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A bit of risk epistemology

 Understanding risk requires building an effective model of the 

environment

 At least as difficult as finding the true theory of the physical world…

 … and the world changes constantly…

 … and so do the rules of the game

 The problem of understanding risk is an “ecological” problem rather 

than a mathematical or a scientific one

 Players must survive and thrive in an uncertain environment

 The environment is a mathematically sophisticated one

 Plenty of  knowledge which can‟t be either rigorously treated nor ignored

Understanding risk in non-life insurance…

 … involves concretely

 Making predictions based on data (“learning from data”), e.g. 

selecting rating factors

 Dealing with uncertain and soft/expert knowledge, e.g. individual 

loss estimates

 Dealing with risk that changes with time, e.g. reserving

 Making successful decisions in a risky environment, e.g. on pricing

 Modelling collective behaviour, e.g. to design regulation on capital 

requirements

 These are typical problems of computational intelligence

 Computational intelligence attempts to design intelligent agents

that deal with the problems above

I. Making data-based predictions 

(„learning from data“)
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Learning from data – An overview

 Many actuarial problems require learning the 

characteristics of a model from a set of data, allowing to 

make predictions:

 Pricing (frequency/severity model)

 Selection of rating factors

 Reserving

 Capital modelling

 The appropriate framework for prediction is machine 

learning (aka statistical learning)

 Supervised learning

 Unsupervised learning

 Objective: predict reinsurance premium Y  based on insurer‟s profile

 Factors: age profile, sex profile, average direct premium, etc

 Given: a dictionary of functions (“features”), select the 

features that are needed to predict the regression function:  

 Feature selection criterion:

Minimise                                    on an independent sample

A simple example: rating factors 

selection

)...,()...,( 2121 nn xxxxxxf
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EXPECTED PREDICTION ERROR LOSS FUNCTION

 Example of loss function:                                                   (squared loss)
2))(())(,( XfYXfYL

1. Prediction accuracy (on an independent sample!)

 Bias/variance trade-off

2. Interpretation: keep only relevant variables

3. Efficiency

 Best subset selection is computationally intractable

Model selection – Three main issues

Low bias

High variance 
High bias

Low variance 
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 The objective in all cases is estimating the prediction error

 Ideally one should divide the database randomly into three data sets:

 Training set (50%)  to fit the model

 Validation set (25%)  to estimate prediction error for model selection

 Test set (25%)  to estimate the prediction error of the selected model

 When there is insufficient data, EPE(f) can be calculated 

approximately:

 By using K-fold cross-validation

 By using analytical methods such as AIC, BIC, MDL

 By using bootstrap (randomised samples with replacement)

 None of these methods can obviously assess the prediction error on 

new data from a changing/changed risk environment!

Model validation protocols

 The model is of the form Y = g-1( aj j(x1,x2,…xn))

 Loss function: L(Y, f (X))  = - 2 log Prf(X)(Y)

 Main ingredients:

 An error structure (exponential family)

 A link function ( g ) 

 A dictionary of functions { j} (often implicit)

 Model selection and validation (“standard” approach):

 Greedy approach, e.g. forward/backward stepwise selection 

 Include/exclude features based on t-test, F-statistic, AIC, BIC, MDL… 

The industry standard for feature 

selection is GLM

N

d

N
AIC 2loglik

2 N = no of points, 

d = no of parameters, 

loglik = log-likelihood @ max

GLM – Results on our example

Y ~ 1

Y ~ %Young
Y ~ %Male

Y ~ AvgDirPremium  + %Male

Y ~ AvgDirPremium

Y ~ …

Y ~ AvgDirPremium + %Young

Y ~ %Comp

Y ~ …

 A multivariate Gaussian model is sufficient in this case

 Forward selection yields Y ~ AvgDirPremium + %Young as the winning 

model

SELECTED MODEL
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 Main idea: to minimise                                  on an independent 

set, minimise a regularised functional:

on the training set!

 Most famous example: ridge regression

 Model validation is provided by, e.g., k-cross-validation

 Penalty terms can be interpreted in a Bayesian framework

An alternative approach: regularised 

regression
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 l1-penalty on the size of regression coefficients

 Performs automatic variable selection!

 Breaks intractability of subset selection

 Efficient path algorithms are available

 Can be over-zealous in eliminating correlated features

 Corresponds to a Laplace distribution prior
 http://videolectures.net/kdd08_hastie_rpcd/

The lasso (Tibshirani, 1996)

||...|||| 
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 How does the lasso achieve variable selection?

 Compare lasso and ridge regularisation

Interpretation of the lasso
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LASSO RIDGE
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Lasso – Results on our example
 Results obtained with the R package “LARS” by Hastie (2007) 
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Lasso – Model validation
 Optimal solution is for the regularisation parameter ~ 0.05

 Corresponds to Y ~ AvgDirPremium + %Young, as for GLM
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Other types of regularisation

 Elastic net (Zou & Hastie, 2005)

 Enforces sparsity while avoiding the excesses of lasso

 Can address situations where 

# of parameters » # of observations  !!!

 E.g. microarray data analysis, with groups of correlated genes

22
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 Nothing but non-linear statistical models

 Can approximate any function 

 No need for detailed specification of the model

 Provide “prediction without interpretation” (Hastie et al., 

2001)

What about neural networks?

Y

Z

X

Outputs

Derived 

features

Features

1
)exp(1)( where vv
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 GLM

 Limited by linearity (but a large dictionary of functions is possible)

 “log P” loss function more general than squared loss

 Greedy algorithms may get stuck in local minima

 Regularised regression

 Breaks intractability and can be extremely efficient

 Can address cases where there # variables » # data points

 Use of quadratic loss function is a limit – or is it?

 Hybrid approaches

 Regularised GLM

Comparison of GLM and regularisation

II. Dealing with uncertain and soft 

knowledge
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Overview

 A significant portion of the things we know about risk is

 Uncertain (model, parameter, data uncertainty)

 Soft or qualitative

 Fuzzy

 Anecdotic

 Techniques to deal with uncertain/soft knowledge

 Rule-based systems, e.g. expert systems

 Fuzzy set theory

 Bayesian analysis

 Dempster-Shafer belief/possibility theory

 Non-monotonic reasoning

An example: severity distribution with data 

uncertainty and prior knowledge

 The problem: find the parameters of the loss severity distribution

 A very simple example:

 Single-parameter Pareto distribution (large losses)

 Data uncertainty depends on amount already paid, size of loss, date of 

loss…

 Underwriting guidelines: between 2 and 5, = 3.5 default 

recommendation

 Crisp data, no prior knowledge

 Use MLE for point estimates and Fisher information matrix or bootstrap for 

standard error

 Captures the notion of an object whose value is not sharply defined: 

e.g. “large loss”, “risky policyholder”

 Membership to a set can be any real number between 0 and 1

 Fuzzy numbers: fuzzy subsets of 

 Fuzzy arithmetic can be defined quite naturally, e.g. A (+) B:

Fuzzy set theory (Zadeh, 1965)

)(xA

x
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 Non-settled loss:

triangular fuzzy number with width 

larger for losses that have a large 

outstanding percentage and are recent

 Use fuzzy arithmetic to produce an MLE-like estimate of the parameters, 

bootstrap for standard errors. E.g., for a Pareto distribution:

 Requires: crisp functions of fuzzy numbers, sum of fuzzy numbers, adding 

crisp and fuzzy numbers…

Example – Using fuzzy set theory (I) 

lnln nx

n

i

 The result is a fuzzy number with membership function

 Prior knowledge on : another fuzzy number  

 Final result: the fuzzy intersection                 of the two estimates

Example – Using fuzzy set theory (II) 

)(' x

)(' x

)(' xA

)(' xA
)(' xAA

)(x

(data-driven) (underwriting guidelines) (combined)

)(x

)(' xAA

 Rule-based approach – Example 1

 Exclude from the data set all losses whose uncertainty is greater than 30%

 Calculate with MLE based on the remaining data points

 If (MLE) is between 2 and 5, keep it

 Else if it is < 2  choose 

 Else choose 

 Rule-based approach – Example 2

 Use parametric bootstrap to get and se( )

 Use a credibility approach to combine the above with underwriter‟s opinion: e.g., 

 (cred) =  Z (bootstrap) + (1 – Z) (underwriter) 

 Z = se( )2 / (Var( )+ se( )2), where Var( ) is the variance of the 

underwriter‟s estimate

 (Subject to being between 2 and 5)

Example – Using rule-based systems
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 Non-settled losses:

 Prior knowledge: 

 No data uncertainty, no prior knowledge: maximise likelihood

 Prior knowledge, no data uncertainty: maximise posterior likelihood 

 Prior knowledge, data uncertainty: maximise posterior with hidden variables

(solve by numerical methods, e.g. Markov Chain Monte Carlo)

 Simplifications possible by including conditional independence constraints, e.g. 

by using Bayesian networks:  crucial with many variables

Example – Using a Bayesian approach

)()|,...(),...|( 11 PXXPXXP nn

nnnnnnn dxdxxXxXPxXxXXXPXXP ...)|,...(),...|ˆ,...ˆ()Pr()ˆ,...ˆ|( 1111111

)|,...( 1 nXXP

),)ˆ((~)|ˆ( aCVXXEXXP Gamma

,...)5.3,5max,2(min~ modeBeta

 Bayesian networks are compact representations of the joint probability 

distribution through directed acyclic graphs. 

 The posterior probability                               can be calculated by using inference 

by enumeration (see Appendix):

 Information hidden (for simplicity): the distribution below 

Example – Using a Bayesian network
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Fuzzy set theory v Bayesian approach

 Common criticism: “FST just an unwieldy version of probability theory”. 

Is that fair? Both deal with uncertainty, but…

 Conceptual difference: a loss may be exactly £130,000 – but whether this 

loss should be called “large” is vague

 However, the uncertainties we care about are quantitative and not 

linguistic/logical

 Effective toolbox available for those who embrace Bayes: MCMC, Gibbs 

sampling… 

 … whereas anything beyond basic arithmetic is tricky with fuzzy set theory

 FST poor at addressing parameter and model uncertainty 

 Fuzzy numbers always behave as perfectly correlated variables

 Unlike FST, Bayesian methods allow to address model uncertainty

 FST: a much-needed, rigorous extension of set theory, but… is it for us?
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III. Dealing with a changing 

environment

The temporal element

 Dynamic vs static environments:

 In most actuarial problems, the environment is not static – e.g., the 

frequency of losses may be changing due to improved risk control 

mechanisms…

 … and experience reveals itself gradually

 One needs knowledge-update mechanisms

 Why does one need a model which evolves in time?

 Agents have limited time/space resources

 Imagine a situation where very large collections of data are updated…

 Techniques

 Kalman filtering 

 Hidden Markov models

 Dynamic Bayesian networks

Example: Reserving
 Source: Claims reserving, state-space models and the Kalman filter by P. 

De Jong and B. Zenhnwirth (1983)

 Ingredients of a probabilistic temporal model

 Hidden variables xt  true parameters

 Evidence variables zt  latest diagonal

 Transition model P(xt+1|xt)  e.g. random walk model, x(t+1) = x(t) + v(t+1)

 Observation model P(zt | xt)  e.g. zd(t) = x(t-d) (d)+ud (t), (d) = (d+1) exp(-d)

 Prior probability P(x0)  based on triangle available at time 0, e.g. 2003

Development year

0 1 2 3 4 5 6 7 8 9

2000 19,272 56,333 84,499 111,183 131,937 131,937 137,867 131,937 131,937 131,937

2001 30,269 78,700 100,494 117,445 134,396 125,921 127,131 129,553 129,707

2002 32,447 72,268 110,615 109,140 115,039 125,363 126,838 127,247

2003 59,030 134,293 166,759 190,371 178,565 193,322 194,371

2004 81,347 131,298 156,986 165,549 165,549 165,549

2005 63,433 117,805 131,398 132,531 138,000

2006 47,545 86,095 95,090 98,945

2007 42,141 67,836 81,198

2008 44,613 85,880

2009 34,822

Zt+1
(NEW INFORMATION)
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A possible approach: Kalman filtering

 Kalman filtering: regression analysis with a mechanism for updating 

parameters. Classical application: radar tracking

 Key assumption: the current state follows multivariate Gaussian

 Complete set of equations in the Appendix

)( t11t1t HFzKF tt

KALMAN GAIN

(CREDIBILITY)

INFO

UPDATE

TRANSITION

MODEL

PARAMETER 

ESTIMATE @ t

UPDATED 

PARAMETER 

ESTIMATE

OBSERVATION

MODEL

A more general approach: Dynamic Bayesian Networks

 DBN‟s: Bayesian networks representing temporal models 

 Assumptions
 Stationarity (laws governing change don‟t change!)

 (First order) Markov process (current state depends only on previous one)

 Complete joint distribution:

P(X0, X1, … Xt, E1,… Et)= P(X0) j  P(Xj | Xj -1) P(Ej | Xj)

 This is all we need to solve the prediction problem:

 P(Xt+1 | e1:t+1)= P(et+1 | Xt+1) xt P(Xt+1 | xt) P(xt | e1:t)

 Representation as a (unrolled/rolled-up) dynamic Bayesian networks

Xt
Xt+1

Et Et+1

X0 X1 Xt

E1 Et

…Unrolling

TRANSITION MODEL
OBSERVATION MODEL

PRIOR PROBABILITY

Comparison of temporal models
 All Kalman filters can be represented as a DBN (but not vice versa)

 Multivariate Gaussian hypothesis, linearity for Kalman are critical

 Serious non-linearities (e.g. changes of reserving guidelines, judicial 

decisions…) require DBN‟s with both discrete and continuous variables 

 Extended Kalman filters attempt to deal with non-linearities

 Markov Chain Monte Carlo methods can be used for approximate 

inference in DBNs

 Hidden Markov Models (HMM) and DBN are equivalent formulations –

however, DBN‟s are more compact and allow gains from sparsity

 The biggest limitation for all temporal models is stationarity: in all 

cases, a prior model of the possible future changes is needed
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IV.Making decisions in an uncertain 

environment

Overview
 Ultimately, we want to understand risk because we have to make informed 

decisions

 Examples:

 Buying an insurance policy

 Choosing an investment

 Making a business plan

 Buying reinsurance

 Dynamic financial analysis

 In all cases, what is the likely outcome of the decisions we make?

 This is a well-known problem in computational intelligence:

 Designing an intelligent agent which can move in an environment making 

the best decisions – i.e., the decisions which maximise utility

 Main recommended reading: Russell and Norvig, Artificial Intelligence: A 

modern approach, Prentice Hall, 2003

Model players as intelligent agents

 Each agent (e.g. an insurance company) is autonomous and 

incorporates strategies to interact with the environment

 Ignore the other players in the market –all blurred into the 

“environment” 

 Characteristics of the environment

 Fully v partially observable  

 Deterministic v stochastic

 Stationary v non-stationary

 Discrete v continuous

 Intelligent agents in a partially observable, stochastic environment can 

be modelled as Dynamic Decision Networks (DDN‟s)
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 DDN‟s are DBN‟s extended with decision nodes and utility nodes

 Utility:

Example: insurers as dynamic decision 

networks (business planning, DFA) 

Xt-1

Et-1 Et

…

At - 2

Rt-1

At - 1

Xt

Et+1
Rt+1

At 

Xt+1

Et+3

Ut+3

At+2 

Xt+3

Increase price by x%

After-tax profit at time t+1

Utility

0

)()}({
j

j

j

jj sRsU

Losses 

emerged, 

volumes sold…

True risk parameters 

P(Xt+1 |Xt, At)

Rt

IV.Modelling collective behaviour

Overview

 The environment is not really a “blur”… and the other 

players cannot be ignored

 Two main problems:

 Agent design: e.g., maximise utility in the face of competition

 Mechanism design: e.g. you‟re the regulator

 Two main ingredients

 Multi-agent systems

 Game theory (with tournaments, à la Axelrod, but without one-to-

one encounters)
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Example – Personal insurance market

Xt-1

Et-1 Et

…

At - 2

Rt-1

At - 1

Xt

Rt Et+1
Rt+1

At 

Xt+1

Et+3

Ut+3

At+2 

Xt+3

Xt-1

Et-1 Et

…

At - 2

Rt-1

At - 1

Xt

Rt Et+1
Rt+1

At 

Xt+1

Et+3

Ut+3

At+2 

Xt+3

Xt-1

Et-1 Et

…

At - 2

Rt-1

At - 1

Xt

Rt Et+1
Rt+1

At 

Xt+1

Et+3

Ut+3

At+2 

Xt+3

Example (cont‟d)

 Formally, the market can be modelled as a network of DDN‟s 

(except for individual customers)

 The effectiveness of different rules can be tested via stochastic 

simulation, e.g. through an Axelrod-like tournament (game theory)

 The exercise is severely limited by the patchy and fuzzy knowledge 

that each player has of the other players

 The regulator might be in a better position than individual players to 

run such an exercise

 Unlikely to provide exhaustive answers on mechanism design but might 

lead to discover, e.g., unforeseen side-effects of regulation

 Running these simulations might allow to deepen our understanding 

of certain genuinely collective behaviours, e.g. cycles, bubbles…

 E.g., at what level of complexity the typical features of the insurance 

market (including the undewriting cycle) start to emerge? Can its 

length be predicted?

Loss ratio for the whole UK's industry personal lines motor 

business

50%

60%

70%

80%

90%

100%

110%

120%

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

The emergence of truly collective 

behaviour
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Conclusions

So what is the appropriate framework?

 The “intelligent agents” paradigm provides an adequate framework 

for describing and understanding risks

 Risk agents need to learn from data… (machine learning)

 … deal with uncertain/soft knowledge… (Bayesian networks)

 … deal with changes in the environment (dynamic Bayesian networks)

 … make decisions in that environment and modify it… (dynamic decision 

networks)

 … and interact/compete with other risk agents for resources (multi-agent 

systems, game theory)

 Computational intelligence is now more than a collection of 

heuristics, thanks among the others to the “Stanford school” of 

statisticians (Efron, Tibshirani, Hastie, Zou…)

Practical findings

 Regularisation an efficient alternative to GLM for predictive modelling

 Bayesian networks better than fuzzy set theory for dealing with 

uncertain and expert knowledge

 Dynamic bayesian networks (DBN) are a more general method than 

Kalman filtering to capture the changing nature of risk

 Dynamic decision networks – an extension of DBN‟s – a good model for 

agents making decisions in a risky environment

 The main ingredients to understand the collective behaviour of markets 

are multi-agent systems and game theory (stochastic tournaments)

 IT’S A BAYESIAN JUNGLE OUT THERE!
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Limitations

 Current computational intelligence techniques capture the “ecological” 

aspect of risk only up to a point:

 “Prediction” always means prediction in a somehow stationary environment

 The laws themselves change here and people “work the system”… only 

Asimov-style artificial intelligence could address this!

 Soft knowledge on non-stationarity can be introduced in a Bayesian fashion, 

but… 

 Complexity of some of the techniques (e.g. multi-agent systems)

 A parochial view of what “risk” means?

 E.g. where do methods such as derivatives fit in all this?

 Many sources… but two must-haves:

 Hastie, Tibshirani and Friedman, “The elements of Statistical 

Learning: Data Mining, Inference and Prediction”, Springer, 2001

 The book that has given a solid statistical foundation to machine 

learning, by those who invented the bootstrap, the lasso, and much 

else

 Russel and Norvig, “Artificial Intelligence: A Modern Approach”, 

2nd Ed, Prentice Hall, 2003

 The main reference for AI, also known as “The intelligent agents 

book”: responsible for changing the way we look at the discipline

References

Questions?
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Appendix I. Fuzzy set theory

 Fuzzy membership: a fuzzy set A in is a set of ordered pairs 

A = {x, A (x)}, x in , A : X → [0,1] (degree of membership)

 Fuzzy set operations can be defined naturally as:

 Fuzzy number: (informal definition) a fuzzy subset of R whose 

membership function is centred around a given real number. It’s a 

fancy range!

Fuzzy set theory (Zadeh, 1965)
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 Fuzzy arithmetic is based on Zadeh‟s extension principle: if * is a 

binary operation, and A, B are two fuzzy numbers,

 Crisp functions can be defined similarly:

 Quick reference: http://videolectures.net/acai05_berthold_fl/

 A brand-new R package for fuzzy arithmetic: fuzzyOP (March 2009)

Fuzzy arithmetic
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Appendix II. Bayesian networks

 Formally, a Bayesian network is a directed acyclic graph (DAG) where 
 Each node represents a random variable

 There is an arc from X to Y if X affects directly Y (“X is a parent of Y”)

 Each node has a conditional probability distribution Pr(X | Parents(Y)) 

 The topology + conditional probability tables of Bayesian networks are a 

compact representation of the joint probability distribution

 The compactness derives from the sparsity of the connections

 Alternatively, they can be viewed as a collection of independence statements (a 

node is independent of its non-descendants, given its parents)

 The chain rule can be written more compactly as the formula below, which 

defines the full joint distribution as the product of the local conditional 

distributions:

Bayesian networks

),...Pr( 1 nEE

))(Parents|Pr()Pr(),...Pr(
1

1 iii

n

i

n EEEEE

Constructing Bayesian networks
 1. Choose an ordering of variables X1, … ,Xn

 2. For i = 1 to n

 add Xi to the network

 select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)

This choice of parents guarantees:

Pr (X1, … ,Xn) = πi =1 Pr (Xi | X1, … , Xi -1) (chain rule)

= πi =1 Pr (Xi | Parents(Xi)) (by construction)

n

Source: http://aima.eecs.berkeley.edu/slides-ppt/m14-bayesian.ppt (Resources

for Russell & Norvig‟s book)

http://aima.eecs.berkeley.edu/slides-ppt/m14-bayesian.ppt
http://aima.eecs.berkeley.edu/slides-ppt/m14-bayesian.ppt
http://aima.eecs.berkeley.edu/slides-ppt/m14-bayesian.ppt
http://aima.eecs.berkeley.edu/slides-ppt/m14-bayesian.ppt
http://aima.eecs.berkeley.edu/slides-ppt/m14-bayesian.ppt
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Inference in Bayesian networks

 Bayesian networks can be used to calculate the posterior 

distribution of the parameters/random variates we are interested in 

(the query variables)

 A typical query requires to calculate P(X|e) where X is the query 
variable and e is an instance of the evidence variable E. There are 
also hidden variables Y with values y. 

 Exact inference by enumeration:

 P(X | e) = P(X,e) = y P(X,e,y)

 Other inference methods are

 By variable elimination (exact)

 Direct sampling (approximate)

 Markov Chain Monte Carlo methods (approximate)

Appendix III. Markov decision 

processes and DDN„s

 Source: Russel & Norvig, 2003 

 In the case of fully observable environment, an easy, complete solution to optimal 

decision making by an agent is provided by Markov decision processes (MDPs)

 Markov decision processes

 Assumptions: fully observable environment, stochastic, stationary

 Markovian transition model: At each time t, an agent will be in state s and will be able to 

perform an action a. As a consequence, it will move to state s’  with probability T(s,a,s’)

 Utility function: In each state s, the agent receives a reward R(s). The utility of a state 

sequence can either be additive or additive-discounted (no other possibilities!!):

 A rule specifies what each agent should do in any state that it might reach

 An optimal rule is one which maximises expected utility

 The solution can be found with the so-called value iteration algorithm, which is guaranteed to 

converge to a unique solution (see Russell & Norvig, Section 17.2)

Fully observable environments
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 Partially observable MDPs (pom-dee-pees)

 The agent does not necessarily know which state it is in

 The utility depends on s and on how much the agent knows about s

 A belief state b is defined as the probability distribution over all possible states

 It can be shown that the optimal action depends on the agent‟s current belief state b 

 The problem of solving a POMDP on a physical state space can be reduced to that of solving 

an MDP on the corresponding belief state space

 A comprehensive approach to POMDPs is provided by dynamic decision networks

Partially observable environments

 DDN’s provide a comprehensive approach to agent design for partially 

observable stochastic environments

 DDN’s are DBN’s extended with decision nodes and utility nodes

 In the network below (which looks ahead three steps), Xt are the state variables, 

Et are the evidence variables, At is the action at time t, Rt is the reward @ t and 

Ut is the utility of the state @ t

 Note that: the transition model is now P(Xt+1 |Xt, At), the observation model is as 

before and Ut is assumed to be available only in approximate form! 

Dynamic Decision Networks (DDN‟s)

Xt-1

Et-1 Et

…

At - 2

Rt-1

At - 1

Xt

Rt Et+1
Rt+1

At 

Xt+1

Et+3

Ut+3

At+2 

Xt+3

Appendix IV. Kalman filter
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Kalman filtering: model description

 Kalman equations “in their full, hairy horribleness” (Russell and Norvig, 

2003):

 Note that the Kalman gain gives the credibility of the new observation
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