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What are fat tails and why are we interested 
in them?

Extreme events / outcomes seem to occur more often than would be the case if the return series were 
coming from a (log) Normal distribution

Typical academic theory revolves around Normality (law of large numbers, mean-variance optimisation etc.) but 
this doesn’t match observed behaviour

Extreme events can materially disrupt (or, on the upside, materially benefit) portfolio progress

Natural for risk managers to consider (e.g. for stress testing). Also important for portfolio managers.

There are various ways of characterising fat tails in a return distribution
Easiest to see in (c) below, so this is the format we concentrate on in the rest of the presentation

(a) Example Probability Density Function
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(b) Example cumulative probability 
distribution plot
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(c) Example quantile-quantile plot
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What impact ought they to have on portfolio 
construction?

Clients want good performance at an acceptable 
level of risk

i.e. efficient use of the available risk budget
Conceptually involves:

Choosing the right level of risk to run (i.e. the risk 
budget, and
Constructing a portfolio to deliver versus this budget

If all opportunities (and combinations) ‘equally’
(jointly) fat-tailed

Answers the same as using traditional mean-
variance optimisation approaches
With the risk budget adjusted accordingly

If different combinations exhibit differential fat-tailed 
behaviour

Portfolio construction ought in principle to change
If you can reliably estimate these differentials
And if investors do not have solely quadratic utility 
functions out-think out-perform
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Fat-tailed behaviour in individual return 
series

For some markets, fat tails are intrinsically to be expected
e.g. high grade bonds should default infrequently, but when they do, their price movement is typically large

Even when not intrinsically to be expected, they seem to appear anyway!
Although their extent may vary according to timescale

E.g. Monthly, weekly and daily returns for major equity market indices (end June 1994 to end Dec 2007

(1) Monthly Returns
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(2) Weekly Returns
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(3) Daily Returns
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Source: Threadneedle, S&P, FTSE, Thomson Datastream

And in high conviction management

Fat tails are potentially particularly 
important in the hedge fund arena

High conviction typically leads to
Concentrated portfolios, and/or

Portfolios expressing strong thematic 
exposures

Either can make portfolios more 
susceptible to fat tails

Moments of daily returns

FTSE All-Share Threadneedle 
Crescendo UK

Mean 0.02% 0.06%

Standard deviation 1.0% 0.4%

Skew -0.3 0.1

(Excess) Kurtosis 3.5 6.3

Source: Threadneedle, Thomson Datastream, daily returns June 2001 (inception of fund) to Dec 2007

FTSE All-Share & Threadneedle Crescendo

-8

-6

-4

-2

0

2

4

6

8

-4 -3 -2 -1 0 1 2 3 4

Expected (Logged) Standardised Return (sorted)

O
bs

er
ve

d 
(L

og
ge

d)
 S

ta
nd

ar
di

se
d 

R
et

ur
n 

(s
or

te
d)

Expected (if
Normally
distributed)

FTSE All-Share

Threadneedle
Crescendo UK



3

Skew(ness) and kurtosis
Fat tails involve deviation from Normality

Hence at least some of the higher moments of the distribution must deviate from 
Normality

So one might think that a natural way of assessing fat tailed behaviour is by reference to 
the skew and (excess) kurtosis of the return distribution. Both are zero for a Normal 
distribution.

Whilst focusing on skew and kurtosis is the most common way of analysing and 
coping with fat tails, it may not necessarily be the best approach
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Skew and kurtosis have a natural 
interpretation via the so-called Cornish-
Fisher asymptotic expansion

Cornish-Fisher (4th moment version) is a way 
of estimating the shape of the distribution 
from merely the first 4 moments, i.e. mean, 
standard deviation, skew and (excess) 
kurtosis
Regularly appears in risk management 
academic literature
In effect, for standardised returns (zero 
mean, unit standard deviation), it involves 
estimating the shape of the quantile plot 
using the following cubic equation
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Monthly returns (end Jun 1994 to end Dec 2007)
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Flaws in Cornish Fisher (and hence in 
skew/kurtosis) – (1)

Cornish-Fisher doesn’t actually seem to model 
index return distributions particularly well

Particularly for parts of the distribution in which 
Risk Managers might be most interested, i.e. the 
downside tails

Because computation of skew and kurtosis 
may not give the right weight to parts of the 
distribution we are interested in

Gives less weight to observations in the tails, 
because most observations are towards the 
middle of the distribution

Source: Threadneedle, FTSE, Thomson Datastream

Marginal Contribution to Skew and Kurtosis - if returns 
Normally distributed
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Flaws in Cornish Fisher (and hence in 
skew/kurtosis) – (2)

Cornish-Fisher seems to get worse the more 
fat-tailed the distribution is

Despite its use in the hedge fund community

Lacks an intrinsically desirable stability 
property

Impact of applying CF adjustment to a distribution 
already derived from the CF approach

Before After
skew kurtosis skew kurtosis

0 0 0 0
0 0.3 0 0.3
0 0.6 0 0.7
0 1 0 1.3
0 3 0 7
0 5 0 16

-0.4 2.0 -0.6 3.4

Source: Threadneedle

Daily returns June 2001 to Dec 2007
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A better approach to modelling tail 
behaviour?

How about fitting the quantile
plot directly, using normal 
curve-fitting techniques?

E.g. with a cubic curve

Calculation is somewhat 
more complicated

Maybe this is why skew and 
kurtosis are so widely used

Skew/kurtosis:
Do not need data to be 
ordered

Come as pre-canned 
functions in Microsoft Excel, 
i.e. SKEW() and KURT()

Daily returns (End Jun 1994 to end Dec 2007)
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One possible source of fat tails is time-
varying volatility
Because a mixture of Normal 
distributions with different standard 
deviations can have fat tails

Does appear to explain a significant 
proportion of (upside) volatility for some 
major market indices

And potentially some portfolio fat-tailed 
behaviour

Average extent to which tail exceeds expected level 
(average of 6 most extreme outcomes)

Downside (%) Upside (%)

Unadj Adj for vol Unadj Adj for vol
FTSE All-Share 
(in GBP) 54 41 42 3

S&P 500 (in 
USD) 68 70 50 7

FTSE Eur ex 
UK (in EUR) 48 53 54 -3

Topix (in JPY) 54 72 42 39

Daily returns (end Jun 1994 to end Dec 2007, scaled by 50 
business day trailing daily volatility)
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Another possible source: crowded trades

Some fat tails appear to be due to crowded trades

E.g. Quant funds in Aug 2007

Are the views being adopted similar to lots of other people’s views?
If they are and there is a stress, will the portfolio be able to ride out the 
storm

Or will it be one of the portfolios that has to unwind at the “wrong” time?

Is it possible to work out how others are positioned and position 
accordingly?

Implications for risk managers and portfolio 
managers

For risk managers
Skew and kurtosis may be relatively straightforward tools to use to analyse fat tails, but do not 
seem to be ideal, viz Cornish-Fisher approach

Better seems to be to estimate the distributional form directly from observed (sorted) values, 
although the calculations are more complicated

For major western markets, an important source of fat tails (particularly on the upside) seem to 
be time-varying volatility

Conversely, a significant proportion not explained by this effect. Hence merits of stress tests 
etc.

For portfolio managers
Changing volatility levels can be assessed using implied volatility

E.g. from VIX, VDAX, variance swaps, or option prices more generally

Or from credit spreads and Merton-style firm models

But some fat-tails still seem to come out of the blue. Importance of understanding “crowded 
trades”?

Fat-tailed behaviour in joint return series

One obvious approach is to consider:
How fat-tailed each series is in isolation, i.e. each marginal distribution, and

How they might co-move together, i.e. their (joint) copula function

Any multivariate distribution can be expressed this way via Sklar’s theorem:
Suppose that X1, X2, ..., XN are random variables

With marginal distribution functions, i.e. individual cumulative probability distribution 
functions, say, F1(x1), F2(x2), ..., FN(xN)

And a joint distribution function F(x1, x2, ..., xN)

Then F can be characterised by the N marginal distributions and an N-dimensional 
copula, C, i.e. a function that maps a vector of N numbers each between 0 and 1 
onto some value in the range 0 to 1, using:

 )(...)()(),...,,(),...,,( 2112121 NNN xFxFxFxxxCxxxF ××××=
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Visualising multivariate distributions (1)
Unfortunately, as in the univariate case, traditional ways of visualising multivariate distributions 
aren’t always easy to interpret, e.g. Bivariate Normal / Gaussian pdf and cdf, see below
Even harder to visualise if number of dimensions is greater than 2!
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Visualising multivariate distributions (2)
Copulas aren’t much easier to visualise

Although easier to visualise is the difference between two copulas
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Fractile analysis

Monthly pair-wise differences between (log) 
sector relatives (31/12/1998 to 31/12/2007) on 
average have peaks in all four corners

But this partly due to different pairs exhibiting 
different correlations

Principal components (orthogonal by 
construction) also on average show 4 
peaks

Less marked, although still statistically 
significant

Size of peaks reduce materially if adjust 
for time-varying volatility
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Fat-tailed behaviour of sector relative 
returns

Weekly sector 
relative returns 
(industry group, June 
2002 to March 2008) 
appear to exhibit fat 
tails

Both on upside and 
on downside

Extent seems to 
depend on sector
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Cross-sectional dispersion of quantiles

Displaying fat tails exhibited 
by pair-wise combinations of 
series presents challenges

n individual series have  n(n-
1)/2 pair-wise combinations 
for any given weight 
combination

So we need a simpler way of 
presenting spread of fat tails

E.g. measure cross-sectional 
dispersion using quantiles

i.e. quantiles of quantiles

Say 95th, 75th, 50th, 25th, 5th

cross-sectional and average 
for a given expected quantile
level (i.e. x coordinate)
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Cross-sectional dispersion of pair-wise 
combinations (1)
We might combine two sector positions in any linear combination, i.e. combine relative returns 
(r1 and r2) as a1 x r1 + a2 x r2 using any values for a1 and a2

We will concentrate on “X + Y”, i.e. (a1, a2) = (1,1), (-1,-1) ,... (i.e. positions in same direction)

And on “X-Y”, i.e. (a1, a2) = (1,1), (-1,-1) ,... (i.e. positions in opposite directions)

Combinations based on standardised return series, i.e. combinations are volatility weighted 

Spreads pretty similar, maybe a little lower than for individual return series
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Cross-sectional dispersion of pair-wise 
combinations (2)
Time varying volatility again seems to explain a significant proportion of the fat-tailed 
behaviour

Although better now to adjust by the recent average dispersion between sectors

E.g. preceding 10 weeks worth (measured by cross-sectional standard deviation, weighted 
by entire period standard deviation of returns)

Magnitude of residual fat-tailed behaviour similar to that of market indices

Individual Sector Relatives All “X+Y” combinations All “X-Y” combinations
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Fat-tailed behaviour in joint return series

Behaviour of multiple (joint) return series can be decomposed into :
Behaviour of each series in isolation, via marginal distribution

Dependency between series, via copula

We are interested in linear combinations, which can also be analysed directly

Both main market index and sector relative returns appear to be fat tailed
As do combinations of sectors, with some bunching into corners of the copula

Again, time-varying volatility seems to explain some fraction of fat tails
Better modelled by time-varying cross-sectional variability rather than each sector in 
isolation

Hence focus on implied correlation as well as implied volatility

But some fat-tailed behaviour is not explained by time-varying volatility
Crowded trades?

Portfolio construction

Traditional (quantitative) approach to portfolio construction involves portfolio optimisation
Typically mean-variance optimisation

Identify alpha (return) expected from each position

Maximise expected return for a given level of risk subject to constraints (e.g. weights sum to unity)

Or equivalently maximise a.r – lambda.aTVa

Results notoriously sensitive to input assumptions
Treat quant models with scepticism (the fundamental manager’s approach)?

Or otherwise use “robust” approaches, or Bayesian priors/anchors, e.g. Black-Litterman?

Or reverse optimisation, i.e. implied alphas

Mean-variance can be shown to be optimal
either if return distribution is multivariate (log) Normal (as then distribution characterised merely by 
mean and covariance matrix)

or if investors have quadratic utility, i.e. indifferent to deviations from non-Normality

The risk aversion parameter, lambda, not specified a priori – it is in effect defined by the 
“risk budget”
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Portfolio construction – impact of fat-tails

We reiterate: if all return opportunities (and combinations of them) are ‘equally’ (jointly) fat-
tailed then optimal portfolios are the same as those arising if you use traditional mean-
variance optimisation approaches (and adjust the risk budget accordingly)

Most important (predictable) single contributor to fat-tails seems to be time-varying volatility
Both of individual return series in isolation

And, more importantly for multiple return series, changing cross-sectional volatility

Market implied equivalents are implied volatility and implied correlation

Suggested prescription (if your investment process requires an optimiser)?
Calculate co-dependency between return series after stripping out effect of time-varying volatility

Optimise as you think fit (standard, “robust”, Bayesian, Black-Litterman, ...) using adjusted covariance 
matrix and adjusting the risk aversion/risk budget appropriately

Or derive implied alphas using adjusted covariance matrix

Implicitly assumes that all (adjusted) return series exhibit same degree of fat-tailed behaviour

Or continue to treat output from optimisers with some caution!

Other approaches suggested by some 
commentators

Mixtures – e.g. mixtures of multivariate normal distributions
This is how we alighted on time varying volatility as a possible source of fat tails

But even a mixture of just two multivariate Normal distributions has twice as many covariance 
terms to estimate, making parameter estimation correspondingly less reliable

And results of optimisation exercises were already notoriously sensitive to input assumptions!

Lower partial moments
Any return = threshold + upside + downside

Non-quadratic utility will give greater weight to downside rather than upside and will in general 
also depend on higher moments

For single series defined as: lpm(K,m)=E[max((r-K)m,0)]

For multiple return series defined as: lpmi,j(K,m,n)= E[max((ri-K)m(rj-K)n,0)]

I.e. co-skewness, co-kurtosis (or symmetric alternatives)

Lots more parameters to estimate

Use of skew and kurtosis proved not to be ideal even for single return series

Summary

Fat tails are pretty common
Both for individual indices and for multiple (joint) distributions

When analysing fat-tails, treat skew, kurtosis, co-skew, Cornish Fisher etc. with some care
As they don’t necessarily give appropriate weight to the right observations

Better may be to curve-fit the distributional form directly

Time-varying volatility seems to explain some but not all fat-tailed behaviour
Both of individual return series and of joint distributions

But still some “unknown unknowns”, i.e. “Black swans”

Hence merits of stress-testing, implied volatility/correlation analysis, crowded trade analysis

Portfolio construction
Output from optimisers are typically very sensitive to input assumptions

Treat pure quant models with scepticism (the fundamental manager’s perspective)?

Or otherwise use robust optimisation, Bayesian, Black-Litterman, reverse optimisation, …?

Try to avoid introducing even more parameters to estimate

I.e. keep adjustments for fat-tailed behaviour as simple and as intuitive as possible



10

Important Information
• Past performance is not a guide to the future. The value of investments and the income from them is not guaranteed and may fall as well as 

rise and the investor may not get back the original investment. Changes in exchange rates may also cause the value of investments to fall as 
well as rise.

• The mention of any fund does not constitute an offer or invitation to subscribe to shares in such a fund.  The research and analysis included in 
this document has been produced by Threadneedle Asset Management Limited for its own investment management activities and may have 
been acted upon prior to publication.

• In some instances the information contained in this presentation, other than statements of fact, may have been obtained from external sources 
believed to be reliable but its accuracy or completeness cannot be guaranteed.

• Any opinions expressed are as at the date of issue but may be subject to change.

• References to target or expected returns are indicative only and are not guaranteed in any way and may be affected by client constraints as 
well as external factors and management performance.

• Performance figures that relate to a fund or a representative account may differ from that of other separately managed accounts due to such 
differences as cash flows, charges, applicable taxes, and differences in investment strategy and restrictions.

• The views represented here are of the individuals and do not necessarily represent those of Threadneedle Asset Management Limited.

• For Investment Professional Use Only (not for onward distribution to, or to be relied upon by, private investors)

Threadneedle Asset Management Limited, registered no. 573204.
Registered in England and Wales.

Registered offices 60 St. Mary Axe, London EC3A 8JQ
Threadneedle Asset Management Limited is authorised and regulated by the Financial 

Services Authority

Threadneedle is a brand name, and both the Threadneedle name and logo are 
trademarks or registered trademarks of the Threadneedle group of companies
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