnitude & direction of model revisions
- vendor openness
- external scrutiny
- ranking of output

Other considerations

- company's risk appetite
- process of reviewing weights

More Complex Model Blending

More Complex Model Blending Introduction

Different Kinds of Blending

- Model Decomposition (or "Mix & Match")
- Variable Weightings
- "Shoehorning"

Decomposition Blending single portfolio

Traditionally

- N Poisson distribution for annual number of events
- X loss severity distribution portfolio 1, i.i.d.

Increasingly

- N frequency distribution for annual number of events
- X_i severity distribution of i'th event X_i
- $C_{i,j}$ copula for joint distribution of X_i and X_j

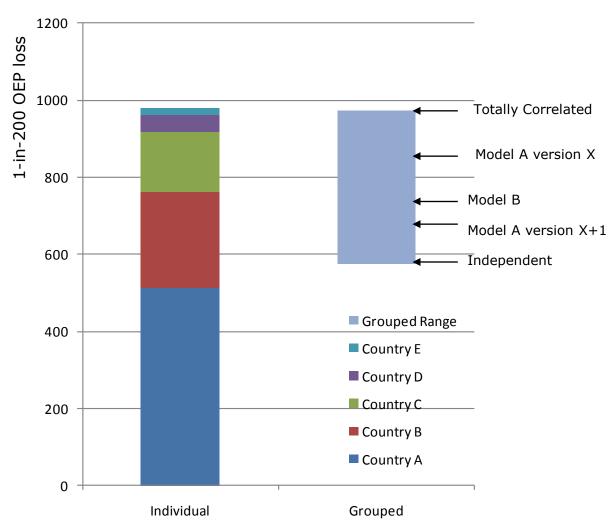
Perhaps Soon

- $C_{N,i,j}$ Copula for joint distribution of N, X_i and X_j,
- For multiple portfolios, C becomes even more complex

Decomposition Blending example

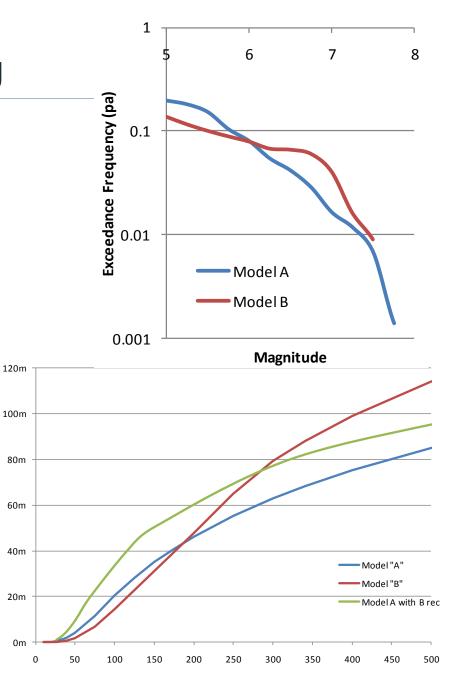
Weight different components of models differently

- Can help sensitivity test specific components
- Take advantage of perceived strength of different models


e.g. a model run might consist of

- per portfolio/country marginals
 - blend of vendor models, other adjustments and client loss experience
- correlations between portfolios/countries
 - vendor model X
- clustering (timing of events in year and correlation between events)
 - Willis 'Kulusuk' Windstorm Clustering Model

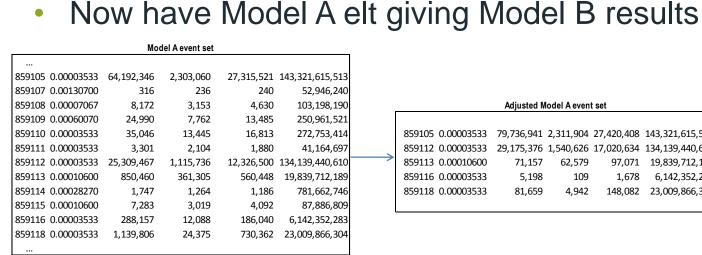
Decomposition Blending example


Windstorm Correlation Sensitivity Testing

- Isolate impact of crosscountry correlation on results by standardising everything else.
- E.g. use Model C for individual country results but use Models A & B for correlation.

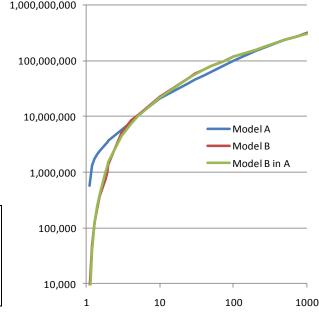
Variable Weight Blending physical hazard weighting

- Isolating component of model
- e.g. earthquake recurrence
 - Model B newer
 - What would our preferred model A look like with B's view here ?
- Weight each event in A's event set differently to give same relationship as B


Advanced Blending shoehorning – example 1

Example 1a

- Portfolio X run in Models A & B
- Questions
 - How can we include Model B result for X in my accumulation management / DFA platform which is based on Model A results format ?


Advanced Blending shoehorning - example 1

- Derive transformation function $f_{B}(x_{A})$ that for a loss x_A return the loss from Model B that has the same return period as x_A does in Model A
- For each event 'i' in the event set calculate the new loss $L^{AB}_{i} = f_{B}(Beta(\mu^{A}_{i},\sigma^{A}_{i},\lambda^{A}_{i}))$
- Approximate distribution L^{AB}, as simple beta distribution

Adjusted Model A event set				
859105 0.00003533	79,736,941	2,311,904	27,420,408	143,321,615,513
859112 0.00003533	29,175,376	1,540,626	17,020,634	134,139,440,610
859113 0.00010600	71,157	62,579	97,071	19,839,712,189
859116 0.00003533	5,198	109	1,678	6,142,352,283
859118 0.00003533	81,659	4,942	148,082	23,009,866,304

OEP Results				
Return Period	Model A	Model B		
2	3,705,683	1,409,271		
5	10,429,647	10,430,537		
10	20,895,335	22,455,111		
25	40,587,687	50,108,111		
50	63,815,740	80,834,450		
100	99,577,609	117,414,574		
200	150,252,370	158,967,331		
250	169,319,973	173,747,476		

Advanced Blending shoehorning – example 2

- Portfolio X run in Model A
- Portfolio Y run in Model B
 - (because Model A can't handle policy conditions)
- What might portfolio Y result look like if it were run in Model A?

X X X X X X X X X X

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

A A A A A A A A A A

2 2 2 2 2 2 2 2 2 2

- For each event in Model B event set
 - Find event with closest footprint in Model A
 - Relabel event with Model A event ID and event rate.
- Now have Model A elt proxy result for Y.

Advanced Blending shoehorning – example 3

- Portfolio X run in Model A
- Portfolio Y run in Model B
- What is grouped result for X+Y?
 - (there is no possibility of running X in B or Y in A)
- This is something the Lloyd's Cat Model has to address.
- potential approaches
 - make additional assumption about correlation
 - use proxy portfolio
 - Model industry portfolio P in Model A
 - Adjust (per example 1) ELT for P in A to results of Y in B.
 - Now have proxy for Y in A elt form
 - Can group with X in A.

Solvency II Internal Models & Multiple Cat Models

Solvency II Passing the IMAP Tests

(Partial) Internal Model Approval

- Passing the Tests in respect of 3rd Party Models
- Sufficiently detailed understanding
 - methodology & limitations
 - assumptions

Solvency II Passing the IMAP Tests

- options for a natural catastrophe peril
 - focus totally on output from a single catastrophe model
 - consider multiple catastrophe model outputs but use one model
 - consider multiple catastrophe model outputs and create a blended model
- Can you really claim to understand a model sufficiently if not aware of alternative approaches and uncertainty ?
- Use of single model would need more detailed understanding ?

Solvency II Internal Model Change Governance

Policy for Changing Internal Model (IM2)

- Must define what a "major change" is
- Needs to consider change in third-party catastrophe model(s)
- Policy subject to approval by regulator

Changes to the Internal Model (IM3)

- Major change requires regulatory approval
 - Same process as for initial model approval
 - 6 months for regulators to decide

Solvency II Internal Model Change Governance

Model Change

- Cat model change could have a bigger impact on insurer's solvency than a major cat event.
 - US WS up 100% ?
 - EU WS down 50% ?
- Would all new model releases be a major change ?
- How long will vendors support older model versions ?
- Could a regulator "unapprove" an internal model using version X of a cat model when the vendor releases a significantly different version X+1 ?

Solvency II Final thought

- If reliant on a single model, should the risk of model change be explicitly modelled in an internal model ?
- Impacts on
 - capital requirement ?
 - cost of re-underwriting portfolio ?
 - reinsurance adequacy ?

Conclusion

Conclusion

- Models are increasing being used and relied upon
- Model results are uncertain
- There are a variety of models with different views and approaches available for cat risk
- Why just rely on one ?
- But, how independent are different models anyway ...

Questions or comments?

Expressions of individual views by members of The Actuarial Profession and its staff are encouraged.

The views expressed in this presentation are those of the presenter.

All comments welcome today or via Willis Re Analytics ian.cook@willis.com