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A bit of risk epistemology

 Understanding risk requires building an effective model of the 

environment

 At least as difficult as finding the true theory of the physical world…

 … and the world changes constantly…

 … and so do the rules of the game

 The problem of understanding risk is an “ecological” problem rather 

than a mathematical or a scientific one

 Players must survive and thrive in an uncertain environment

 The environment is a mathematically sophisticated one

 Plenty of  knowledge which can‟t be either rigorously treated nor ignored

Understanding risk in non-life insurance…

 … involves concretely

 Making predictions based on data (“learning from data”), e.g. 

selecting rating factors

 Dealing with uncertain and soft/expert knowledge, e.g. individual 

loss estimates

 Dealing with risk that changes with time, e.g. reserving

 Making successful decisions in a risky environment, e.g. on pricing

 Modelling collective behaviour, e.g. to design regulation on capital 

requirements

 These are typical problems of computational intelligence

 Computational intelligence attempts to design intelligent agents

that deal with the problems above

I. Making data-based predictions 

(„learning from data“)
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Learning from data – An overview

 Many actuarial problems require learning the 

characteristics of a model from a set of data, allowing to 

make predictions:

 Pricing (frequency/severity model)

 Selection of rating factors

 Reserving

 Capital modelling

 The appropriate framework for prediction is machine 

learning (aka statistical learning)

 Supervised learning

 Unsupervised learning

 Objective: predict reinsurance premium Y  based on insurer‟s profile

 Factors: age profile, sex profile, average direct premium, etc

 Given: a dictionary of functions (“features”), select the 

features that are needed to predict the regression function:  

 Feature selection criterion:

Minimise                                    on an independent sample

A simple example: rating factors 

selection

)...,()...,( 2121 nn xxxxxxf

)))(,(()(EPE XfYLEf

EXPECTED PREDICTION ERROR LOSS FUNCTION

 Example of loss function:                                                   (squared loss)
2))(())(,( XfYXfYL

1. Prediction accuracy (on an independent sample!)

 Bias/variance trade-off

2. Interpretation: keep only relevant variables

3. Efficiency

 Best subset selection is computationally intractable

Model selection – Three main issues

Low bias

High variance 
High bias

Low variance 

Model complexity
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 The objective in all cases is estimating the prediction error

 Ideally one should divide the database randomly into three data sets:

 Training set (50%)  to fit the model

 Validation set (25%)  to estimate prediction error for model selection

 Test set (25%)  to estimate the prediction error of the selected model

 When there is insufficient data, EPE(f) can be calculated 

approximately:

 By using K-fold cross-validation

 By using analytical methods such as AIC, BIC, MDL

 By using bootstrap (randomised samples with replacement)

 None of these methods can obviously assess the prediction error on 

new data from a changing/changed risk environment!

Model validation protocols

 The model is of the form Y = g-1( aj j(x1,x2,…xn))

 Loss function: L(Y, f (X))  = - 2 log Prf(X)(Y)

 Main ingredients:

 An error structure (exponential family)

 A link function ( g ) 

 A dictionary of functions { j} (often implicit)

 Model selection and validation (“standard” approach):

 Greedy approach, e.g. forward/backward stepwise selection 

 Include/exclude features based on t-test, F-statistic, AIC, BIC, MDL… 

The industry standard for feature 

selection is GLM

N

d

N
AIC 2loglik

2 N = no of points, 

d = no of parameters, 

loglik = log-likelihood @ max

GLM – Results on our example

Y ~ 1

Y ~ %Young
Y ~ %Male

Y ~ AvgDirPremium  + %Male

Y ~ AvgDirPremium

Y ~ …

Y ~ AvgDirPremium + %Young

Y ~ %Comp

Y ~ …

 A multivariate Gaussian model is sufficient in this case

 Forward selection yields Y ~ AvgDirPremium + %Young as the winning 

model

SELECTED MODEL
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 Main idea: to minimise                                  on an independent 

set, minimise a regularised functional:

on the training set!

 Most famous example: ridge regression

 Model validation is provided by, e.g., k-cross-validation

 Penalty terms can be interpreted in a Bayesian framework

An alternative approach: regularised 

regression
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 l1-penalty on the size of regression coefficients

 Performs automatic variable selection!

 Breaks intractability of subset selection

 Efficient path algorithms are available

 Can be over-zealous in eliminating correlated features

 Corresponds to a Laplace distribution prior
 http://videolectures.net/kdd08_hastie_rpcd/

The lasso (Tibshirani, 1996)
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 How does the lasso achieve variable selection?

 Compare lasso and ridge regularisation

Interpretation of the lasso
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LASSO RIDGE
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Lasso – Results on our example
 Results obtained with the R package “LARS” by Hastie (2007) 
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OPTIMAL SOLUTION

Lasso – Model validation
 Optimal solution is for the regularisation parameter ~ 0.05

 Corresponds to Y ~ AvgDirPremium + %Young, as for GLM
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Other types of regularisation

 Elastic net (Zou & Hastie, 2005)

 Enforces sparsity while avoiding the excesses of lasso

 Can address situations where 

# of parameters » # of observations  !!!

 E.g. microarray data analysis, with groups of correlated genes
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 Nothing but non-linear statistical models

 Can approximate any function 

 No need for detailed specification of the model

 Provide “prediction without interpretation” (Hastie et al., 

2001)

What about neural networks?

Y

Z

X

Outputs

Derived 

features

Features

1
)exp(1)( where vv
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 GLM

 Limited by linearity (but a large dictionary of functions is possible)

 “log P” loss function more general than squared loss

 Greedy algorithms may get stuck in local minima

 Regularised regression

 Breaks intractability and can be extremely efficient

 Can address cases where there # variables » # data points

 Use of quadratic loss function is a limit – or is it?

 Hybrid approaches

 Regularised GLM

Comparison of GLM and regularisation

II. Dealing with uncertain and soft 

knowledge
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Overview

 A significant portion of the things we know about risk is

 Uncertain (model, parameter, data uncertainty)

 Soft or qualitative

 Fuzzy

 Anecdotic

 Techniques to deal with uncertain/soft knowledge

 Rule-based systems, e.g. expert systems

 Fuzzy set theory

 Bayesian analysis

 Dempster-Shafer belief/possibility theory

 Non-monotonic reasoning

An example: severity distribution with data 

uncertainty and prior knowledge

 The problem: find the parameters of the loss severity distribution

 A very simple example:

 Single-parameter Pareto distribution (large losses)

 Data uncertainty depends on amount already paid, size of loss, date of 

loss…

 Underwriting guidelines: between 2 and 5, = 3.5 default 

recommendation

 Crisp data, no prior knowledge

 Use MLE for point estimates and Fisher information matrix or bootstrap for 

standard error

 Captures the notion of an object whose value is not sharply defined: 

e.g. “large loss”, “risky policyholder”

 Membership to a set can be any real number between 0 and 1

 Fuzzy numbers: fuzzy subsets of 

 Fuzzy arithmetic can be defined quite naturally, e.g. A (+) B:

Fuzzy set theory (Zadeh, 1965)

)(xA

x
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 Non-settled loss:

triangular fuzzy number with width 

larger for losses that have a large 

outstanding percentage and are recent

 Use fuzzy arithmetic to produce an MLE-like estimate of the parameters, 

bootstrap for standard errors. E.g., for a Pareto distribution:

 Requires: crisp functions of fuzzy numbers, sum of fuzzy numbers, adding 

crisp and fuzzy numbers…

Example – Using fuzzy set theory (I) 

lnln nx

n

i

 The result is a fuzzy number with membership function

 Prior knowledge on : another fuzzy number  

 Final result: the fuzzy intersection                 of the two estimates

Example – Using fuzzy set theory (II) 

)(' x

)(' x

)(' xA

)(' xA
)(' xAA

)(x

(data-driven) (underwriting guidelines) (combined)

)(x

)(' xAA

 Rule-based approach – Example 1

 Exclude from the data set all losses whose uncertainty is greater than 30%

 Calculate with MLE based on the remaining data points

 If (MLE) is between 2 and 5, keep it

 Else if it is < 2  choose 

 Else choose 

 Rule-based approach – Example 2

 Use parametric bootstrap to get and se( )

 Use a credibility approach to combine the above with underwriter‟s opinion: e.g., 

 (cred) =  Z (bootstrap) + (1 – Z) (underwriter) 

 Z = se( )2 / (Var( )+ se( )2), where Var( ) is the variance of the 

underwriter‟s estimate

 (Subject to being between 2 and 5)

Example – Using rule-based systems
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 Non-settled losses:

 Prior knowledge: 

 No data uncertainty, no prior knowledge: maximise likelihood

 Prior knowledge, no data uncertainty: maximise posterior likelihood 

 Prior knowledge, data uncertainty: maximise posterior with hidden variables

(solve by numerical methods, e.g. Markov Chain Monte Carlo)

 Simplifications possible by including conditional independence constraints, e.g. 

by using Bayesian networks:  crucial with many variables

Example – Using a Bayesian approach

)()|,...(),...|( 11 PXXPXXP nn

nnnnnnn dxdxxXxXPxXxXXXPXXP ...)|,...(),...|ˆ,...ˆ()Pr()ˆ,...ˆ|( 1111111
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,...)5.3,5max,2(min~ modeBeta

 Bayesian networks are compact representations of the joint probability 

distribution through directed acyclic graphs. 

 The posterior probability                               can be calculated by using inference 

by enumeration (see Appendix):

 Information hidden (for simplicity): the distribution below 

Example – Using a Bayesian network
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Fuzzy set theory v Bayesian approach

 Common criticism: “FST just an unwieldy version of probability theory”. 

Is that fair? Both deal with uncertainty, but…

 Conceptual difference: a loss may be exactly £130,000 – but whether this 

loss should be called “large” is vague

 However, the uncertainties we care about are quantitative and not 

linguistic/logical

 Effective toolbox available for those who embrace Bayes: MCMC, Gibbs 

sampling… 

 … whereas anything beyond basic arithmetic is tricky with fuzzy set theory

 FST poor at addressing parameter and model uncertainty 

 Fuzzy numbers always behave as perfectly correlated variables

 Unlike FST, Bayesian methods allow to address model uncertainty

 FST: a much-needed, rigorous extension of set theory, but… is it for us?
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III. Dealing with a changing 

environment

The temporal element

 Dynamic vs static environments:

 In most actuarial problems, the environment is not static – e.g., the 

frequency of losses may be changing due to improved risk control 

mechanisms…

 … and experience reveals itself gradually

 One needs knowledge-update mechanisms

 Why does one need a model which evolves in time?

 Agents have limited time/space resources

 Imagine a situation where very large collections of data are updated…

 Techniques

 Kalman filtering 

 Hidden Markov models

 Dynamic Bayesian networks

Example: Reserving
 Source: Claims reserving, state-space models and the Kalman filter by P. 

De Jong and B. Zenhnwirth (1983)

 Ingredients of a probabilistic temporal model

 Hidden variables xt  true parameters

 Evidence variables zt  latest diagonal

 Transition model P(xt+1|xt)  e.g. random walk model, x(t+1) = x(t) + v(t+1)

 Observation model P(zt | xt)  e.g. zd(t) = x(t-d) (d)+ud (t), (d) = (d+1) exp(-d)

 Prior probability P(x0)  based on triangle available at time 0, e.g. 2003

Development year

0 1 2 3 4 5 6 7 8 9

2000 19,272 56,333 84,499 111,183 131,937 131,937 137,867 131,937 131,937 131,937

2001 30,269 78,700 100,494 117,445 134,396 125,921 127,131 129,553 129,707

2002 32,447 72,268 110,615 109,140 115,039 125,363 126,838 127,247

2003 59,030 134,293 166,759 190,371 178,565 193,322 194,371

2004 81,347 131,298 156,986 165,549 165,549 165,549

2005 63,433 117,805 131,398 132,531 138,000

2006 47,545 86,095 95,090 98,945

2007 42,141 67,836 81,198

2008 44,613 85,880

2009 34,822

Zt+1
(NEW INFORMATION)
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A possible approach: Kalman filtering

 Kalman filtering: regression analysis with a mechanism for updating 

parameters. Classical application: radar tracking

 Key assumption: the current state follows multivariate Gaussian

 Complete set of equations in the Appendix

)( t11t1t HFzKF tt

KALMAN GAIN

(CREDIBILITY)

INFO

UPDATE

TRANSITION

MODEL

PARAMETER 

ESTIMATE @ t

UPDATED 

PARAMETER 

ESTIMATE

OBSERVATION

MODEL

A more general approach: Dynamic Bayesian Networks

 DBN‟s: Bayesian networks representing temporal models 

 Assumptions
 Stationarity (laws governing change don‟t change!)

 (First order) Markov process (current state depends only on previous one)

 Complete joint distribution:

P(X0, X1, … Xt, E1,… Et)= P(X0) j  P(Xj | Xj -1) P(Ej | Xj)

 This is all we need to solve the prediction problem:

 P(Xt+1 | e1:t+1)= P(et+1 | Xt+1) xt P(Xt+1 | xt) P(xt | e1:t)

 Representation as a (unrolled/rolled-up) dynamic Bayesian networks

Xt
Xt+1

Et Et+1

X0 X1 Xt

E1 Et

…Unrolling

TRANSITION MODEL
OBSERVATION MODEL

PRIOR PROBABILITY

Comparison of temporal models
 All Kalman filters can be represented as a DBN (but not vice versa)

 Multivariate Gaussian hypothesis, linearity for Kalman are critical

 Serious non-linearities (e.g. changes of reserving guidelines, judicial 

decisions…) require DBN‟s with both discrete and continuous variables 

 Extended Kalman filters attempt to deal with non-linearities

 Markov Chain Monte Carlo methods can be used for approximate 

inference in DBNs

 Hidden Markov Models (HMM) and DBN are equivalent formulations –

however, DBN‟s are more compact and allow gains from sparsity

 The biggest limitation for all temporal models is stationarity: in all 

cases, a prior model of the possible future changes is needed
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IV.Making decisions in an uncertain 

environment

Overview
 Ultimately, we want to understand risk because we have to make informed 

decisions

 Examples:

 Buying an insurance policy

 Choosing an investment

 Making a business plan

 Buying reinsurance

 Dynamic financial analysis

 In all cases, what is the likely outcome of the decisions we make?

 This is a well-known problem in computational intelligence:

 Designing an intelligent agent which can move in an environment making 

the best decisions – i.e., the decisions which maximise utility

 Main recommended reading: Russell and Norvig, Artificial Intelligence: A 

modern approach, Prentice Hall, 2003

Model players as intelligent agents

 Each agent (e.g. an insurance company) is autonomous and 

incorporates strategies to interact with the environment

 Ignore the other players in the market –all blurred into the 

“environment” 

 Characteristics of the environment

 Fully v partially observable  

 Deterministic v stochastic

 Stationary v non-stationary

 Discrete v continuous

 Intelligent agents in a partially observable, stochastic environment can 

be modelled as Dynamic Decision Networks (DDN‟s)
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 DDN‟s are DBN‟s extended with decision nodes and utility nodes

 Utility:

Example: insurers as dynamic decision 

networks (business planning, DFA) 

Xt-1

Et-1 Et

…

At - 2

Rt-1

At - 1

Xt

Et+1
Rt+1

At 

Xt+1

Et+3

Ut+3

At+2 

Xt+3

Increase price by x%

After-tax profit at time t+1

Utility

0

)()}({
j

j

j

jj sRsU

Losses 

emerged, 

volumes sold…

True risk parameters 

P(Xt+1 |Xt, At)

Rt

IV.Modelling collective behaviour

Overview

 The environment is not really a “blur”… and the other 

players cannot be ignored

 Two main problems:

 Agent design: e.g., maximise utility in the face of competition

 Mechanism design: e.g. you‟re the regulator

 Two main ingredients

 Multi-agent systems

 Game theory (with tournaments, à la Axelrod, but without one-to-

one encounters)
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Example – Personal insurance market

Xt-1

Et-1 Et

…

At - 2

Rt-1

At - 1

Xt

Rt Et+1
Rt+1

At 

Xt+1

Et+3

Ut+3

At+2 

Xt+3

Xt-1

Et-1 Et

…

At - 2

Rt-1

At - 1

Xt

Rt Et+1
Rt+1

At 

Xt+1

Et+3

Ut+3

At+2 

Xt+3

Xt-1

Et-1 Et

…

At - 2

Rt-1

At - 1

Xt

Rt Et+1
Rt+1

At 

Xt+1

Et+3

Ut+3

At+2 

Xt+3

Example (cont‟d)

 Formally, the market can be modelled as a network of DDN‟s 

(except for individual customers)

 The effectiveness of different rules can be tested via stochastic 

simulation, e.g. through an Axelrod-like tournament (game theory)

 The exercise is severely limited by the patchy and fuzzy knowledge 

that each player has of the other players

 The regulator might be in a better position than individual players to 

run such an exercise

 Unlikely to provide exhaustive answers on mechanism design but might 

lead to discover, e.g., unforeseen side-effects of regulation

 Running these simulations might allow to deepen our understanding 

of certain genuinely collective behaviours, e.g. cycles, bubbles…

 E.g., at what level of complexity the typical features of the insurance 

market (including the undewriting cycle) start to emerge? Can its 

length be predicted?

Loss ratio for the whole UK's industry personal lines motor 

business

50%

60%

70%

80%

90%

100%

110%

120%

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

The emergence of truly collective 

behaviour
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Conclusions

So what is the appropriate framework?

 The “intelligent agents” paradigm provides an adequate framework 

for describing and understanding risks

 Risk agents need to learn from data… (machine learning)

 … deal with uncertain/soft knowledge… (Bayesian networks)

 … deal with changes in the environment (dynamic Bayesian networks)

 … make decisions in that environment and modify it… (dynamic decision 

networks)

 … and interact/compete with other risk agents for resources (multi-agent 

systems, game theory)

 Computational intelligence is now more than a collection of 

heuristics, thanks among the others to the “Stanford school” of 

statisticians (Efron, Tibshirani, Hastie, Zou…)

Practical findings

 Regularisation an efficient alternative to GLM for predictive modelling

 Bayesian networks better than fuzzy set theory for dealing with 

uncertain and expert knowledge

 Dynamic bayesian networks (DBN) are a more general method than 

Kalman filtering to capture the changing nature of risk

 Dynamic decision networks – an extension of DBN‟s – a good model for 

agents making decisions in a risky environment

 The main ingredients to understand the collective behaviour of markets 

are multi-agent systems and game theory (stochastic tournaments)

 IT’S A BAYESIAN JUNGLE OUT THERE!
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Limitations

 Current computational intelligence techniques capture the “ecological” 

aspect of risk only up to a point:

 “Prediction” always means prediction in a somehow stationary environment

 The laws themselves change here and people “work the system”… only 

Asimov-style artificial intelligence could address this!

 Soft knowledge on non-stationarity can be introduced in a Bayesian fashion, 

but… 

 Complexity of some of the techniques (e.g. multi-agent systems)

 A parochial view of what “risk” means?

 E.g. where do methods such as derivatives fit in all this?

 Many sources… but two must-haves:

 Hastie, Tibshirani and Friedman, “The elements of Statistical 

Learning: Data Mining, Inference and Prediction”, Springer, 2001

 The book that has given a solid statistical foundation to machine 

learning, by those who invented the bootstrap, the lasso, and much 

else

 Russel and Norvig, “Artificial Intelligence: A Modern Approach”, 

2nd Ed, Prentice Hall, 2003

 The main reference for AI, also known as “The intelligent agents 

book”: responsible for changing the way we look at the discipline

References

Questions?
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Appendix I. Fuzzy set theory

 Fuzzy membership: a fuzzy set A in is a set of ordered pairs 

A = {x, A (x)}, x in , A : X → [0,1] (degree of membership)

 Fuzzy set operations can be defined naturally as:

 Fuzzy number: (informal definition) a fuzzy subset of R whose 

membership function is centred around a given real number. It’s a 

fancy range!

Fuzzy set theory (Zadeh, 1965)
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 Fuzzy arithmetic is based on Zadeh‟s extension principle: if * is a 

binary operation, and A, B are two fuzzy numbers,

 Crisp functions can be defined similarly:

 Quick reference: http://videolectures.net/acai05_berthold_fl/

 A brand-new R package for fuzzy arithmetic: fuzzyOP (March 2009)

Fuzzy arithmetic

}*|))(),({min(sup)( ,)( yxzyxz BAyxBA

)}(|)({sup)()( xfzxz AxAf
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Appendix II. Bayesian networks

 Formally, a Bayesian network is a directed acyclic graph (DAG) where 
 Each node represents a random variable

 There is an arc from X to Y if X affects directly Y (“X is a parent of Y”)

 Each node has a conditional probability distribution Pr(X | Parents(Y)) 

 The topology + conditional probability tables of Bayesian networks are a 

compact representation of the joint probability distribution

 The compactness derives from the sparsity of the connections

 Alternatively, they can be viewed as a collection of independence statements (a 

node is independent of its non-descendants, given its parents)

 The chain rule can be written more compactly as the formula below, which 

defines the full joint distribution as the product of the local conditional 

distributions:

Bayesian networks

),...Pr( 1 nEE

))(Parents|Pr()Pr(),...Pr(
1

1 iii

n

i

n EEEEE

Constructing Bayesian networks
 1. Choose an ordering of variables X1, … ,Xn

 2. For i = 1 to n

 add Xi to the network

 select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)

This choice of parents guarantees:

Pr (X1, … ,Xn) = πi =1 Pr (Xi | X1, … , Xi -1) (chain rule)

= πi =1 Pr (Xi | Parents(Xi)) (by construction)

n

Source: http://aima.eecs.berkeley.edu/slides-ppt/m14-bayesian.ppt (Resources

for Russell & Norvig‟s book)

http://aima.eecs.berkeley.edu/slides-ppt/m14-bayesian.ppt
http://aima.eecs.berkeley.edu/slides-ppt/m14-bayesian.ppt
http://aima.eecs.berkeley.edu/slides-ppt/m14-bayesian.ppt
http://aima.eecs.berkeley.edu/slides-ppt/m14-bayesian.ppt
http://aima.eecs.berkeley.edu/slides-ppt/m14-bayesian.ppt
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Inference in Bayesian networks

 Bayesian networks can be used to calculate the posterior 

distribution of the parameters/random variates we are interested in 

(the query variables)

 A typical query requires to calculate P(X|e) where X is the query 
variable and e is an instance of the evidence variable E. There are 
also hidden variables Y with values y. 

 Exact inference by enumeration:

 P(X | e) = P(X,e) = y P(X,e,y)

 Other inference methods are

 By variable elimination (exact)

 Direct sampling (approximate)

 Markov Chain Monte Carlo methods (approximate)

Appendix III. Markov decision 

processes and DDN„s

 Source: Russel & Norvig, 2003 

 In the case of fully observable environment, an easy, complete solution to optimal 

decision making by an agent is provided by Markov decision processes (MDPs)

 Markov decision processes

 Assumptions: fully observable environment, stochastic, stationary

 Markovian transition model: At each time t, an agent will be in state s and will be able to 

perform an action a. As a consequence, it will move to state s’  with probability T(s,a,s’)

 Utility function: In each state s, the agent receives a reward R(s). The utility of a state 

sequence can either be additive or additive-discounted (no other possibilities!!):

 A rule specifies what each agent should do in any state that it might reach

 An optimal rule is one which maximises expected utility

 The solution can be found with the so-called value iteration algorithm, which is guaranteed to 

converge to a unique solution (see Russell & Norvig, Section 17.2)

Fully observable environments

00

)()}({)()}({
j

j
j

jj

j

jjj sRsUsRsU                 



23/09/2009

21

 Partially observable MDPs (pom-dee-pees)

 The agent does not necessarily know which state it is in

 The utility depends on s and on how much the agent knows about s

 A belief state b is defined as the probability distribution over all possible states

 It can be shown that the optimal action depends on the agent‟s current belief state b 

 The problem of solving a POMDP on a physical state space can be reduced to that of solving 

an MDP on the corresponding belief state space

 A comprehensive approach to POMDPs is provided by dynamic decision networks

Partially observable environments

 DDN’s provide a comprehensive approach to agent design for partially 

observable stochastic environments

 DDN’s are DBN’s extended with decision nodes and utility nodes

 In the network below (which looks ahead three steps), Xt are the state variables, 

Et are the evidence variables, At is the action at time t, Rt is the reward @ t and 

Ut is the utility of the state @ t

 Note that: the transition model is now P(Xt+1 |Xt, At), the observation model is as 

before and Ut is assumed to be available only in approximate form! 

Dynamic Decision Networks (DDN‟s)
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…
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Appendix IV. Kalman filter
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Kalman filtering: model description

 Kalman equations “in their full, hairy horribleness” (Russell and Norvig, 

2003):

 Note that the Kalman gain gives the credibility of the new observation
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