The Actuarial Profession making financial sense of the future

Winner's Curse

GIRO Edinburgh 8th October 2009

Mark Rothwell, Graham Fulcher & The Winner's Curse Working Party

Agenda

- The Working Party
- Winner's Curse Theory
- Winner's Curse in Insurance
 - Personal and Commercial Lines
 - Our own aggregator
 - A theoretical model
 - Modelling of the bidding process
- Winner's Curse and Actuaries

Working Party

Members: Cherry Chan Yves Colomb Catherine Farnworth Graham Fulcher Michael Garner Andrew Goldby Visesh Gosrani Malcolm Jewell Tony Jordan James Kelsall Sylvie Le Delliou-Viel Rob Lowe Roberto Malattia Mark Rothwell (Chair) Andrew Smith Matthew Spedding

Additional Thanks: Tina Aidoo David Brown Carmen Burraston David Drury Tim Grant Paula Iencean Daniel Kendrick Steven Loyens Elena Papadopoulou Andrew Wallace

Winner's Curse - Theory

- Capen, Clapp, and Campbell (1971) "Competitive Bidding in High-Risk Situations"
- Each bidder making best guess at uncertain cashflows using
 - Own knowledge of similar risks
 - Expert information
 - Developing pricing techniques and expertise
- Variation in bids much greater than variation in true value to different bidders
- Highest bid wins

Image source: thesharegallery.co.uk, Wiki commons

The Actuarial Profession making financial sense of the future

Winner's Curse & Insurance

- "Competitive Bidding in High-Risk Situations"
- Each bidder making best guess at uncertain cashflows using
 - Own knowledge of similar risks
 - Expert information
 - Developing pricing techniques and expertise
- Variation in bids much greater than variation in true value to different bidders
- Lowest bid wins

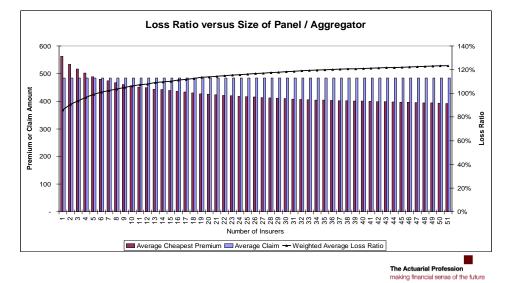

The Actuarial Profession making financial sense of the future

Image source: Wiki commons

Personal Lines and Commercial Lines

	Personal Lines	Balance of risk	Large commercial
Uncertainty	Value of policy can be estimated to high degree of comfort	\searrow	Value of policy subject to high degree of uncertainty
Nature of bidding	Buyer not concerned if bid out of line with market	••	Broker often focused only on lowest price in short term but subscription market mitigates
"Common value"	Cost-base & target segment differs for insurers	••	Cost-base & target segment differs for insurers
Price- focus	High degree of standardisation Aggregators drive price focus Brand important to some	/	Terms and conditions vary Service levels & clams handling important to insured Financial rating of insurer matters
Competition	Aggregators drive extremely high level of competition	/	Fewer players with broker driving competition

The Actuarial Profession making financial sense of the future

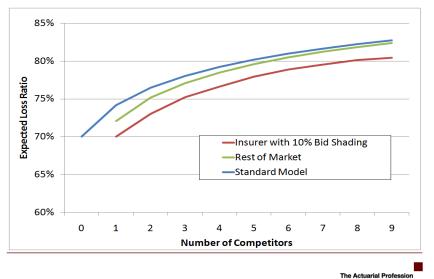
Our Own Aggregator

Mathematical modelling

Actual ultimate losses *U* have mean $\mu(U)$, standard deviation $\sigma(U)$ Assume N identical insurers

- Estimating of cost Xi with mean $\mu(X)$ and standard deviation $\sigma(X)$
- Xi multivariate normal with correlation between pairs p(x)
- Quoting a premium equal to $\alpha + \beta Xi$

Correlation between each Xi and U is p(U)


Aggregate effect of winners curse on profit: $\xi(N) * \beta * \sigma(X) * sqrt [1 - p(X)]$

Where $\xi(N)$ is the expected value of the maximum of N i.i.d. N(0,1): $\xi(2) = 0.564$ and $\xi(5) = 1.163$

Independent of: Mean estimate; Mean and standard deviation of claims; Correlation between claims and estimates

Depends only on: profit loading; number of insurers; volatility of estimates; correlation between estimates

Theoretical Modelling – rate changes

Winner's Curse & actuaries

- Winner's Curse needs to be as familiar a concept to actuaries as reserving cycles
- Competition can be modelled in a variety of ways
 - Build-your-own-aggregators
 - Mathematical and game theory approaches
 - Theoretical London market models
 - Bayesian posterior approach to pricing and rate monitoring
- The "holy grail" of pricing model loss ratios feeding capital modelling means and reserving priors is flawed without consideration of Winner's Curse
- Winner's Curse interacts with the underwriting and reserving cycle

Please join us in Workshop D3 (after the coffee break)

making financial sense of the future